首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current understanding of physiological mechanisms governing stomatal behavior under water stress conditions is still incomplete and controversial. It has been proposed that coordination of stomatal kinetics with xylem vulnerability to cavitation [vulnerability curve (VC)] leads to different levels of isohydry/anisohydry in different plant species/cultivars. In this study, this hypothesis is tested in Vitis vinifera cultivars displaying contrasting stomatal behavior under drought stress. The cv Montepulciano (MP, near‐isohydric) and Sangiovese (SG, anisohydric) were compared in terms of stomatal response to leaf and stem water potential, as possibly correlated to different petiole hydraulic conductivity (kpetiole) and VC, as well as to leaf water relations parameters. MP leaves showed almost complete stomatal closure at higher leaf and stem water potentials than SG leaves. Moreover, MP petioles had higher maximum kpetiole and were more vulnerable to cavitation than SG. Water potential at the turgor loss point was higher in MP than in SG. In SG, the percentage reduction of stomatal conductance (PLgs) under water stress was almost linearly correlated with corresponding percentage loss of kpetiole (PLC), while in MP PLgs was less influenced by PLC. Our results suggest that V. vinifera near‐isohydric and anisohydric genotypes differ in terms of xylem vulnerability to cavitation as well as in terms of kpetiole, and that the coordination of these traits leads to their different stomatal responses under water stress conditions.  相似文献   

2.
A new technique for generating xylem cavitation and vulnerability curves was evaluated. The centrifugal force was used to lower the negative pressure in a xylem segment and to induce a positive pressure difference between sample's ends. This enabled the determination of sample hydraulic conductance during centrifugation and, hence, its variation with decreasing xylem pressures. The centrifuge technique was compared with standard methods on a large number of species including conifers, diffuse-porous and ring-porous woody angiosperms. A very good agreement was found for coniferous and diffuse-porous species. However, the technique was not appropriate for ring-porous species, probably because many vessels were cut open in the centrifuged xylem segments. The main advantage of this technique is its rapidity, the vulnerability curve of a xylem segment being constructed typically in less than half an hour. This will greatly facilitate the study of xylem cavitation in ecological or genetic researches.  相似文献   

3.

Aims

To evaluate the impact of the amount and distribution of soil water on xylem anatomy and xylem hydraulics of current-year shoots, plant water status and stomatal conductance of mature ‘Manzanilla’ olive trees.

Methods

Measurements of water potential, stomatal conductance, hydraulic conductivity, vulnerability to embolism, vessel diameter distribution and vessel density were made in trees under full irrigation with non-limiting soil water conditions, localized irrigation, and rain-fed conditions.

Results

All trees showed lower stomatal conductance values in the afternoon than in the morning. The irrigated trees showed water potential values around ?1.4 and ?1.6 MPa whereas the rain-fed trees reached lower values. All trees showed similar specific hydraulic conductivity (K s) and loss of conductivity values during the morning. In the afternoon, K s of rain-fed trees tended to be lower than of irrigated trees. No differences in vulnerability to embolism, vessel-diameter distribution and vessel density were observed between treatments.

Conclusions

A tight control of stomatal conductance was observed in olive which allowed irrigated trees to avoid critical water potential values and keep them in a safe range to avoid embolism. The applied water treatments did not influence the xylem anatomy and vulnerability to embolism of current-year shoots of mature olive trees.  相似文献   

4.
散孔材与环孔材树种枝干、叶水力学特性的比较研究   总被引:4,自引:0,他引:4  
左力翔  李俊辉  李秧秧  赵丽敏 《生态学报》2012,32(16):5087-5094
为揭示散孔材与环孔材树种树木水分生理特性的差异,选取了常见的3种散孔材落叶树种(毛白杨、法国梧桐和樱花)和3种环孔材落叶树种(刺槐、合欢和白蜡),研究了其枝干与叶水力学性质的差异及其协调性。结果表明:3种环孔材树种枝干横截面积基础上的最大比导水率(Ks-max)大于3种散孔材树种,但其木质部对空穴化的脆弱性(P50branch)高于散孔材树种,6种树木枝干的水分传输能力和抵抗空穴化能力之间存在一种相互制约的权衡关系。3种散孔材与3种环孔材树种的叶最大水力导度(Kl-max)和水力脆弱性(P50leaf)并无显著差异;对于3种散孔材树种,叶的水力脆弱性要高于枝干,但对3种环孔材树种而言,枝干的水力脆弱性要高于叶。6种树木枝干和叶的水力学性质(Kmax、P50)之间并无相关关系。这些结果表明:散孔材与环孔材树种的枝干水力学特性有明显差异,但叶水力学特性无差异;枝干与叶水力学性质之间是相互独立的。  相似文献   

5.
Plant transpiration is strongly constrained by hydraulic architecture, which determines the critical threshold for cavitation. Because species vary greatly in vulnerability to cavitation, hydraulic limits to transpiration and stomatal conductance have not generally been incorporated into ecological and climate models. We measured sap flow, leaf transpiration, and vulnerability to cavitation of a variety of tree species in a well-irrigated but semi-arid urban environment in order to evaluate the generality of stomatal responses to high atmospheric vapor pressure deficit (D). We found evidence of broad patterns of stomatal responses to humidity based on systematic differences in vulnerability to cavitation. Ring-porous taxa consistently had vulnerable xylem and showed strong regulation of transpiration in response to D, while diffuse-porous taxa were less vulnerable and transpiration increased nearly linearly with D. These results correspond well to patterns in the distribution of the taxa, such as the prevalence of diffuse-porous species in riparian ecosystems, and also provide a means of representing maximum transpiration rates at varying D in broad categories of trees.  相似文献   

6.
We explored potential of morphological and anatomical leaf traits for predicting ecophysiological key functions in subtropical trees. We asked whether the ecophysiological parameters stomatal conductance and xylem cavitation vulnerability could be predicted from microscopy leaf traits. We investigated 21 deciduous and 19 evergreen subtropical tree species, using individuals of the same age and from the same environment in the Biodiversity‐Ecosystem Functioning experiment at Jiangxi (BEF‐China). Information‐theoretic linear model selection was used to identify the best combination of morphological and anatomical predictors for ecophysiological functions. Leaf anatomy and morphology strongly depended on leaf habit. Evergreen species tended to have thicker leaves, thicker spongy and palisade mesophyll, more palisade mesophyll layers and a thicker subepidermis. Over 50% of all evergreen species had leaves with multi‐layered palisade parenchyma, while only one deciduous species (Koelreuteria bipinnata) had this. Interactions with leaf habit were also included in best multi‐predictor models for stomatal conductance (gs) and xylem cavitation vulnerability. In addition, maximum gs was positively related to log ratio of palisade to spongy mesophyll thickness. Vapour pressure deficit (vpd) for maximum gs increased with the log ratio of palisade to spongy mesophyll thickness in species having leaves with papillae. In contrast, maximum specific hydraulic conductivity and xylem pressure at which 50% loss of maximum specific xylem hydraulic conductivity occurred (Ψ50) were best predicted by leaf habit and density of spongy parenchyma. Evergreen species had lower Ψ50 values and lower maximum xylem hydraulic conductivities. As hydraulic leaf and wood characteristics were reflected in structural leaf traits, there is high potential for identifying further linkages between morphological and anatomical leaf traits and ecophysiological responses.  相似文献   

7.
Xylem vulnerability to cavitation differs between tree species according to their drought resistance, more xerophilous species being more resistant to xylem cavitation. Variability in xylem vulnerability to cavitation is also found within species, especially between in situ populations. The origin of this variability has not been clearly identified. Here we analyzed the response of xylem hydraulic traits of Populus tremula×Populus alba trees to three different soil water regimes. Stem xylem vulnerability was scored as the xylem water potential causing 12, 50 and 88% loss of conductivity (P12, P50 and P88). Vulnerability to cavitation was found to acclimate to growing conditions under different levels of soil water content, with P50 values of ?1.82, ?2.03 and ?2.45 MPa in well‐watered, moderately water‐stressed and severely water‐stressed poplars, respectively. The value of P12, the xylem tension at which cavitation begins, was correlated with the lowest value of midday leaf water potential (ψm) experienced by each plant, the difference between the two parameters being approximately 0.5 MPa, consistent with the absence of any difference in embolism level between the different water treatments. These results support the hypothesis that vulnerability to cavitation is a critical trait for resistance to drought. The decrease in vulnerability to cavitation under growing conditions of soil drought was correlated with decreased vessel diameter, increased vessel wall thickness and a stronger bordered pit field (t/b)2. The links between these parameters are discussed.  相似文献   

8.
A 5-m-deep gravel pit was excavated from 1996 to 1998 in the floodplain between Willow Creek, Alberta, and a grove of balsam poplars ('cottonwoods', Populus balsamifera L.) and water level at the pit was lowered 2.5 m through pumping. This interrupted the infiltration of stream water into the riparian groundwater and imposed drought stress on the cottonwoods. Trees in the drought-affected grove displayed extensive leaf senescence and abscission in late August 1998, while trees in nearby control groves remained green until autumnal senescence in late September. The precocious senescence was accompanied by a two-thirds reduction in leaf stomatal conductance (g s) but mid-day leaf xylem water potentials (ψl) were only slightly reduced (?1.55 vs 1.42 MPa). Pumping ceased in 1999, the pit was partially refilled, and the hydraulic linkage between the stream and the riparian zone recovered. Subsequently in August 1999, g s and ψl were similar for trees in the affected and control groves and senescence phenologies were similar in 1999 and 2000. Annual branch growth increments varied 3-fold across years between 1994 and 1999, but there was no reduction in these growth increments in the drought-affected trees in 1998 or 1999. This study supports the hydraulic linkage between a stream and the adjacent riparian zone in a semi-arid region and demonstrates the vulnerability of riparian cottonwoods to drought due to water table depletion. It also indicates rapid physiological recovery of cottonwoods following restoration of water availability.  相似文献   

9.
Root pressure and plasma membrane intrinsic protein (PIP) availability in the xylem have been recognized to participate in the refilling of embolized conduits, yet integration of the two mechanisms has not been reported in the same plant. In this study, 4‐month‐old seedlings of a hybrid poplar (Populus alba × Populus glandulosa) clone 84K were subjected to two contrasting soil‐water treatments, with the drought treatment involving withholding of water for 17 days to reduce the soil‐water content to 10% of the saturated field capacity, followed by a re‐watering cycle. The percentage loss of stem hydraulic conductance (PLC) sharply increased, and stomatal conductance and photosynthesis declined in response to drought stress; these processes were gradually restored following the subsequent re‐watering. Embolism was most severe in the middle portions of the stem, followed by the basal and top portions of the stems of seedlings subjected to drought stress and subsequent re‐watering. Although drought stress eliminated root pressure, re‐watering partially restored it in a short period of time. The expression of PIP genes in the xylem was activated by drought stress, and some PIP genes were further stimulated in the top portion after re‐watering. The dynamics of root pressure and differential expression of PIP genes along the stem coincided with changes in PLC, suggesting that root pressure and PIPs work together to refill the embolized vessels. On the basis of the recovery dynamics in PLC and gsmax (maximum stomatal conductance) after re‐watering, the stomatal closure and xylem cavitation exhibited fatigue due to drought stress.  相似文献   

10.
The goal of this study is to clarify how different aspects of plant function are coordinated developmentally for species of ring-porous versus diffuse-porous deciduous trees, comparing the timing of leaf phenology and vessel formation in twigs and stems from an ecophysiological viewpoint. Cylindrical stem cores and twigs were collected at intervals from early spring through summer from five ring-porous and five diffuse-porous species in a cool temperate forest, and leaf and vessel formation were observed simultaneously. We found that the first-formed vessels of the year were lignified in twigs around the time of leaf appearance and at or before full leaf expansion of each tree in both groups of species with flush-leaves. Vessels in stems were lignified 2 weeks before to 4 weeks after leaf appearance and before or around full leaf expansion of the tree in ring-porous species. This was significantly earlier than in diffuse-porous species, in which stem vessel lignification was 2–8 weeks after leaf appearance and at or after full leaf expansion of the tree. The timing of vessel formation in twigs compared to stems was significantly earlier in ring-porous species than in diffuse-porous species. Lignification of vessels in stems occurred within 2 weeks of lignification in the twigs of ring-porous species and 2–8 weeks after lignification in twigs of diffuse-porous species. These results indicate the order and time-lag of leaf and vessel formation. Ring-porous species showed intensive leaf/vessel production, whereas diffuse-porous species showed less intensive leaf/vessel production.  相似文献   

11.

Key message

Ulmus minor and U. glabra show a trade-off between safety and efficiency in water transport, and U. laevis shows adaptations to waterlogged environments.

Abstract

Three native elm species grow in Europe: Ulmus minor Mill., U. glabra Huds. and U. laevis Pall., and within the Iberian Peninsula their habitats mainly differ in water availability. We evaluated firstly whether vulnerability to xylem embolism caused by water-stress has been a determinant factor affecting their distribution; secondly, if their xylem anatomy differs due to water availability dissimilarities; and thirdly, if these species present a trade-off between water transport safety and efficiency. Plants of the three species were grown in a common-garden in Madrid, Central Spain. The centrifuge method was used for constructing the vulnerability curves, and anatomical measurements were carried out with an optical microscope. We found clear differences in conductivity and cavitation vulnerability between the three species. Although all three elms were highly vulnerable to cavitation, U. minor was significantly more resistant to water stress cavitation. This species reached 50 % loss in conductivity at ?1.1 MPa, compared to U. glabra that did so at ?0.5 MPa, and U. laevis at ?0.4 MPa. Maximum xylem specific conductivity and maximum leaf specific conductivity were two to three times higher in U. glabra when compared to U. minor. A clear trade-off between safety against losses of conductivity and water transport efficiency was observed considering both U. minor and U. glabra samples. Ulmus minor’s hydraulic configuration was better adapted to overcome drought episodes. The expected aridification of the Iberian Peninsula could compromise Ulmus populations due to their high vulnerability to drought stress.  相似文献   

12.
Wood structure might be altered through the physiological responses to atmospheric carbon dioxide concentration ([CO2]) and nitrogen (N) deposition. We investigated growth, water relations and wood structure of 1-year-old seedlings of two deciduous broad-leaved tree species, Quercus mongolica (oak, a ring-porous species) and Alnus hirsuta (alder, a diffuse-porous species and N2–fixer), grown under a factorial combination of two levels of [CO2] (36 and 72 Pa) and nitrogen supply (N; low and high) for 141 days in phytotron chambers. In oak, there was no significant effect of [CO2] on wood structure, although elevated [CO2] tended to decrease stomatal conductance (g s) and increased water use efficiency regardless of the N treatment. However, high N supply increased root biomass and induced wider earlywood and larger vessels in the secondary xylem in stems, leading to increased hydraulic conductance. In alder, there was significant interactive effect of [CO2] and N on vessel density, and high N supply increased the mean vessel area. Our results suggest that wood structures related to water transport were not markedly altered, although elevated [CO2] induced changes in physiological parameters such as g s and biomass allocation, and that N fertilization had more pronounced effects on non-N2-fixing oak than on N2-fixing alder.  相似文献   

13.
Xylem structure and function are well described in woody plants, but the implications of xylem organization in less‐derived plants such as ferns are poorly understood. Here, two ferns with contrasting phenology and xylem organization were selected to investigate how xylem dysfunction affects hydraulic conductivity and stomatal conductance (gs). The drought‐deciduous pioneer species, Pteridium aquilinum, exhibits fronds composed of 25 to 37 highly integrated vascular bundles with many connections, high gs and moderate cavitation resistance (P50 = ?2.23 MPa). By contrast, the evergreen Woodwardia fimbriata exhibits sectored fronds with 3 to 5 vascular bundles and infrequent connections, low gs and high resistance to cavitation (P50 = ?5.21 MPa). Xylem‐specific conductivity was significantly higher in P. aqulinium in part due to its wide, efficient conduits that supply its rapidly transpiring pinnae. These trade‐offs imply that the contrasting xylem organization of these ferns mirrors their divergent life history strategies. Greater hydraulic connectivity and gs promote rapid seasonal growth, but come with the risk of increased vulnerability to cavitation in P. aquilinum, while the conservative xylem organization of W. fimbriata leads to slower growth but greater drought tolerance and frond longevity.  相似文献   

14.
Winter cold limits temperate plant performance, as does summer water stress in drought‐prone ecosystems. The relative impact of seasonal extremes on plant performance has received considerable attention for individual systems. An integrated study compiling the existing literature was needed to identify overall trends. First, we conducted a meta‐analysis of the impacts of summer and winter on ecophysiology for three woody plant functional types (winter deciduous angiosperms, evergreen angiosperms and conifers), including data for 210 records from 75 studies of ecosystems with and without summer drought across the temperate zone. Second, we tested predictions by conducting a case study in a drought‐prone Mediterranean ecosystem subject to winter freezing. As indicators of physiological response of leaves and xylem to seasonal stress, we focused on stomatal conductance (gs), percent loss of stem xylem hydraulic conductivity (PLC) and photochemical efficiency of photosystem II (Fv/Fm). Our meta‐analysis showed that in ecosystems without summer drought, gs was higher during summer than winter. By contrast, in drought‐prone ecosystems many species maintained open stomata during winter, with potential strong consequences for plant carbon gain over the year. Further, PLC tended to increase and Fv/Fm to decrease from summer to winter for most functional types and ecosystems due to low temperatures. Overall, deciduous angiosperms were most sensitive to climatic stress. Leaf gas exchange and stem xylem hydraulics showed a coordinated seasonal response at ecosystems without summer drought. In our Mediterranean site subjected to winter freezing the species showed similar responses to those typically found for ecosystems without summer drought. We conclude that winter stress is most extreme for systems without summer drought and systems with summer drought and winter freezing, and less extreme for drought‐prone systems without freezing. In all cases the evergreen species show less pronounced seasonal responses in both leaves and stems than deciduous species.  相似文献   

15.

Key message

Using an extensive dataset for 39 subtropical broadleaved tree species, we found traits of the leaf economics spectrum to be linked to mean stomatal conductance but not to stomatal regulation.

Abstract

The aim of our study was to establish links between stomatal control and functional leaf traits. We hypothesized that mean and maximum stomatal conductance (g s) varies with the traits described by the leaf economics spectrum, such as specific leaf area and leaf dry matter content, and that high g s values correspond to species with tender leaves and high photosynthetic capacity. In addition, we hypothesized that species with leaves of low stomata density have more limited stomatal closure than those with high stomata density. In order to account for confounding site condition effects, we made use of a common garden situation in which 39 deciduous and evergreen species of the same age were grown in a biodiversity ecosystem functioning experiment in Jiangxi (China). Daily courses of g s were measured with porometry, and the species-specific g s~vpd relationships were modeled. Our results show that mean stomatal conductance can be predicted from leaf traits that represent the leaf economics spectrum, with a positive relationship being related to leaf nitrogen content and a negative relationship with the leaf carbon: nitrogen ratio. In contrast, parameters of stomatal control were related to traits unassociated with the leaf economics spectrum. The maximum of the conductance~vpd curve was positively related to leaf carbon content and vein length. The vpd at the point of inflection of the conductance~vpd curve was lower for species with higher stomata density and higher for species with a high leaf carbon content. Overall, stomata size and density as well as vein length were more effective at explaining stomatal regulation than traits used in the leaf economics spectrum.  相似文献   

16.
The objectives of this study were to investigate stomatal regulation in maize seedlings during progressive soil drying and to determine the impact of stomatal movement on photosynthetic activity. In well-watered and drought-stressed plants, leaf water potential (Ψ leaf), relative water content (RWC), stomatal conductance (g s), photosynthesis, chlorophyll fluorescence, leaf instantaneous water use efficiency (iWUEleaf), and abscisic acid (ABA) and zeatin-riboside (ZR) accumulation were measured. Results showed that g s decreased significantly with progressive drought and stomatal limitations were responsible for inhibiting photosynthesis in the initial stages of short-term drought. However, after 5 days of withholding water, non-stomatal limitations, such as damage to the PSII reaction center, became the main limiting factor. Stomatal behavior was correlated with changes in both hydraulic and chemical signals; however, changes in ABA and ZR occurred prior to any change in leaf water status. ABA in leaf and root tissue increased progressively during soil drying, and further analysis found that leaf ABA was negatively correlated with g s (R 2 = 0.907, p < 0.05). In contrast, leaf and root ZR decreased gradually. ZR in leaf tissue was positively correlated with g s (R 2 = 0.859, p < 0.05). These results indicate that ABA could induce stomatal closure, and ZR works antagonistically against ABA in stomatal behavior. In addition, the ABA/ZR ratio also had a strong correlation with g s, suggesting that the combined chemical signal (the interaction between ABA and cytokinin) plays a role in coordinating stomatal behavior. In addition, Ψ leaf and RWC decreased significantly after only 3 days of drought stress, also affecting stomatal behavior.  相似文献   

17.
The vulnerability of xylem conduits to cavitation theoreticallydetermines the maximum flow rate of water through plants, andhence maximum transpiration (E), stomatal conductance (gs),and leaf area (A1. Field-grown Betula occidentalis with a favourablewater supply exhibit midday xylem pressures (  相似文献   

18.
Frost has been shown to cause frost fatigue (reduced cavitation resistance) in branch segments in the lab. Here, we studied the change in cavitation resistance and percent loss of conductivity (PLC) from fall to spring over 2 consecutive years in three diffuse‐porous species in situ. We used the cavitron technique to measure P25, P50 and P90 (the xylem pressure causing a 25, 50 and 90% conductivity loss) and PLC and stained functioning vessels. Cavitation resistance was reduced by 64–87% (in terms of P50), depending on the species and year. P25 was impacted the most and P90 the least, changing the vulnerability curves from s‐ to r‐shaped over the winter in all three species. The branches suffered an almost complete loss of conductivity, but frost fatigue did not necessarily occur concurrently with increases in PLC. In two species, there was a trade‐off between conduit size and vulnerability. Spring recovery occurred by growth of new vessels, and in two species by partial refilling of embolized conduits. Although newly grown and functioning conduits appeared more vulnerable to cavitation than year‐old vessels, cavitation resistance generally improved in spring, suggesting other mechanisms for partial frost fatigue repair.  相似文献   

19.
Relationships between xylem anatomical traits and cavitation resistance have always been a major content of plant hydraulics. To know how plants cope with drought, it is extremely important to acquire detailed knowledge about xylem anatomical traits and assess the cavitation resistance accurately. This study aims to increase our knowledge in the methods determining cavitation resistance and xylem anatomical traits. We selected a semi-ring-porous species, Hippophae rhamnoides L., and a diffuse-porous species, Corylus heterophylla F., to clarify the reasons for the difference in cavitation resistance based on detailed xylem anatomical traits and reliable vulnerability curves (VCs). Both Cavitron and bench dehydration (BD) were used to construct VCs. Xylem anatomical traits, including pit membrane ultrastructure of these two species, were determined. The VCs obtained by the two different techniques were of different types for H. rhamnoides, its Cavitron VCs might be unreliable because of open-vessel artifacts. On the basis of BD VCs, H. rhamnoides showed higher cavitation resistance than C. heterophylla, and this is attributed to its low vessel connectivity as well as non-porous and thicker pit membranes.  相似文献   

20.
Two tropical trees, Acacia confusa and Litsea glutinosa, were grown under controlled conditions with their roots subjected to soil drying and soil compaction treatments. In both species, a decline in stomatal conductance resulting from soil drying took place much earlier than the decline of leaf water potential. Soil compaction treatment also resulted in a substantial decrease in stomatal conductance but had little effect on leaf water potential. A rapid and substantial increase in xylem abscisic acid (ABA) concenation ([ABA]), rather than hulk leaf ABA, was closely related to soil drying and soil compaction. A significant relationship between stomatal conductance (gs) and xylem [ABA] was observed in both species. Artificially feeding ABA solutions to excised leaves of both species showed that the relationship bet ween gs and [ABA] was very similar to that obtained from the whole plant, i.e. the relationship between gs and xylem [ABA]. These results suggest that xylem ABA may act as a stress signal in the control of stomatal conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号