首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
Cell lysis is induced in Schizosaccharomyces pombe ?ura4 cells grown in YPD medium, which contains yeast extract, polypeptone, and glucose. To identify the medium components that induce cell lysis, we first tested various kinds of yeast extracts from different suppliers. Cell lysis of ?ura4 cells on YE medium was observed when yeast extracts from OXOID, BD, Oriental, and Difco were used, but not when using yeast extract from Kyokuto. To determine which compounds induced cell lysis, we subjected yeast extract and polypeptone to GC-MS analysis. Ten kinds of compounds were detected in OXOID and BD yeast extracts, but not in Kyokuto yeast extract. Among them was urea, which was also present in polypeptone, and it clearly induced cell lysis. Deletion of the ure2 gene, which is responsible for utilizing urea, abolished the lytic effect of urea. The effect of urea was suppressed by deletion of pub1, and a similar phenotype was observed in the presence of polypeptone. Thus, urea is an inducer of cell lysis in S. pombe ?ura4 cells.  相似文献   

2.
Schizosaccharomyces pombe Δura4 cells lyse when grown on YPD medium. A S. pombe non-essential gene deletion library was screened to determine suppressors of the lysis phenotype. Deletion of the pub1 gene, which encoded E3 ubiquitin ligase, strongly suppressed cell lysis in Δura4 cells. The Δpub1 cells displayed high sensitivity to 5-fluorouracil, a toxic analog of uracil, and this sensitivity was suppressed by deletion of fur4, which encoded a uracil transporter. Fur4 localized primarily to the Golgi apparatus and vacuoles in wild-type cells, but localization was predominantly at the plasma membrane in Δpub1 cells. Fur4 was necessary for the utilization of extracellular uracil, cytosine, or UMP. Uracil uptake activity increased in the Δpub1 strain in a Fur4-dependent manner. In addition, uracil starvation was critical for induction of cell lysis of Δura4 strains and uracil supplementation suppressed lysis. In summary, the increased uracil uptake ability of Δpub1 cells, where Fur4 was predominantly localized to the plasma membrane, resulted in suppression of cell lysis in the Δura4 background.  相似文献   

3.
Summary We have generated a bank of temperature-sensitive (ts) Schizosaccharomyces pombe mutant strains. About 150 of these mutants were transformed with a ura4 gene containing an artificial intron. We screened these is mutants for mutants deficient in splicing of the ura4 intron. With this approach three mutants were isolated which have a general defect in the splicing process. Two of these mutants fall into the prp1 complementation group and one defines a new complementation group, prp4.  相似文献   

4.
DDL1 encodes a mitochondrial phospholipase A1 involved in acyl chain remodeling of mitochondrial phospholipids and degradation of cardiolipin in Saccharomyces cerevisiae. The deletion of DDL1 leads to respiratory growth defects. To elucidate the physiological role of DDL1, we screened for genes that, when overexpressed, suppress the respiratory growth defect of the DDL1 deletion mutant. Introduction of COQ8, COQ9, or COQ5, which are involved in coenzyme Q (CoQ) synthesis, using a multicopy vector suppressed the respiratory growth defect of the DDL1 deletion mutant. In contrast, introduction of COQ8 using a multicopy vector did not accelerate the growth of the deletion mutants of TAZ1 or CLD1, which encode an acyltransferase or phospholipase A2, respectively, involved in the remodeling of cardiolipin. These results suggest genetic interactions between the mitochondrial phospholipase A1 gene and the genes involved in CoQ synthesis.  相似文献   

5.
To investigate the uracil biosynthetic pathway of the yeast Saccharomyces exiguus Yp74L-3, uracil auxotrophic mutants were isolated. Using conventional genetic techniques, four mutant genes concerned in uracil biosynthesis were identified and denoted as ura1, ura2, ura3, and ura4. Mutations in the URA3 and URA4 genes were specifically selected with 5-fluoroorotic acid (5-FOA). Vector plasmids containing the URA3 gene and an autonomously replicating sequence (ARS) of S. cerevisiae produced sufficient amounts of Ura+ transformants from the ura4 mutant of S. exiguus. This fact indicates that the S. exiguus URA4 gene encodes orotidine-5′-phosphate decarboxylase (OMP decarboxylase) and demonstrates that vector plasmids for S. cerevisiae are also usable in S. exiguus.  相似文献   

6.
7.
Genetic engineering offers a practical route for enhancing the insect biological control potential of entomopathogenic fungi such as Beauveria bassiana. To date, however, such efforts have relied upon transformation protocols that utilize antibiotic or herbicidal resistance markers as selection agents for the introduction of genes into the fungus. In order to avoid the use of such markers for the development of field-usable fungal strains, a markerless transformation system based upon complementation of uridine auxotrophy was developed. A targeted gene deletion knockout of orotidine 5′-phosphate decarboxylase (ura3) was isolated using a positive screening protocol with 5′-fluoro-orotate. Although growth was restored when the mutant, ΔBbura3, was grown in the presence of exogenous uridine, conidiation remained impaired and conidial yield was reduced. Insect bioassays revealed that the ΔBbura3 strain was essentially avirulent using both topical and intrahemocoel injection assays, indicating that the deletion mutant was unable to scavenge uridine from the host during infection. A series of plasmid constructs were developed for complementation of the ura3 mutant, and complemented strains were restored to wild-type growth and virulence. These data indicate that the ura3 mutant and corresponding complementation vectors can be used to construct markerless strains for the bioengineering of desired traits in B. bassiana.  相似文献   

8.
Summary Three different Schizosaccharomyces pombe strains have been transformed with a circular or linearized non-ars plasmid carrying the ura4 + gene as a selectable marker. The first strain shows full homology between the genomic ura4-294 gene (point mutation) and the marker gene on the plasmid. The second strain carries a 600 bp deletion (ura4-D6) that decreases homology between plasmid and chromosome. No homology remains in the third strain which has a complete deletion of the ura4 gene on the chromosome (ura4-D18). When sequence homology exists between transforming DNA and the chromosomal ura4 region, gene conversion is strongly preferred over integration of the circular plasmid. Reduction of the length of homology leads to a decrease of transformation frequencies, and homology dependent as well as a minority of homology independent integrations are observed. In the complete absence of homology two rate types of transformants are encountered: either the circular plasmid replicates autonomously, although it is devoid of an ars sequence, or alternatively the plasmid integrates into the genome at various positions. Transformation with plasmid cut within the coding region of ura4 can lead to tandemly arranged multiple integrations, when no homology exists between the free ends and the chromosome. The integrations occur at the ura4 locus, when homology is retained between plasmid and chromosome, and at various sites in the genome of the strain with a complete deletion of the ura4 gene. The results suggest that homology dependent events (conversion, integration) are strongly preferred in transformation of S. pombe with non-ars plasmids. In addition low frequency integration by illegitimate recombination is observed. Linearized plasmid can be ligated in vivo to form monomers or multimers in the absence of homology between the free plasmid ends and the chromosomal genome.  相似文献   

9.
prp13-1 is one of the mutants isolated in a screen for defective pre-mRNA splicing at a nonpermissive temperature in fission yeast Schizosaccharomyces pombe. We cloned the prp13+ gene and found that it encodes U4 small nuclear RNA (snRNA) involved in the assembly of the spliceosome. The prp13-1 mutant produced elongated cells, a phenotype similar to cell division cycle mutants, and displays a high incidence of lagging chromosomes on anaphase spindles. The mutant is hypersensitive to the microtubule-destabilizing drug thiabendazole, supporting that prp13-1 has a defect in chromosomal segregation. We found that the prp13-1 mutation resulted in expression of the ura4+ gene inserted in the pericentromeric heterochromatin region and reduced recruitment of the heterochromatin protein Swi6p to that region, indicating defects in the formation of pericentromeric heterochromatin, which is essential for the segregation of chromosomes, in prp13-1. The formation of centromeric heterochromatin is induced by the RNA interference (RNAi) system in S. pombe. In prp13-1, the processing of centromeric noncoding RNAs to siRNAs, which direct the heterochromatin formation, was impaired and unprocessed noncoding RNAs were accumulated. These results suggest that U4 snRNA is required for the RNAi-directed heterochromatic gene silencing at the centromeres. In relation to the linkage between the spliceosomal U4 snRNA and the RNAi-directed formation of heterochromatin, we identified a mRNA-type intron in the centromeric noncoding RNAs. We propose a model in which the assembly of the spliceosome or a sub-spliceosome complex on the intron-containing centromeric noncoding RNAs facilitates the RNAi-directed formation of heterochromatin at centromeres, through interaction with the RNA-directed RNA polymerase complex.  相似文献   

10.
Drug-induced haploinsufficiency (DIH) in yeast has been considered a valuable tool for drug target identification. A plant metabolite, plumbagin, has potent anticancer activity via reactive oxygen species (ROS) generation. However, the detailed molecular targets of plumbagin for ROS generation are not understood. Here, using DIH and heterozygous deletion mutants of the fission yeast Schizosaccharomyces pombe, we identified 1, 4-phopshatidylinositol 5-kinase (PI5K) its3 as a new molecular target of plumbagin for ROS generation. Plumbagin showed potent anti-proliferative activity (GI50; 10 µM) and induced cell elongation and septum formation in wild-type S. pombe. Furthermore, plumbagin dramatically increased the intracellular ROS level, and pretreatment with the ROS scavenger, N-acetyl cysteine (NAC), protected against growth inhibition by plumbagin, suggesting that ROS play a crucial role in the anti-proliferative activity in S. pombe. Interestingly, significant DIH was observed in an its3-deleted heterozygous mutant, in which ROS generation by plumbagin was higher than that in wild-type cells, implying that its3 contributes to ROS generation by plumbagin in this yeast. In MCF7 human breast cancer cells, plumbagin significantly decreased the level of a human ortholog, 1, 4-phopshatidylinositol 5-kinase (PI5K)-1B, of yeast its3, and knockdown of PI5K-1B using siPI5K-1B increased the ROS level and decreased cell viability. Taken together, these results clearly show that PI5K-1B plays a crucial role in ROS generation as a new molecular target of plumbagin. Moreover, drug target screening using DIH in S. pombe deletion mutants is a valuable tool for identifying molecular targets of anticancer agents.  相似文献   

11.
The cdc6 mutants of Schizosaccharomyces pombe have been classified as being defective in progression through the G2 phase of the cell cycle. We cloned an S. pombe gene that could complement the temperature-sensitive growth of the cdc6-23 mutant. Unexpectedly, the cloned gene was allelic to pol3, which encodes the catalytic subunit of DNA polymerase δ. Integration mapping confirmed that cdc6 and pol3 are identical. The cdc6-23 mutant carries one amino acid substitution in the conserved N3 region of Pol3.  相似文献   

12.
Kim JW  Kim HC  Kim GM  Yang JM  Boeke JD  Nam K 《Nucleic acids research》2000,28(18):3666-3673
The cDNA encoding the human RNA lariat debranching enzyme (hDBR1) was identified and cloned by searching the Expressed Sequence Tag (EST) database and screening a HeLa cDNA library, based on predicted amino acid sequence homologies with the Saccharomyces cerevisiae, Schizosaccharomyces pombe and Caenorhabditis elegans debranching enzymes. The hDBR1 cDNA expressed in Escherichia coli showed debranching activity in vitro and was also shown to be functional in an interspecies specific complementation experiment. hDBR1 cDNA in a S.cerevisiae expression vector complemented the intron accumulation phenotype of a S.cerevisiae dbr1 null mutant. Integration of the cDNA for hDBR1 into the ura4 locus of S.pombe also complemented both the intron accumulation and slow growth phenotypes of a S.pombe dbr1 null mutant strain. Comparison of the amino acid sequence of hDBR1 with the other DBR protein sequences showed several conserved regions, with 40, 44 and 43% identity to the S.cerevisiae, S.pombe and C.elegans debranching enzymes, respectively.  相似文献   

13.
In all eukaryotic organisms, a wide range of morphologies are responsible for critical cellular function and development. In particular, the Rho GTPases, which are highly conserved from yeast to mammals, are key molecules in signaling pathways that control cell polarity processes and cell wall biosynthesis, which are fundamental aspects of morphogenesis. Therefore, using haploinsufficiency deletion mutants of the fission yeast Schizosaccharomyces pombe, we screened the slow-growing mutants and their morphogenesis, specifically focusing on regulation of their Rho GTPases. Based on this screening, we found that the cwf14 mutant of S. pombe exhibited the slow growth and abnormal phenotypes with an elongated cell shape and thicker cell wall when compared with wild-type cells. In particular, cells with the cwf14 deletion showed excessive Rho1 expression. However, the wildtype strain with ectopically expressed Rho1 did not exhibited any significant change in the level of cwf14, suggesting that cwf14 may act on the upstream of Rho1. Furthermore, the cells with a cwf14 deletion also have increased sensitivity to β-glucanase, a cell wall-digesting enzyme, which is also seen in Rho1-overexpressing cells. Overall, our results suggest that the cwf14 plays a key role in fission yeast morphogenesis and cell wall biosynthesis and/or degradation possibly via the regulation of Rho1 expression.  相似文献   

14.
《Gene》1997,193(2):203-210
We report the cloning and characterization of a new S. pombe gene, efc25+, for `exchange factor Cdc25-like'. The C-terminal region of the predicted product of this gene displays high sequence homology with a number of guanine nucleotide exchange factors for Ras. These include Cdc25 of Saccharomyces cerevisiae, Cdc25 of Saccharomyces kluyveri, Csc25 of Candida albicans, Sdc25 of S. cerevisiae and Ste6 of Schizosaccharomyces pombe. Disruption of efc25+ resulted in cells with a spherical shape reminiscent of the abnormal morphological phenotype of ras1 deletion mutants. However, unlike ras1 null mutants, strains deleted for efc25+ were proficient for mating and sporulation. This differs from the only other Ras1 exchange factor characterized so far in S. pombe, the Ste6 protein, whose deletion results in defects in mating and sporulation but not in cell shape. We hypothesize that Efc25 is an exchange factor for Ras1 and that it is involved in a signaling pathway different from that involving Ste6.  相似文献   

15.
We have isolated fission yeast mutants that constitutively flocculate upon growth in liquid media. One of these mutants, the gsf1 mutant, was found to cause dominant, nonsexual, and calcium-dependent aggregation of cells into flocs. Its flocculation was inhibited by the addition of galactose but was not affected by the addition of mannose or glucose, unlike Saccharomyces cerevisiae FLO mutants. The gsf1 mutant coflocculated with Schizosaccharomyces pombe wild-type cells, while no coflocculation was found with galactose-deficient (gms1Δ) cells. Moreover, flocculation of the gsf1 mutant was also inhibited by addition of cell wall galactomannan from wild-type cells but not from gms1Δ cells. These results suggested that galactose residues in the cell wall glycoproteins may be receptors of gsf1-mediated flocculation, and therefore cell surface galactosylation is required for nonsexual flocculation in S. pombe.  相似文献   

16.
We screened for mutations that confer sensitivities to the calcineurin inhibitor FK506 and to a high concentration of MgCl2 and isolated the cis4-1 mutant, an allele of the gene encoding a cation diffusion facilitator (CDF) protein that is structurally related to zinc transporters. Consistently, the addition of extracellular Zn2+ suppressed the phenotypes of the cis4 mutant cells. The cis4 mutants and the mutant cells of another CDF-encoding gene SPBC16E9.14c (we named zrg17+) shared common and nonadditive zinc-suppressible phenotypes, and Cis4 and Zrg17 physically interacted. Cis4 localized at the cis-Golgi, suggesting that Cis4 is responsible for Zn2+ uptake to the cis-Golgi. The cis4 mutant cells showed phenotypes such as weak cell wall and decreased acid phosphatase secretion that are thought to be resulting from impaired membrane trafficking. In addition, the cis4 deletion cells showed synthetic growth defects with all the four membrane-trafficking mutants tested, namely ypt3-i5, ryh1-i6, gdi1-i11, and apm1-1. Interestingly, the addition of extracellular Zn2+ significantly suppressed the phenotypes of the ypt3-i5 and apm1-1 mutant cells. These results suggest that Cis4 forms a heteromeric functional complex with Zrg17 and that Cis4 is implicated in Golgi membrane trafficking through the regulation of zinc homeostasis in fission yeast.  相似文献   

17.
The organization of the actin cytoskeleton plays an integral role in cell morphogenesis of all eukaryotes. We have isolated a temperature-sensitive mutant in Schizosaccharomyces pombe, wat1-1, in which acting patches are delocalized, resulting in an elliptically shaped cell phenotype. Molecular cloning and DNA sequencing of wat1 + showed that the gene encodes a 314 residue protein containing WD-40 repeats. Cells lacking wat1 + are slow growing but viable at 25°?C and temperature-sensitive for growth above 33°?C. At restrictive temperature, wat1-d strains are phenotypically indistinguishable from wat1-1. When combined with a deletion for the wat1 + gene, cdc mutants failed to elongate at restrictive temperature and exhibited alterations in actin patch localization. This analysis suggests that wat1 + is required directly or indirectly for polarized cell growth in S. pombe. Wat1p and a functional, epitope-tagged, version of Wat1p can be overproduced without inducing alterations in cell morphology.  相似文献   

18.
Oh M  Choi IS  Park SD 《Nucleic acids research》2002,30(18):4022-4031
The deletion of the top3+ gene leads to defective nuclear division and lethality in Schizosaccharo myces pombe. This lethality is suppressed by concomitant loss of rqh1+, the RecQ helicase. Despite extensive investigation, topoisomerase III function and its relationship with RecQ helicase remain poorly understood. We generated top3 temperature-sensitive (top3-ts) mutants and found these to be defective in nuclear division and cytokinesis and to be sensitive to DNA-damaging agents. A temperature shift of top3-ts cells to 37°C, or treatment with hydroxyurea at the permissive temperature, caused an increase in ‘cut’ (cell untimely torn) cells and elevated rates of minichromosome loss. The viability of top3-ts cells was decreased by a temperature shift during S-phase when compared with a similar treatment in other cell cycle stages. Furthermore, the top3-ts mutant was not sensitive to M-phase specific drugs. These results indicate that topoisomerase III may play an important role in DNA metabolism during DNA replication to ensure proper chromosome segregation. Our data are consistent with Top3 acting downstream of Rqh1 to process the toxic DNA structure produced by Rqh1.  相似文献   

19.
Biosynthesis of coenzyme A (CoA) requires a five-step process using pantothenate and cysteine in the fission yeast Schizosaccharomyces pombe. CoA contains a thiol (SH) group, which reacts with carboxylic acid to form thioesters, giving rise to acyl-activated CoAs such as acetyl-CoA. Acetyl-CoA is essential for energy metabolism and protein acetylation, and, in higher eukaryotes, for the production of neurotransmitters. We isolated a novel S. pombe temperature-sensitive strain ppc1-537 mutated in the catalytic region of phosphopantothenoylcysteine synthetase (designated Ppc1), which is essential for CoA synthesis. The mutant becomes auxotrophic to pantothenate at permissive temperature, displaying greatly decreased levels of CoA, acetyl-CoA and histone acetylation. Moreover, ppc1-537 mutant cells failed to restore proliferation from quiescence. Ppc1 is thus the product of a super-housekeeping gene. The ppc1-537 mutant showed combined synthetic lethal defects with five of six histone deacetylase mutants, whereas sir2 deletion exceptionally rescued the ppc1-537 phenotype. In synchronous cultures, ppc1-537 cells can proceed to the S phase, but lose viability during mitosis failing in sister centromere/kinetochore segregation and nuclear division. Additionally, double-strand break repair is defective in the ppc1-537 mutant, producing fragile broken DNA, probably owing to diminished histone acetylation. The CoA-supported metabolism thus controls the state of chromosome DNA.  相似文献   

20.
The facile abstraction of bis-allylic hydrogens from polyunsaturated fatty acids (PUFAs) is the hallmark chemistry responsible for initiation and propagation of autoxidation reactions. The products of these autoxidation reactions can form cross-links to other membrane components and damage proteins and nucleic acids. We report that PUFAs deuterated at bis-allylic sites are much more resistant to autoxidation reactions, because of the isotope effect. This is shown using coenzyme Q-deficient Saccharomyces cerevisiae coq mutants with defects in the biosynthesis of coenzyme Q (Q). Q functions in respiratory energy metabolism and also functions as a lipid-soluble antioxidant. Yeast coq mutants incubated in the presence of the PUFA α-linolenic or linoleic acid exhibit 99% loss of colony formation after 4 h, demonstrating a profound loss of viability. In contrast, coq mutants treated with monounsaturated oleic acid or with one of the deuterated PUFAs, 11,11-D2-linoleic or 11,11,14,14-D4-α-linolenic acid, retain viability similar to wild-type yeast. Deuterated PUFAs also confer protection to wild-type yeast subjected to heat stress. These results indicate that isotope-reinforced PUFAs are stabilized compared to standard PUFAs, and they protect coq mutants and wild-type yeast cells against the toxic effects of lipid autoxidation products. These findings suggest new approaches to controlling ROS-inflicted cellular damage and oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号