首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermodynamics of the equilibria between aqueous ribose, ribulose, and arabinose were investigated using high-pressure liquid chromatography and microcalorimetry. The reactions were carried out in aqueous phosphate buffer over the pH range 6.8-7.4 and over the temperature range 313.15-343.75 K using solubilized glucose isomerase with either Mg(NO3)2 or MgSO4 as cofactors. The equilibrium constants (K) and the standard state Gibbs energy (delta G degrees) and enthalpy (delta H degrees) changes at 298.15 K for the three equilibria investigated were found to be: ribose(aq) = ribulose(aq) K = 0.317, delta G degrees = 2.85 +/- 0.14 kJ mol-1, delta H degrees = 11.0 +/- 1.5 kJ mol-1; ribose(aq) = arabinose(aq) K = 4.00, delta G degrees = -3.44 +/- 0.30 kJ mol-1, delta H degrees = -9.8 +/- 3.0 kJ mol-1; ribulose(aq) = arabinose(aq) K = 12.6, delta G degrees = -6.29 +/- 0.34 kJ mol-1, delta H degrees = -20.75 +/- 3.4 kJ mol-1. Information on rates of the above reactions was also obtained. The temperature dependencies of the equilibrium constants are conveniently expressed as R in K = -delta G degrees 298.15/298.15 + delta H degrees 298.15[(1/298.15)-(1/T)] where R is the gas constant (8.31441 J mol-1 K-1) and T the thermodynamic temperature.  相似文献   

2.
K Takahashi  H Fukada 《Biochemistry》1985,24(2):297-300
The binding of Streptomyces subtilisin inhibitor (SSI) to subtilisin of Bacillus subtilis strain N' (subtilisin BPN', EC 3.4.21.14) was studied by isothermal calorimetry at pH 7.0 and at various temperatures ranging from 5 to 30 degrees C. Thermodynamic quantities for the binding reaction were derived as a function of temperature by combining the data reported for the dissociation constant with the present calorimetric results. At 25 degrees C, the values are delta G degrees = -57.9 kJ mol-1, delta H = -19.8 kJ mol-1, delta S degree = 0.13 kJ K-1 mol-1, and delta Cp = -1.02 kJ K-1 mol-1. The entropy and the heat capacity changes are discussed in terms of the contributions from the changes in vibrational modes and in hydrophobic interactions.  相似文献   

3.
The binding of Streptomyces subtilisin inhibitor (SSI) to alpha-chymotrypsin (CT) (EC 3.4.21.1) was studied by isothermal and differential scanning calorimetry at pH 7.0. Thermodynamic quantities for the binding of SSI to the enzyme were derived as functions of temperature from binding constants (S. Matsumori, B. Tonomura, and K. Hiromi, private communication) and isothermal calorimetric experiments at 5-30 degrees C. At 25 degrees C, the values are delta G degrees b = -29.9 kJ mol-1, delta Hb = +18.7 (+/- 1.3) kJ mol-1, delta S degrees b = +0.16 kJ K-1 mol-1, and delta C p,b = -1.08 (+/- 0.11) kJ mol-1. The binding of SSI to CT is weak compared with its binding to subtilisin [Uehara, Y., Tonomura, B., & Hiromi, K. (1978) J. Biochem. (Tokyo) 84, 1195-1202; Takahashi, K., & Fukada, H. (1985) Biochemistry 24, 297-300]. This difference is due primarily to a less favorable enthalpy change in the formation of the complex with CT. The hydrophobic effect is presumably the major source of the entropy and heat capacity changes which accompany the binding process. The unfolding temperature of the complex is about 7 degrees C higher than that of the free enzyme. The enthalpy and the heat capacity changes for the unfolding of CT were found to be 814 kJ mol-1 and 17.3 kJ K-1 mol-1 at 49 degrees C. The same quantities for the unfolding of the SSI-CT complex are 1183 kJ mol-1 and 39.2 kJ K-1 mol-1 at 57 degrees C.  相似文献   

4.
Binding onto cellobiohydrolase II from Trichoderma reesei of glucose, cellobiose, cellotriose, derivatized and analogous compounds, is monitored by protein-difference-absorption spectroscopy and by titration of ligand fluorescence, either at equilibrium or by the stopped-flow technique. The data complete earlier results [van Tilbeurgh, H., Pettersson, L. G., Bhikhabhai, R., De Boeck, H. and Claeyssens, M. (1985) Eur. J. Biochem. 148, 329-334] indicating an extended active center, with putative subsites ABCD. Subsite A specifically complexes with beta-D-glucosides and D-glucose; at 25 degrees C the latter influences the concomitant binding of other ligands at neighbouring sites. For several ligands this cooperative effect for binding (at 0.33 M glucose and temperature range 4-37 degrees C) was characterized by a substantial increase of the enthalpic term (delta delta H = -35 kJ mol-1). Glucose (0.33 M) decreases the association and dissociation rate parameters of 4-methylumbelliferyl beta-D-cellobioside by one order of magnitude: k+ = (3.6 +/- 0.5) x 10(-5) M-1 s-1 versus (5.1 +/- 0.1) x 10(-6) M-1 s-1 (in the absence of glucose) and k- = (1.3 +/- 0.1) s-1 versus (14.0 +/- 0.3) s-1. As deduced from substrate-specificity studies and inhibition experiments, subsite B interacts with terminal non-reducing glucopyranosyl residues of oligomeric ligands and substrates, whereas catalytic (hydrolytic) cleavage occurs between C and D. Association constants 10-100 times higher than those for cellobiose or its glycosides were observed for D-glucopyranosyl-(1----4)-beta-D-xylopyranose and cellobionolactone derivatives, suggesting 'transition-state'-type binding for these ligands at subsite C. Although subsite D can accomodate a bulky chromophoric group (MeUmb) its preference for a glucosyl residue is reflected in the lower binding enthalpy of cellotriose (-34 kJ mol-1) as compared to cellobiose (-28.3 kJ mol-1) and MeUmb(Glc)2 (-11.6 kJ mol-1). This model indicates that oligomeric ligands (substrates) interact through cooperativity of their subunits at the extended binding site of cellobiohydrolase II.  相似文献   

5.
The enthalpy change of the binding of Ca2+ and Mn2+ to equine lysozyme was measured at 25 degrees C and pH 7.5 by batch microcalorimetry: delta H degrees Ca2+ = -76 +/- 5 kJ mol-1, delta H degrees Mn2+ = -21 +/- 10 kJ mol-1. Binding constants, log KCa2+ = 6.5 +/- 0.2 and log KMn2+ = 4.1 +/- 0.5, were calculated from the calorimetric data. Therefore, delta S degrees Ca2+ = -131 +/- 20 JK-1 mol-1 and delta S degrees Mn2+ = 8 +/- 44 JK-1 mol-1. Removal of Ca2+ induces small but significant changes in the circular dichroism spectrum, indicating the existence of a partially unfolded apo-conformation, comparable with, but different from, the apo-conformation of bovine alpha-lactalbumin.  相似文献   

6.
The binding of AMP to activator site N and to inhibitor site I in glycogen phosphorylase b has been characterized by calorimetry, potentiometry and ultracentrifugation in the pH range 6.5-7.5 at 25 degrees C (mu = 0.1). Calorimetric titration data of phosphorylase b with adenosine 5'-phosphoramidate are also reported at pH 6.9 (T = 25 degrees C, mu = 0.1). Calorimetric curves have been analyzed on the basis of potentiometric and sedimentation velocity results to determine thermodynamic quantities for AMP binding to the enzyme. The comparison of calorimetric titration data of AMP and adenosine 5'-phosphoramidate at pH 6.9 supports the hypothesis previously suggested that the dianionic phosphate form of the nucleotide preferentially binds to the allosteric activator site. The thermodynamic parameters for AMP binding to site N are as follows: delta G0 = -22 kJ mol-1, delta H0 = -34 kJ mol-1 and delta S0 = -40 J mol-1 K-1. The binding of the nucleotide to site I was found to be strongly dependent on the pH. This behaviour may be explained in terms of coupled protonations of three groups having pKa values of 6.0, 6.0 and 6.1 in the unbound form and 7.0, 7.5 and 7.2 in the enzyme-nucleotide complex. The thermodynamic parameters for nucleotide binding to site I for the enzymatic form in which all the modified groups are completely deprotonated or protonated have been calculated to be: delta G0 = -7.7 kJ mol-1, delta H0 = -28 kJ mol-1 and delta S0 = -68 J mol-1 K-1 and delta G0 = -28 kJ mol-1, delta H0H = -10 kJ mol-1 and delta S0H = 61 J mol-1 K-1, respectively. These results suggest that attractive dispersion forces are of primary significance for AMP binding to activator site N, although electrostatic interactions act as a stabilizing factor in the nucleotide binding. The protonation states of those residues of which the pKa values are modified by AMP binding to site I highly influence the thermodynamic parameters for the nucleotide binding to this site.  相似文献   

7.
The fluorescence of N-dansylgalactosamine [N-(5-dimethylaminonaphthalene-1-sulphonyl)galactosamine] was enhanced 11-fold with a 25 nm blue-shift in the emission maximum upon binding to soya-bean agglutinin (SBA). This change was used to determine the association constants and thermodynamic parameters for this interaction. The association constant of 1.51 X 10(6) M-1 at 20 degrees C indicated a very strong binding, which is mainly due to a relatively small entropy value, as revealed by the thermodynamic parameters: delta G = -34.7 kJ X mol-1, delta H = -37.9 kJ X mol-1 and delta S = -10.9 J X mol-1 X K-1. The specific binding of this sugar to SBA shows that the lectin can accommodate a large hydrophobic substituent on the C-2 of galactose. Binding of non-fluorescent ligands, studied by monitoring the fluorescence changes when they are added to a mixture of SBA and N-dansylgalactosamine, indicates that a hydrophobic substituent at the anomeric position increases the affinity of the interaction. The C-6 hydroxy group also stabilizes the binding considerably. Kinetics of binding of N-dansylgalactosamine to SBA studied by stopped-flow spectrofluorimetry are consistent with a single-step mechanism and yielded k+1 = 2.4 X 10(5) M-1 X s-1 and k-1 = 0.2 s-1 at 20 degrees C. The activation parameters indicate an enthalpicly controlled association process.  相似文献   

8.
In order to identify new subtype-selective (S)-glutamate (Glu) receptor ligands we have synthesized (RS)-2-amino-3-(3-hydroxy-1,2,5-thiadiazol-4-yl)propionic acid [(RS)-TDPA]. Resolution of (RS)-TDPA by chiral chromatography was performed using a Crownpac CR(+) column affording (R)- and (S)-TDPA of high enantiomeric purity (enantiomeric excess=99.9%). An X-ray crystallographic analysis revealed that the early eluting enantiomer has R-configuration. Both enantiomers showed high affinity as well as high agonist activity at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, determined using a [(3)H]AMPA binding assay and an electrophysiological model, respectively. The affinities and agonist activities obtained for (R)-TDPA (IC(50)=0.265 microM and EC(50)=6.6 microM, respectively) and (S)-TDPA (IC(50)=0.065 microM and EC(50)=20 microM, respectively) revealed a remarkably low AMPA receptor stereoselectivity, (S)-TDPA showing the highest affinity and (R)-TDPA the most potent agonist activity. In addition, (S)-TDPA was shown to interact with synaptosomal Glu uptake sites displacing [(3)H](R)-aspartic acid (IC(50 ) approximately 390 microM). An enantiospecific and subtype-selective agonist activity was observed for (S)-TDPA at group I metabotropic Glu (mGlu) receptors (EC(50)=13 microM at mGlu(5) and EC(50)=95 microM at mGlu(1)).  相似文献   

9.
Binding of 4-methylumbelliferyl-2-acetamido-2-deoxy-3-O-(beta-D-galactopyranosyl) beta-D-galactopyranoside [MeUmb beta Gal(beta 1 leads to 3)GalNAc] to peanut agglutinin was characterized by equilibrium dialysis and by measurement of the increase in ultraviolet absorption or fluorescence of the chromophoric glycoside upon continuous titration with excess of the lectin. All data in the 4-30 degrees C range correspond to delta G = -(26.5 +/- 0.1) kJ mol-1, delta H = -(58.4 +/- 2) kJ mol-1 and delta S = -(107 +/- 8)J mol-1 K-1. Values of the association constants are e.g. K = 2.5 X 10(5) M-1 at 4 degrees C and K = 4.5 X 10(4) M-1 at 25 degrees C. MeUmb beta Gal(beta 1 leads to 3)GalNAc was used as an indicator ligand to determine K values for nonchromophoric carbohydrates by continuous displacement titrations, measuring either fluorescence or difference in absorption of the indicator. The data were analyzed in terms of the general expression for a non-ideal indicator system (as detailed in the appendix). Thus, the values of K are not underestimated. They are K = 4.8 X 10(3) M-1 for methyl alpha-D-galactopyranoside [Me alpha Gal], 2.0 X 10(3) M-1 for methyl beta-D-galactopyranoside [Me beta Gal] and 4.7 X 10(3) M-1 for lactose [Gal(beta 1 leads to 4)Glc], all at 14.5 degrees C. The MeUmb difference absorption spectra resulting from binding of the lectin with MeUmb beta Gal(beta 1 leads to 3)GalNAc and MeUmb beta Gal(beta 1 leads to 4)Glc are larger than for MeUmb beta Gal and MeUmb alpha Gal. These observations are consistent with the extended nature of the combining site of peanut agglutinin.  相似文献   

10.
Opioid mu-receptors are membrane bound receptors. The mechanism by which they transduce their biological effect into the inner compartment of the postsynaptic cell is still not fully understood. The present study was attempted to the measurement of changes of the thermodynamic parameters of the receptor--agonist/antagonist interaction. We have set up the binding assays of a mu-receptor agonist (3H-dihydromorphine) as well as an antagonist (3H-naloxone). The saturation isotherms of both ligands have been assayed at various temperatures and from the resulting KD values the standard changes of Gibbs energy, enthalpy and entropy have been calculated. While the binding of the mu-receptor agonist 3H-dihydromorphine appears to be entropy driven (delta S0 = 230 J mol-1 K-1) and endothermic (delta H0 = 19 kJ mol-1), the binding of the mu-receptor antagonist 3H-naloxone is apparently driven by a decrease of standard enthalpy (delta H0 = -27 kJ mol-1; i.e. the reaction is exothermic) and is also characterized by an increase of standard entropy (delta S0 = 76 J mol-1 K-1). The maximal number of 3H-naloxone binding sites has to be determined by incubation at 0-4 degrees C. The present data to not support the view that opioid mu-receptors transduce their biological signal through the adenylatecyclase system by a mechanism similar to beta-adrenergically stimulated adenylatecyclase.  相似文献   

11.
While studies with [(3)H]D-aspartate ([(3)H]d-Asp) illustrate specific interactions with excitatory amino acid transporters (EAATs), new insights into the pharmacological characteristics and localization of specific EAAT subtypes depend upon the availability of novel ligands. One such ligand is [(3)H]-(2S,4R)-4-methylglutamate ([(3)H]4MG) which labels astrocytic EAATs in homogenate binding studies. This study examined the utility of [(3)H]4MG for binding and autoradiography in coronal sections of rat brain. Binding of [(3)H]4MG was optimal in 5mM HEPES buffer containing 96 mM NaCl, pH 7.5. Specific binding of [(3)H]4MG exhibited two components, but was to a single site when glutamate receptor (GluR) sites were masked with kainate (KA; 1 microM): t(1/2) approximately 5 min, K(d) 250 nM and B(max) 5.4 pmol/mg protein. Pharmacological studies revealed that [(3)H]4MG, unlike [(3)H]d-Asp, labeled both EAAT and ionotropic GluR sites. Further studies employed 6-cyano-7-nitroquinoxaline (30 microM) to block GluR sites, but selective EAAT ligands displayed lower potency than expected for binding to transporters relative to drugs possessing mixed transporter/receptor activities. Autoradiography in conjunction with densitometry with [(3)H]4MG and [(3)H]d-Asp revealed wide, but discrete distributions in forebrain; significant differences in binding levels were found in hippocampus, nucleus accumbens and cortical sub-areas. Although EAAT1 and EAAT2 components were detectable using 3-methylglutamate and serine-O-sulphate, respectively, the majority of [(3)H]4MG binding was to KA-related sites. Overall, in tissue sections [(3)H]4MG proved unsuitable for studying the autoradiographic localization of EAATs apparently due to its inability to selectively discriminate Na(+)-dependent binding to Glu transporters.  相似文献   

12.
Reaction microcalorimetry and equilibrium dialysis have been used to study the binding of AMP and IMP to glycogen phosphorylase b (EC 2.4.1.1) at 25 degrees C and pH 6.9. The combination of both techniques has enabled us to obtain some of the thermodynamic parameters for these binding processes. Four binding sites were found to be present in the dimeric active enzyme for both AMP and IMP. The binding to two high-affinity sites, which, in our opinion, correspond to the activator sites, seems to be cooperative. The two low-affinity sites, which would then correspond to the inhibitor sites, appear to be independent when the nucleotides bind to the enzyme. The negative delta G0 of binding/site at 25 degrees C is the result in all cases of a balance between negative enthalpy and entropy changes. The large differences in delta H and delta S0 for the binding of AMP to the activator sites (-27 and -70 kJ mol-1; -22 and -150 J X K-1 mol-1) suggest the existence of rather extensive conformational changes taking place in phosphorylase b on binding with the allosteric activator. Whereas the affinity of AMP for the activator sites is about 1 order of magnitude higher than that of IMP, the affinity of both nucleotides, including their delta H and delta S0 values, seems to be the same for the inhibitor sites.  相似文献   

13.
In order to identify the forces involved in the binding and to understand the mechanism involved, equilibrium and kinetic studies were performed on the binding of the winged bean acidic lectin to human erythrocytes. The magnitudes of delta S and delta H were positive and negative respectively, an observation differing markedly from the lectin-simple sugar interactions where delta S and delta H are generally negative. Analysis of the sign and magnitudes of these values indicate that ionic and hydrogen bonded interactions prevail over hydrophobic interactions resulting in net -ve delta H (-37.12 kJ.mol-1) and +ve delta S (14.4 J.mole-1 K-1 at 20 degrees C), thereby suggesting that this entropy driven reaction also reflects conformational changes in the lectin and/or the receptor. Presence of two kinds of receptors for WBA II on erythrocytes, as observed by equilibrium studies, is consistent with the biexponential dissociation rate constants (at 20 degrees C K1 = 1.67 x 10(-3) M-1 sec-1 and K2 = 11.1 x 10(-3) M-1 sec-1). These two rate constants differed by an order of magnitude accounting for the difference in the association constants of the two receptors of WBA II. However, the association process remains monoexponential suggesting no observable difference in the association rates of the lectin molecule with both the receptors, under the experimental conditions studied. The thermodynamic parameters calculated from kinetic data correlate well with those observed by equilibrium. A two-step binding mechanism is proposed based on the kinetic parameters for WBA II-receptor interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Binding of branched-chain 2-oxo acids to bovine serum albumin.   总被引:4,自引:4,他引:0       下载免费PDF全文
1. Binding of branched-chain 2-oxo acids to defatted bovine serum albumin was shown by gel chromatography and equilibrium dialysis. 2. Equilibrium-dialysis data suggest a two-side model for binding in Krebs-Henseleit saline at 37 degrees C with n1 = 1 and n2 = 5. Site association constants were: 4-methyl-2-oxovalerate, k1 = 8.7 x 10(3) M-1, k2 = 0.09 x 10(3) M-1; 3-methyl-2-oxovalerate, k1 = 9.8 x 10(3) M-1, k2 = 0.08 x 10(3) M-1; 3-methyl-2-oxobutyrate, k1 = 1.27 x 10(3) M-1, k2 = less than 0.05 x 10(3) M-1. 3. Binding of 4-methyl-2-oxovalerate to defatted albumin in a phosphate-buffered saline, pH 7.4, gave the following thermodynamic parameters: primary site delta H0(1) = -28.6kJ . mol-1 and delta S0(1) = -15.2J . mol-1 . K-1 (delta G0(1) = -24.0kJ . mol-1 at 37 degrees C) and secondary sites delta H0(2) = -25.4kJ . mol-1 and delta S0(2) = -46.1J . mol-1 . K-1 (delta G0(1) = -11.2kJ . mol-1 at 37 degrees C). Thus binding at both sites is temperature-dependent and increases with decreasing temperature. 4. Inhibition studies suggest that 4-methyl-2-oxovalerate may associate with defatted albumin at a binding site for medium-chain fatty acids. 5. Binding of the 2-oxo acids in bovine, rat and human plasma follows a similar pattern to binding to defatted albumin. The proportion bound in bovine and human plasma is much higher than in rat plasma. 6. Binding to plasma protein, and not active transport, explains the high concentration of branched-chain 2-oxo acids leaving rat skeletal muscle relative to the concentration within the tissue, but does not explain the 2-oxo acid concentration gradient between plasma and liver.  相似文献   

15.
Thermodynamics of the Ca2+ binding to bovine alpha-lactalbumin   总被引:1,自引:0,他引:1  
Bovine alpha-lactalbumin contains one strong Ca2+-binding site. The free energy (delta G0), enthalpy (delta H0), and entropy (delta S0) of binding of Ca2+ to this site have been calculated from microcalorimetric experiments. The enthalpy of binding was dependent on the metal-free bovine alpha-lactalbumin concentration. At 0.8 mg ml-1, metal-free bovine alpha-lactalbumin delta H0 was -110 +/- 6 kJ mol-1. At this concentration the binding constant was estimated from a mathematical analysis of the titration curves to be greater than 10(7) M-1. This means that delta G0 is smaller than -40 kJ mol-1 and delta S0 is less negative than -235 J.K-1 mol-1. The binding of Ca2+ is therefore enthalpy-driven. From binding experiments as a function of temperature, a delta Cp value of -4.1 kJ.K-1 mol-1 was calculated. This value is dependent on the protein concentration. A tentative explanation for this large value is given.  相似文献   

16.
Calcium binding isotherms were determined for thermolysin in the range pH 5.6-10.5, and from 5 to 45 degrees C. An extensive statistical analysis of the binding data suggests that at least two of the four binding sites bind Ca2+ with complete positive cooperativity and independently of the other two. Nonlinear regression analysis of the binding data was used to calculate cooperative (K1) and independent (K2) binding constants for the four calcium sites. Thermodynamic parameters obtained from a van't Hoff analysis indicate that calcium binding to both cooperative and independent sites is an entropy-driven process. At pH 7.0, delta H1 = 90.4 kJ/mol; delta H2 = 97.5 kJ/mol; delta S1 = 456 J K-1 mol-1; delta S2 = 262 J K-1 mol-1. These results are compared to those obtained for other calcium-binding proteins. An analysis of the pH dependence of the calcium binding constants indicates that the binding of four protons at the cooperative site and one to two protons at the independent sites, modulates the calcium affinity. This confirms an earlier structural assignment of the double-site as the locus of the two cooperatively binding Ca2+. Calcium binding to thermolysin is enhanced in the presence of an active site directed inhibitor, suggesting that there may be positive cooperativity between substrate and calcium binding.  相似文献   

17.
Angiotensin IV (Ang IV), the 3-8 fragment of angiotensin II (Ang II), binds to a distinct receptor designated the AT(4) receptor. The peptide elicits a range of vascular and central actions including facilitation of memory retention and retrieval in several learning paradigms. The aim of this study was to characterize the AT(4) receptor in a human cell line of neural origin. Receptor binding studies indicate that the human neuroblastoma cell line SK-N-MC cells express a high-affinity Ang IV binding site with a pharmacological profile similar to the AT(4) receptor: (125)I]-Ang IV and (125)I]-Nle(1)-Ang IV bind specifically to the SK-N-MC cell membranes (K(d) = 0.6 and 0.1 nM) in a saturable manner (B(max) = 1.2 pmol/mg of protein). AT(4) receptor ligands, Nle(1)-Ang IV, Ang IV and LVV-haemorphin 7 (LVV-H7), compete for the binding of [(125)I]-Ang IV or [(125)I]-Nle(1)-Ang IV to the SK-N-MC cell membranes with rank order potencies of Nle(1)-Ang IV > Ang IV > LVV-H7 with IC(50) values of 1.4, 8.7 and 59 nM ([(125)I]-Ang IV) and 1.8, 20 and 168 nM ([(125)I]-Nle(1)-Ang IV), respectively. The binding of [(125)I]-Ang IV or [(125)I]-Nle(1)-Ang IV to SK-N-MC cell membranes was not affected by the presence of GTP gamma S. Both Ang IV and LVV-H7 stimulated DNA synthesis in this cell line up to 72 and 81% above control levels, respectively. The AT(4) receptor in the SK-N-MC cells is a 180-kDa glycoprotein; under non-reducing conditions a 250-kDa band was also observed. In summary, the human neuroblastoma cell line, SK-N-MC, expresses functional AT(4) receptors that are responsive to Ang IV and LVV-H7, as indicated by an increase in DNA synthesis. This is the first human cell line of neural origin shown to express the AT(4) receptor.  相似文献   

18.
M S Matta  M E Andracki 《Biochemistry》1988,27(21):8000-8007
The specificity ratios kc/Km = k for subtilisin A catalyzed hydrolysis of five aryl esters of N-(methoxycarbonyl)-L-Phe (McPhe) were determined at pH 7.03 and its pD equivalent. The ratios are independent of the electronic properties of the leaving group substituent. Kinetic solvent isotope effects, Dk, increase from about 0.9 to 1.3 as leaving group ability decreases from p-nitrophenolate to p-methoxyphenolate. The k of N-(methoxycarbonyl)-L-phenylalanine p-nitrophenyl ester (NPE) with native enzyme exhibits a strong temperature dependence; delta H* = 87 +/- 3 kJ mol-1 and delta S* = 148 +/- 14 J K-1 mol-1 at 25 degrees C (H2O). The Dk with this substrate is 1.36 at 13.6 degrees C, declines to 0.89 at 25 degrees C, and then increases to 1.04 at 39.4 degrees C. Above neutral pH(D), with McPhe NPE as substrate, the dependence of k is for the dissociated form of a single base of pKapp = 7.38 +/- 0.03 in H2O and 7.67 +/- 0.03 in D2O. The pKapp values are apparently those of the uncomplexed native protein. By contrast, k of 3-phenylpropanoic acid (Prop) p-nitrophenyl ester exhibits a weaker temperature dependence; delta H* = 20 kJ mol-1 and delta S* = -90 J K-1 mol-1 (H2O) at 25 degrees C. The Dk are larger than those for McPhe NPE, decreasing from 1.99 at 20.5 degrees C to 1.74 at 46.1 degrees C. These results, combined with those of previous studies, are consistent with limitation of k by at least two processes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The structural and dynamic aspects of the interaction of the thiazole containing lexitropsin (1) with an oligodeoxyribonucleotide were studied by high field 1H-NMR spectroscopy. Complete assignment of the 1H-NMR resonances of lexitropsin 1 was accomplished by 2D-NMR techniques. The complexation-induced chemical shifts and NOE cross peaks in the NOESY map of the 1:1 complex of lexitropsin (1) and d-[CGCAATTGCG]2 reveal that the thiazole ring of the lexitropsin (1) intercalates between dA4.A5 bases and the rest of the ligand resides in the minor groove of the AT rich core of decamer, thus occupying the 5'-AATT sequence on the DNA. Intercalation of the thiazole moiety of the drug has been detected by the presence of intermolecular NOEs both in the major and the minor groove of the decamer helix. The absence of intranucleotide NOEs between base protons and H1'/H2' protons suggested local unwinding of the binding site on the DNA. From COSY and NOESY methods of 2D-NMR, it was established that the N-formyl (amino) terminus of the thiazole lexitropsin (1) is projecting into the major groove towards A5H8 while the amidinium terminus lies in the minor groove towards the T7G8 base pairs of the opposite strand. The expected intranucleotide NOEs confirmed that the decadeoxyribonucleotide in the 1:1 complex exists in a right handed B-conformation. The presence of exchange signals along the binding site 5'-AATT indicated an exchange of the bound drug process wherein the rate of exchange between the two equivalent sites was estimated to be congruent to 130 s-1 at 30 degrees C and with delta G degrees of 62.4 kJ mol-1. Force field and Pi calculations permitted a rationalization of the experimentally observed binding mode in terms of preferred conformation of the ligand and repeat length in lexitropsins compared with the DNA receptor.  相似文献   

20.
Binding of cI repressor to DNA fragments containing the three specific binding sites of the right operator (OR) of bacteriophage lambda was studied in vitro over the temperature range 5-37 degrees C by quantitative footprint titration. The individual-site isotherms, obtained for binding repressor dimers to each site of wild-type OR and to appropriate mutant operator templates, were analyzed for the Gibbs energies of intrinsic binding and pairwise cooperative interactions. It is found that dimer affinity for each of the three sites varies inversely with temperature, i.e., the binding reactions are enthalpy driven, unlike many protein-DNA reactions. By contrast, the magnitude of the pairwise cooperativity terms describing interaction between adjacently site-bound repressor dimers is quite small. This result in combination with the recent finding that repressor monomer-dimer assembly is highly enthalpy driven (with delta H degrees = -16 kcal mol-1) [Koblan, K. S., & Ackers, G. K. (1991) Biochemistry 30, 7817-7821] indicates that the associative contacts between site-bound repressors that mediate cooperativity are unlikely to be the same as those responsible for dimerization. The intrinsic binding enthalpies for all three sites are negative (exothermic) and nearly temperature-invariant, indicating no heat capacity changes on the scale of those inferred in other protein-DNA systems. However, the three operator sites are affected differentially by temperature: the intrinsic binding free energies for sites OR1 and OR3 change in parallel over the entire range, delta H0OR1 = -23.3 +/- 4.0 kcal mol-1 and delta H0OR3 = -22.7 +/- 1.2 kcal mol-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号