首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The limited size of the germline antibody repertoire has to recognize a far larger number of potential antigens. The ability of a single antibody to bind multiple ligands due to conformational flexibility in the antigen‐binding site can significantly enlarge the repertoire. Among the six complementarity determining regions (CDRs) that generally comprise the binding site, the CDR H3 loop is particularly variable. Computational protein design studies showed that predicted low energy sequences compatible with a given backbone structure often have considerable similarity to the corresponding native sequences of naturally occurring proteins, indicating that native protein sequences are close to optimal for their structures. Here, we take a step forward to determine whether conformational flexibility, believed to play a key functional role in germline antibodies, is also central in shaping their native sequence. In particular, we use a multi‐constraint computational design strategy, along with the Rosetta scoring function, to propose that the native sequences of CDR H3 loops from germline antibodies are nearly optimal for conformational flexibility. Moreover, we find that antibody maturation may lead to sequences with a higher degree of optimization for a single conformation, while disfavoring sequences that are intrinsically flexible. In addition, this computational strategy allows us to predict mutations in the CDR H3 loop to stabilize the antigen‐bound conformation, a computational mimic of affinity maturation, that may increase antigen binding affinity by preorganizing the antigen binding loop. In vivo affinity maturation data are consistent with our predictions. The method described here can be useful to design antibodies with higher selectivity and affinity by reducing conformational diversity. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
It is well established that the humoral immune response can generate antibodies to many different antigens. The antibody diversity required to achieve this is believed to be substantial. However, the extent to which the immune repertoire can generate structural diversity against a single target antigen has never been addressed. Here, we have used phage display to demonstrate the extraordinary capacity of the human antibody repertoire. Over 1000 antibodies, all different in amino acid sequence, were generated to a single protein, B-lymphocyte stimulator (BLyS™ protein). This is a highly diverse panel of antibodies as exemplified by the extensive heavy and light chain germline usage: 42/49 functional heavy chain germlines and 19/33 Vλ and 13/35 Vκ light chain germlines were all represented in the panel of antibodies. Moreover, a high level of sequence diversity was observed in the VH CDR3 domains of these antibodies, with 568 different amino acid sequences identified. Thus we have demonstrated that specific recognition of a single antigen can be achieved from many different VDJ combinations, illustrating the remarkable problem-solving ability of the human immune repertoire. When studied in a biochemical assay, around 500 (40%) of these antibodies inhibited the binding of BLyS to its receptors on B-cell lines. The most potent antibodies inhibited BLyS binding with sub-nanomolar IC50 values and with sub-nanomolar affinities. Such antibodies provide excellent choices as candidates for the treatment of BLyS-associated autoimmune diseases.  相似文献   

3.
Previously we reported that the variable heavy chain region (VH) of a human beta2 glycoprotein I-dependent monoclonal antiphospholipid antibody (IS4) was dominant in conferring the ability to bind cardiolipin (CL). In contrast, the identity of the paired variable light chain region (VL) determined the strength of CL binding. In the present study, we examine the importance of specific arginine residues in IS4VH and paired VL in CL binding. The distribution of arginine residues in complementarity determining regions (CDRs) of VH and VL sequences was altered by site-directed mutagenesis or by CDR exchange. Ten different 2a2 germline gene-derived VL sequences were expressed with IS4VH and the VH of an anti-dsDNA antibody, B3. Six variants of IS4VH, containing different patterns of arginine residues in CDR3, were paired with B3VL and IS4VL. The ability of the 32 expressed heavy chain/light chain combinations to bind CL was determined by ELISA. Of four arginine residues in IS4VH CDR3 substituted to serines, two residues at positions 100 and 100 g had a major influence on the strength of CL binding while the two residues at positions 96 and 97 had no effect. In CDR exchange studies, VL containing B3VL CDR1 were associated with elevated CL binding, which was reduced significantly by substitution of a CDR1 arginine residue at position 27a with serine. In contrast, arginine residues in VL CDR2 or VL CDR3 did not enhance CL binding, and in one case may have contributed to inhibition of this binding. Subsets of arginine residues at specific locations in the CDRs of heavy chains and light chains of pathogenic antiphospholipid antibodies are important in determining their ability to bind CL.  相似文献   

4.
We describe here the design, construction and validation of ALTHEA Gold Libraries?. These single-chain variable fragment (scFv), semisynthetic libraries are built on synthetic human well-known IGHV and IGKV germline genes combined with natural human complementarity-determining region (CDR)-H3/JH (H3J) fragments. One IGHV gene provided a universal VH scaffold and was paired with two IGKV scaffolds to furnish different topographies for binding distinct epitopes. The scaffolds were diversified at positions identified as in contact with antigens in the known antigen-antibody complex structures. The diversification regime consisted of high-usage amino acids found at those positions in human antibody sequences. Functionality, stability and diversity of the libraries were improved throughout a three-step construction process. In a first step, fully synthetic primary libraries were generated by combining the diversified scaffolds with a set of synthetic neutral H3J germline gene fragments. The second step consisted of selecting the primary libraries for enhanced thermostability based on the natural capacity of Protein A to bind the universal VH scaffold. In the third and final step, the resultant stable synthetic antibody fragments were combined with natural H3J fragments obtained from peripheral blood mononuclear cells of a large pool of 200 donors. Validation of ALTHEA Gold Libraries? with seven targets yielded specific antibodies in all the cases. Further characterization of the isolated antibodies indicated KD values as human IgG1 molecules in the single-digit and sub-nM range. The thermal stability (Tm) of all the antigen-binding fragments was 75°C–80°C, demonstrating that ALTHEA Gold Libraries? are a valuable source of specific, high affinity and highly stable antibodies.  相似文献   

5.
Therapeutic monoclonal antibodies targeting G-protein-coupled receptors (GPCRs) are desirable for intervention in a wide range of disease processes. The discovery of such antibodies is challenging due to a lack of stability of many GPCRs as purified proteins. We describe here the generation of Fpro0165, a human anti-formyl peptide receptor 1 (FPR1) antibody generated by variable domain engineering of an antibody derived by immunization of transgenic mice expressing human variable region genes. Antibody isolation and subsequent engineering of affinity, potency and species cross-reactivity using phage display were achieved using FPR1 expressed on HEK cells for immunization and selection, along with calcium release cellular assays for antibody screening. Fpro0165 shows full neutralization of formyl peptide-mediated activation of primary human neutrophils. A crystal structure of the Fpro0165 Fab shows a long, protruding VH CDR3 of 24 amino acids and in silico docking with a homology model of FPR1 suggests that this long VH CDR3 is critical to the predicted binding mode of the antibody. Antibody mutation studies identify the apex of the long VH CDR3 as key to mediating the species cross-reactivity profile of the antibody. This study illustrates an approach for antibody discovery and affinity engineering to typically intractable membrane proteins such as GPCRs.  相似文献   

6.
Antibodies provide immune protection by recognizing antigens of diverse chemical properties, but elucidating the amino acid sequence-function relationships underlying the specificity and affinity of antibody-antigen interactions remains challenging. We designed and constructed phage-displayed synthetic antibody libraries with enriched protein antigen-recognition propensities calculated with machine learning predictors, which indicated that the designed single-chain variable fragment variants were encoded with enhanced distributions of complementarity-determining region (CDR) hot spot residues with high protein antigen recognition propensities in comparison with those in the human antibody germline sequences. Antibodies derived directly from the synthetic antibody libraries, without affinity maturation cycles comparable to those in in vivo immune systems, bound to the corresponding protein antigen through diverse conformational or linear epitopes with specificity and affinity comparable to those of the affinity-matured antibodies from in vivo immune systems. The results indicated that more densely populated CDR hot spot residues were sustainable by the antibody structural frameworks and could be accompanied by enhanced functionalities in recognizing protein antigens. Our study results suggest that synthetic antibody libraries, which are not limited by the sequences found in antibodies in nature, could be designed with the guidance of the computational machine learning algorithms that are programmed to predict interaction propensities to molecules of diverse chemical properties, leading to antibodies with optimal characteristics pertinent to their medical applications.  相似文献   

7.
The anti-HLA-DQ3 monoclonal antibodies (mAb) KS13, SO1, SO2, SO3, SO4, and SO5 recognize spatially close but distinct antigenic determinants, since they crossinhibit each other in their binding to HLA-DQ3 antigens, but do not share idiotopes recognized in their antigen combining site by syngeneic and anti-id antisera and mAb. Furthermore, mAb SO1, SO3, SO4, and SO5 react also with HLA-DQ allospecificities other than HLA-DQ3. Sequence analysis of the heavy (V H ) and light (V L ) chain variable region of the six mAb revealed preferential usage of V H 36–60 and V K 12/13 gene families. However, the individual V H and V L germline gene usage by the six mAb is diverse and the utilization of D, J H , and J L gene segments is heterogeneous. The diverse usage of V H and V L gene segments and heterogeneous amino acid sequences of V H and V L CDR, together with the heterogeneous idiotypic profile, may reflect the complexity of the determinants recognized by the six mAb on HLA-DQ3 antigens. The results we have presented provide for the first time information about the structural basis of the diversity of antibodies recognizing human histocompatibility antigens.The nucleotide sequence data reported in this Papershave been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers L20499, L20957, L20961, L24557, L24558 and L20962, respectively, for V H region genes, and L20956, L20958, L24555, L24556, L20959, and L20960, respectively, for V L region genes  相似文献   

8.
《MABS-AUSTIN》2013,5(1):152-166
Therapeutic monoclonal antibodies targeting G-protein-coupled receptors (GPCRs) are desirable for intervention in a wide range of disease processes. The discovery of such antibodies is challenging due to a lack of stability of many GPCRs as purified proteins. We describe here the generation of Fpro0165, a human anti-formyl peptide receptor 1 (FPR1) antibody generated by variable domain engineering of an antibody derived by immunization of transgenic mice expressing human variable region genes. Antibody isolation and subsequent engineering of affinity, potency and species cross-reactivity using phage display were achieved using FPR1 expressed on HEK cells for immunization and selection, along with calcium release cellular assays for antibody screening. Fpro0165 shows full neutralization of formyl peptide-mediated activation of primary human neutrophils. A crystal structure of the Fpro0165 Fab shows a long, protruding VH CDR3 of 24 amino acids and in silico docking with a homology model of FPR1 suggests that this long VH CDR3 is critical to the predicted binding mode of the antibody. Antibody mutation studies identify the apex of the long VH CDR3 as key to mediating the species cross-reactivity profile of the antibody. This study illustrates an approach for antibody discovery and affinity engineering to typically intractable membrane proteins such as GPCRs.  相似文献   

9.
Germline repertoire of the immunoglobulin V H 3 family in rhesus monkeys   总被引:2,自引:2,他引:0  
 To facilitate molecular studies of antibody responses in rhesus monkeys (Macaca mulatta), we cloned and sequenced germline segments from its largest and most diverse immunoglobulin heavy-chain gene family, V H 3. Using a PCR-based approach, we characterized 29 sequences, 20 with open reading frames (ORFs) and 9 pseudogenes. The leader sequences, introns, exons, and recombination signal sequences of M. mulatta V H 3 gene segments are not strictly identical to those of humans, but the mature coding regions demonstrate, on average, greater than 90% sequence similarity. Although the framework regions are more highly conserved, the complementarity-determining regions (CDRs) also show strong similarities, and their predicted three-dimensional structures resemble those of their human homologues. In one instance, homologous macaque and human CDR1 sequences were 100% identical at the nucleotide level, and some CDR2s shared nucleotide identity as high as 96.5%. However, some rhesus V H 3 ORFs have unusual structural features, including atypical CDR lengths and uncommon amino acids at structurally crucial positions. The similarity of rhesus and human V H 3 homologues reinforces the notion that humoral immunity in this nonhuman primate species is an appropriate system for modeling human antibody responses. Received: 10 August 1999 / Revised: 30 December 1999  相似文献   

10.
The immune response in BALB/c mice to phosphorylcholine is highly restricted in its heterogeneity. Of the 19 immunoglobulins binding phosphorylcholine for which complete VH-segment amino acid sequences have been determined, 10 employ a single sequence, denoted T15 after the prototype VH sequence of this group of antibodies. The remaining 9 of these VH segments are variants differing by 1 to 8 residues from the T15 sequence. Using a cloned VH cDNA probe complementary to the T15 sequence, we isolated from a mouse sperm genomic library clones corresponding to four VH gene segments that by DNA sequence analysis are >85% homologous to one another. These four VH gene segments have been denoted the T15 VH gene family. These VH gene segments are most, if not all, of the germline VH gene segments that could encode the VH sequences of antibodies that bind phosphorylcholine. One of these four genes contains the T15-VH-coding sequence. When the T15-family VH gene segments were compared with the complete VH protein sequences of 19 hybridoma and myeloma immunoglobulins that bind phosphorylcholine, several striking conclusions could be drawn. First, all of these VH regions must have arisen from the germline T15 VH gene segment. Thus virtually the entire immune response to phosphorylcholine is derived from a single VH-coding sequence. Nine of the 19 VH regions were variants differing from the T15-VH-coding sequence and, accordingly, must have arisen by a mechanism of somatic diversification. Second, the variants appear to be generated by a somatic mutation mechanism. They cannot be explained by recombination or gene conversion among members of the T15 gene family. Third, somatic mutation is correlated with the class of the antibody. All of the somatic variation is found in the VH regions derived from antibodies of the IgA and IgG classes. The IgM molecules express the germline T15 VH gene segment exclusively.  相似文献   

11.
We have analyzed conformational changes that occur at the interface between the light (VL) and heavy (VH) chains in antibody variable fragments upon binding to antigens. We wrote and applied the Tiny Probe program that computes the buried atomic contact surface area of three‐dimensional structures to evaluate changes in compactness of the VL–VH interface between bound and unbound antibodies. We found three categories of these changes, which correlated with the size of the antigen. Upon binding, medium‐sized nonprotein antigens cause an opening of the VL–VH interface (less compact), small antigens or haptens cause a closure of the interface (more compact), whereas large protein antigens have little effect on the compactness of the VL–VH interface. The largest changes in the atomic buried contact surface area at the VL–VH interface occur in residue pairs providing two ‘shock absorbers’ between the edge β‐strands of the VL and VH β‐sheets forming the antibody binding site. Importantly, the correlation between the size of antigens and conformational changes indicates that the VL–VH interface in antibodies plays a significant role in the antigen binding process. Furthermore, as the energy involved in such a motion is significant (up to 3 kcal/mol), these results provide a general mechanism for how residues distant from the combining site can significantly alter the affinity of an antibody for its antigen. Thus, mutations introduced at the VL–VH interface can be used to change antibody binding affinity with antigens. Due to the tightly packed VL–VH interface, the introduction of random mutations is not advisable. Rather our analysis suggests that concerted mutations of residues preceding CDRL2 and following CDRH3 or residues preceding CDRH2 and at the end of CDRL3 are most likely to alter or improve antigen binding affinity. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Diversity in antibody structure is crucial to the ability of the adaptive immune system to recognize the tremendously diverse set of potential antigens. The diversity in structure is most apparent in the six hypervariable loops of the complementarity-determining regions. However, given that these loops occur at the interface of the heavy- and light-chain variable domains and form the antigen-binding site, the relative orientation of the heavy- and light-chain variable domains can create another source of structural diversity leading to changes in antigen binding. Here, we first reexamine the diversity of VL:VH orientations in existing antibody crystal structures using 153 nonredundant sequences, demonstrating that the variation in VL:VH orientation is greater than that expected from effects of crystal packing, antigen binding, or the presence of antibody constant regions and increases, on average, as sequence similarity decreases for residues in the interface between the domains. We developed a tool for predicting the relative orientations of the heavy- and light-chain variable domains using side-chain rotamer sampling in the interface and molecular-mechanics-based energy calculations. When using variable domain backbones from the crystal structures, the predicted orientation is very close (< 1 Å RMSD) to the crystallographically observed orientation in most cases, confirming that the VL:VH orientation is determined by the antibody sequence and suggesting an approach to predicting the relative orientation of the variable domains when building homology models of antibodies. When applied to antibody homology models generated from templates with 55-75% sequence identity, we predict the VL:VH orientation of 20 antibodies with an average/median RMSD of 2.1/1.6 Å to the crystal structures.  相似文献   

13.
Antibody response to carbohydrate antigens is often independent of T cells and the process of affinity/specificity improvement is considered strictly dependent on the germinal centers. Antibodies induced during a T cell-independent type 2 (TI-2) response are less variable and less functionally versatile than those induced with T cell help. The antigen specificity consequences of accumulation of somatic mutations in antibodies during TI-2 responses of Marginal Zone (MZ) B cells is a fact that still needs explanation. Germline genes that define carbohydrate-reactive antibodies are known to sculpt antibody-combining sites containing innate, key side-chain contacts that define the antigen recognition step. However, substitutions associated with MZ B cell derived antibodies might affect the mobility and polyspecificity of the antibody. To examine this hypothesis, we analyzed antibodies reactive with the neolactoseries antigen Lewis Y (LeY) to define the residue subset required for the reactive repertoire for the LeY antigen. Our molecular simulation studies of crystallographically determined and modeled antibody-LeY complexes suggests that the heavy-chain germline gene VH7183.a13.20 and the light-chain Vκ cr1 germline gene are sufficient to account for the recognition of the trisaccharide-H determinant Types 1–4, while the specificity for LeY is driven by the CDR3 backbone conformation of the heavy chain and not the side chain interactions. These results confirm that these monoclonals use germline-encoded amino acids to recognize simple carbohydrate determinants like trisaccharide-H but relies on somatic mutations in the periphery of the combining site to modify affinity for LeY through electrostatic interactions that leads to their optimized binding. These observations bring further attention to the role of mutations in T-cell independent antibodies to distinguish self from non-self carbohydrate antigens.  相似文献   

14.
Currently, almost all U.S. Food and Drug Administration-approved therapeutic antibodies and the vast majority of those in clinical trials are full-size antibodies mostly in an immunoglobulin G1 format of about 150 kDa in size. Two fundamental problems for such large molecules are their poor penetration into tissues (e.g., solid tumors) and poor or absent binding to regions on the surface of some molecules [e.g., on the human immunodeficiency virus envelope glycoprotein (Env)] that are accessible by molecules of smaller size. We have identified a phage-displayed heavy chain-only antibody by panning of a large (size, ∼ 1.5 × 1010) human naive Fab (antigen-binding fragment) library against an Env and found that the heavy chain variable domain (VH) of this antibody, designated as m0, was independently folded, stable, highly soluble, monomeric, and expressed at high levels in bacteria. m0 was used as a scaffold to construct a large (size, ∼ 2.5 × 1010), highly diversified phage-displayed human VH library by grafting naturally occurring complementarity-determining regions (CDRs) 2 and 3 of heavy chains from five human antibody Fab libraries and by randomly mutating four putative solvent-accessible residues in CDR1 to A, D, S, or Y. The sequence diversity of all CDRs was determined from 143 randomly selected clones. Most of these VHs were with different CDR2 origins (six of seven groups of VH germlines) or CDR3 lengths (ranging from 7 to 24 residues) and could be purified directly from the soluble fraction of the Escherichia coli periplasm. The quality of the library was also validated by successful selection of high-affinity VHs against viral and cancer-related antigens; all selected VHs were monomeric, easily expressed, and purified with high solubility and yield. This library could be a valuable source of antibodies targeting size-restricted epitopes and antigens in obstructed locations where efficient penetration could be critical for successful treatment.  相似文献   

15.
Antibody-based therapeutics provides novel and efficacious treatments for a number of diseases. Traditional experimental approaches for designing therapeutic antibodies rely on raising antibodies against a target antigen in an immunized animal or directed evolution of antibodies with low affinity for the desired antigen. However, these methods remain time consuming, cannot target a specific epitope and do not lead to broad design principles informing other studies. Computational design methods can overcome some of these limitations by using biophysics models to rationally select antibody parts that maximize affinity for a target antigen epitope. This has been addressed to some extend by OptCDR for the design of complementary determining regions. Here, we extend this earlier contribution by addressing the de novo design of a model of the entire antibody variable region against a given antigen epitope while safeguarding for immunogenicity (Optimal Method for Antibody Variable region Engineering, OptMAVEn). OptMAVEn simulates in silico the in vivo steps of antibody generation and evolution, and is capable of capturing the critical structural features responsible for affinity maturation of antibodies. In addition, a humanization procedure was developed and incorporated into OptMAVEn to minimize the potential immunogenicity of the designed antibody models. As case studies, OptMAVEn was applied to design models of neutralizing antibodies targeting influenza hemagglutinin and HIV gp120. For both HA and gp120, novel computational antibody models with numerous interactions with their target epitopes were generated. The observed rates of mutations and types of amino acid changes during in silico affinity maturation are consistent with what has been observed during in vivo affinity maturation. The results demonstrate that OptMAVEn can efficiently generate diverse computational antibody models with both optimized binding affinity to antigens and reduced immunogenicity.  相似文献   

16.
Human VH single domains represent a promising class of antibody fragments with applications as therapeutic modalities. Unfortunately, isolated human VH domains also generally display poor biophysical properties and a propensity to aggregate. This has encouraged the development of non-human antibody domains as alternative means of antigen recognition and, in particular, camelid (VHH) domains. Naturally devoid of light chain partners, these domains are characterized by favorable biophysical properties and propensity for cleft binding, a highly desirable characteristic, allowing the targeting of cryptic epitopes. In contrast, previously reported structures of human VH single domains had failed to recapitulate this property. Here we report the engineering and characterization of phage display libraries of stable human VH domains and the selection of binders against a diverse set of antigens. Unlike “camelized” human domains, the domains do not rely on potentially immunogenic framework mutations and maintain the structure of the VH/VL interface. Structure determination in complex with hen egg white lysozyme revealed an extended VH binding interface, with complementarity-determining region 3 deeply penetrating into the active site cleft, highly reminiscent of what has been observed for camelid domains. Taken together, our results demonstrate that fully human VH domains can be constructed that are not only stable and well expressed but also rival the cleft binding properties of camelid antibodies.  相似文献   

17.
《MABS-AUSTIN》2013,5(6):1045-1057
Antibodies derived from non-human sources must be modified for therapeutic use so as to mitigate undesirable immune responses. While complementarity-determining region (CDR) grafting-based humanization techniques have been successfully applied in many cases, it remains challenging to maintain the desired stability and antigen binding affinity upon grafting. We developed an alternative humanization approach called CoDAH (“Computationally-Driven Antibody Humanization”) in which computational protein design methods directly select sets of amino acids to incorporate from human germline sequences to increase humanness while maintaining structural stability. Retrospective studies show that CoDAH is able to identify variants deemed beneficial according to both humanness and structural stability criteria, even for targets lacking crystal structures. Prospective application to TZ47, a murine anti-human B7H6 antibody, demonstrates the approach. Four diverse humanized variants were designed, and all possible unique VH/VL combinations were produced as full-length IgG1 antibodies. Soluble and cell surface expressed antigen binding assays showed that 75% (6 of 8) of the computationally designed VH/VL variants were successfully expressed and competed with the murine TZ47 for binding to B7H6 antigen. Furthermore, 4 of the 6 bound with an estimated KD within an order of magnitude of the original TZ47 antibody. In contrast, a traditional CDR-grafted variant could not be expressed. These results suggest that the computational protein design approach described here can be used to efficiently generate functional humanized antibodies and provide humanized templates for further affinity maturation.  相似文献   

18.
Genetic factors, as well as antigenic stimuli, can influence antibody repertoire formation. Moreover, the affinity of antigen for unmutated naïve B cell receptors determines the threshold for activation of germinal center antibody responses. The gp41 2F5 broadly neutralizing antibody (bNAb) uses the VH2-5 gene, which has 10 distinct alleles that use either a heavy-chain complementarity-determining region 2 (HCDR2) aspartic acid (DH54) or an HCDR2 asparagine (NH54) residue. The 2F5 HCDR2 DH54 residue has been shown to form a salt bridge with gp41 665K; the VH2-5 germ line allele variant containing NH54 cannot do so and thus should bind less avidly to gp41. Thus, the induction of 2F5 bNAb is dependent on both genetic and structural factors that could affect antigen affinity of unmutated naïve B cell receptors. Here, we studied allelic variants of the VH2-5 inferred germ line forms of the HIV-1 gp41 bNAb 2F5 for their antigen binding affinities to gp41 linear peptide and conformational protein antigens. Both VH2-5 2F5 inferred germ line variants bound to gp41 peptides and protein, including the fusion intermediate protein mimic, although more weakly than the mature 2F5 antibody. As predicted, the affinity of the NH54 variant for fusion-intermediate conformation was an order of magnitude lower than that of the DH54 VH2-5 germ line antibody, demonstrating that allelic variants of 2F5 germ line antibodies differentially bind to gp41. Thus, these data demonstrate a genetically determined trait that may affect host responses to HIV-1 envelope epitopes recognized by broadly neutralizing antibodies and has implications for unmutated ancestor-based immunogen design.  相似文献   

19.
Antibodies with conformational specificity are important for detecting and interfering with polypeptide aggregation linked to several human disorders. We are developing a motif-grafting approach for designing lead antibody candidates specific for amyloid-forming polypeptides such as the Alzheimer peptide (Aβ). This approach involves grafting amyloidogenic peptide segments into the complementarity-determining regions (CDRs) of single-domain (VH) antibodies. Here we have investigated the impact of polar mutations inserted at the edges of a large hydrophobic Aβ42 peptide segment (Aβ residues 17–42) in CDR3 on the solubility and conformational specificity of the corresponding VH domains. We find that VH expression and solubility are strongly enhanced by introducing multiple negatively charged or asparagine residues at the edges of CDR3, whereas other polar mutations are less effective (glutamine and serine) or ineffective (threonine, lysine, and arginine). Moreover, Aβ VH domains with negatively charged CDR3 mutations show significant preference for recognizing Aβ fibrils relative to Aβ monomers, whereas the same VH domains with other polar CDR3 mutations recognize both Aβ conformers. We observe similar behavior for a VH domain grafted with a large hydrophobic peptide from islet amyloid polypeptide (residues 8–37) that contains negatively charged mutations at the edges of CDR3. These findings highlight the sensitivity of antibody binding and solubility to residues at the edges of CDRs, and provide guidelines for designing other grafted antibody fragments with hydrophobic binding loops.  相似文献   

20.

Background

Antibody, the primary effector molecule of the immune system, evolves after initial encounter with the antigen from a precursor form to a mature one to effectively deal with the antigen. Antibodies of a lineage diverge through antigen-directed isolated pathways of maturation to exhibit distinct recognition potential. In the context of evolution in immune recognition, diversity of antigen cannot be ignored. While there are reports on antibody lineage, structural perspective with respect to diverse recognition potential in a lineage has never been studied. Hence, it is crucial to evaluate how maturation leads to topological tailoring within a lineage enabling them to interact with significantly distinct antigens.

Results

A data-driven approach was undertaken for the study. Global experimental mouse and human antibody-antigen complex structures from PDB were compiled into a coherent database of germline-linked antibodies bound with distinct antigens. Structural analysis of all lineages showed variations in CDRs of both H and L chains. Observations of conformational adaptation made from analysis of static structures were further evaluated by characterizing dynamics of interaction in two lineages, mouse VH1–84 and human VH5–51. Sequence and structure analysis of the lineages explained that somatic mutations altered the geometries of individual antibodies with common structural constraints in some CDRs. Additionally, conformational landscape obtained from molecular dynamics simulations revealed that incoming pathogen led to further conformational divergence in the paratope (as observed across datasets) even while maintaining similar overall backbone topology. MM-GB/SA analysis showed binding energies to be in physiological range. Results of the study are coherent with experimental observations.

Conclusions

The findings of this study highlight basic structural principles shaping the molecular evolution of a lineage for significantly diverse antigens. Antibodies of a lineage follow different developmental pathways while preserving the imprint of the germline. From the study, it can be generalized that structural diversification of the paratope is an outcome of natural selection of a conformation from an available ensemble, which is further optimized for antigen interaction. The study establishes that starting from a common lineage, antibodies can mature to recognize a wide range of antigens. This hypothesis can be further tested and validated experimentally.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号