首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
Reproductive skew - the extent to which reproduction is unevenly shared between individuals in a social group - varies greatly between and within animal species. In this study, we investigated how queens share parentage in polygynous (multiple queen) colonies of the Mediterranean ant Pheidole pallidula. We used highly polymorphic microsatellites markers to determine parentage of gynes (new queens), males and workers in P. pallidula field colonies. The comparison of the genotypes of young and adult workers revealed a very low queen turnover (less than 2%). The first main finding of the study of reproductive skew in these colonies was that there was a significant departure from equal contribution of queens to gyne, male and worker production. Reproductive skew was greater for male production than for queen and worker production. There was no relationship between the magnitude of the reproductive skew and the number of reproductive queens per colony, their relatedness and the overall colony productivity, some of the factors predicted to influence the extent of reproductive skew. Finally, our study revealed for the first time a trade-off in the relative contribution of nestmate queens to gyne and worker production. The queens contributing more to gyne production contributed significantly less to worker production.  相似文献   

2.
The partitioning of reproduction among individuals in communally breeding animals varies greatly among species, from the monopolization of reproduction (high reproductive skew) to similar contribution to the offspring in others (low skew). Reproductive skew models explain how relatedness or ecological constraints affect the magnitude of reproductive skew. They typically assume that individuals are capable of flexibly reacting to social and environmental changes. Most models predict a decrease of skew when benefits of staying in the group are reduced. In the ant Leptothorax acervorum, queens in colonies from marginal habitats form dominance hierarchies and only the top‐ranking queen lays eggs (“functional monogyny”). In contrast, queens in colonies from extended coniferous forests throughout the Palaearctic rarely interact aggressively and all lay eggs (“polygyny”). An experimental increase of queen:worker ratios in colonies from low‐skew populations elicits queen–queen aggression similar to that in functionally monogynous populations. Here, we show that this manipulation also results in increased reproductive inequalities among queens. Queens from natural overwintering colonies differed in the number of developing oocytes in their ovaries. These differences were greatly augmented in queens from colonies with increased queen:worker ratios relative to colonies with a low queen:worker ratio. As assumed by models of reproductive skew, L. acervorum colonies thus appear to be capable of flexibly adjusting reproductive skew to social conditions, yet in the opposite way than predicted by most models.  相似文献   

3.
Understanding the determinants of reproductive skew (the partitioning of reproduction among co‐breeding individuals) is one of the major questions in social evolution. In ants, multiple‐queen nests are common and reproductive skew among queens has been shown to vary tremendously both within and between species. Proximate determinants of skew may be related to both queen and worker behaviour. Queens may attempt to change their reproductive share through dominance interactions, egg eating and by changing individual fecundity. Conversely, workers are in a position to regulate the reproductive output of queens when rearing the brood. This paper investigates queen behaviour at the onset of egg laying and the effect of queen fecundity and worker behaviour on brood development and reproductive shares of multiple queens in the ant Formica fusca. The study was conducted in two‐queen laboratory colonies where the queens produced only worker offspring. The results show that in this species reproductive apportionment among queens is not based on dominance behaviour and aggression, but rather on differences in queen fecundity. We also show that, although the queen fecundity at the onset of brood rearing is a good indicator of her final reproductive output, changes in brood composition occur during brood development. Our results highlight the importance of queen fecundity as a major determinant of her reproductive success. They furthermore suggest that in highly derived polygyne species, such as the Formica ants, direct interactions as a means for gaining reproductive dominance have lost their importance.  相似文献   

4.
The occurrence of multiple reproductives within an ant colony changes the balance between indirect fitness benefits and reproductive competition. We test whether the number of matings by an ant queen (polyandry) correlates negatively with the number of reproductive queens in the colony (polygyny), whether the patrilines and matrilines differ in their contribution to the sexual and worker progeny and whether there is an overall reproductive skew. For these aims, we genotyped both worker and sexual offspring from colonies of the ant Formica sanguinea in three populations. Most colonies were monogynous, but eight (11%) were polygynous with closely related queens. Most queens in the monogynous colonies (86%) had mated with multiple males. The effective paternity was lower than the actual number of mates, and the paternity skew was significant. Furthermore, in some monogynous colonies, the patrilines were differently represented in the worker pupae and sexual pupae produced at the same time. Likewise, the matrilines in polygynous colonies were differently present in worker pupae and male offspring. The effective number of matings by a queen was significantly lower in polygynous colonies (mean me = 1.68) than in monogynous colonies (means 2.06–2.61). The results give support to the hypotheses that polyandry and polygyny are alternative breeding strategies and that reproductive competition can lead to different representation of patrilines and matrilines among the sexual and worker broods.  相似文献   

5.
The behavioral traits that shape the structure of animal societies vary considerably among species but appear to be less flexible within species or at least within populations. Populations of the ant Leptothorax acervorum differ in how queens interact with other queens. Nestmate queens from extended, homogeneous habitats tolerate each other and contribute quite equally to the offspring of the colony (polygyny: low reproductive skew). In contrast, nestmate queens from patchy habitats establish social hierarchies by biting and antennal boxing, and eventually only the top-ranking queen of the colony lays eggs (functional monogyny: high reproductive skew). Here we investigate whether queen-queen behavior is fixed within populations or whether aggression and high skew can be elicited by manipulation of socio-environmental factors in colonies from low skew populations. An increase of queen/worker ratio and to a lesser extent food limitation elicited queen-queen antagonism in polygynous colonies from Nürnberger Reichswald similar to that underlying social and reproductive hierarchies in high-skew populations from Spain, Japan, and Alaska. In manipulated colonies, queens differed more in ovarian status than in control colonies. This indicates that queens are in principle capable of adapting the magnitude of reproductive skew to environmental changes in behavioral rather than evolutionary time.  相似文献   

6.
Newly produced queens from monogyne (single-queen) coloniesof the ant Solenopsis invicta usually initiate reproductionindependently, that is, without worker assistance. However,some recently mated queens attempt to bypass this risky phaseof new colony foundation by entering established nests to reproduce,although it is unclear how often these queens are successfulin natural populations. We surveyed a mature monogyne populationof S. invicta in both 1995 and 1996 for colonies headed by queensincapable of independent colony founding (diploid-male-producingqueens) in order to estimate the frequency of colonies thatare headed by queens that initiated reproduction within establishednests (adopted queens). Using the frequency of diploid-male-producingqueens among the recently mated queens in this population, weestimated that the overall rate of queen replacement by adoptedqueens is about 0.7% per colony per year. Although theory suggeststhat a change to a novel queen reproductive tactic could beassociated with a fundamental change in social organization(queen number), this does not appear to be the case in monogyneS. invicta. However, the evolution of nest-infiltrating reproductivetactics by queens in a monogyne population and the evolutionof multiple-queen societies may result from similar ecologicalpressures facing newly mated queens. We therefore incorporatethis strategy into an existing theoretical framework that wasdeveloped to explain the evolution of alternative social organizationsin ants, providing testable predictions regarding the distributionand frequency of queen adoption in other single-queen ant societies.  相似文献   

7.
Reproduction in species of eusocial insects is monopolized by one or a few individuals, while the remaining colony tasks are performed by the worker caste. This reproductive division of labor is exemplified by honey bees (Apis mellifera L.), in which a single, polyandrous queen is the sole colony member that lays fertilized eggs. Previous work has revealed that the developmental fate of honey bee queens is highly plastic, with queens raised from younger worker larvae exhibiting higher measures in several aspects of reproductive potential compared to queens raised from older worker larvae. Here, we investigated the effects of queen reproductive potential (“quality”) on the growth and winter survival of newly established honey bee colonies. We did so by comparing the growth of colonies headed by “high-quality” queens (i.e., those raised from young worker larvae, which are more queen-like morphologically) to those headed by “low-quality” queens (i.e., those raised from older worker larvae, which are more worker-like morphologically). We confirmed that queens reared from young worker larvae were significantly larger in size than queens reared from old worker larvae. We also found a significant positive effect of queen grafting age on a colony’s production of worker comb, drone comb, and stored food (honey and pollen), although we did not find a statistically significant difference in the production of worker and drone brood, worker population, and colony weight. Our results provide evidence that in honey bees, queen developmental plasticity influences several important measures of colony fitness. Thus, the present study supports the idea that a honey bee colony can be viewed (at least in part) as the expanded phenotype of its queen, and thus selection acting predominantly at the colony level can be congruent with that at the individual level.  相似文献   

8.
Because workers in the eusocial Hymenoptera are more closely related to sisters than to brothers, theory predicts that natural selection should act on them to bias (change) sex allocation to favor reproductive females over males. However, selection should also act on queens to prevent worker bias. We use a simulation approach to analyze the coevolution of this conflict in colonies with single, once-mated queens. We assume that queens bias the primary (egg) sex ratio and workers bias the secondary (adult) sex ratio, both at some cost to colony productivity. Workers can bias either by eliminating males or by directly increasing female caste determination. Although variation among colonies in kin structure is absent, simulations often result in bimodal (split) colony sex ratios. This occurs because of the evolution of two alternative queen or two alternative worker biasing strategies, one that biases strongly and another that does not bias at all. Alternative strategies evolve because the mechanisms of biasing result in accelerating benefits per unit cost with increasing bias, resulting in greater fitness for strategies that bias more and bias less than the population equilibrium. Strategies biasing more gain from increased biasing efficiency whereas strategies biasing less gain from decreased biasing cost. Our study predicts that whether queens or workers evolve alternative strategies depends upon the mechanisms that workers use to bias the sex ratio, the relative cost of queen and worker biasing, and the rates at which queen and worker strategies evolve. Our study also predicts that population and colony level sex allocation, as well as colony productivity, will differ diagnostically according to whether queens or workers evolve alternative biasing strategies and according to what mechanism workers use to bias sex allocation.  相似文献   

9.
Paxton RJ  Ayasse M  Field J  Soro A 《Molecular ecology》2002,11(11):2405-2416
The sweat bees (Family Halictidae) are a socially diverse taxon in which eusociality has arisen independently numerous times. The obligate, primitively eusocial Lasioglossum malachurum, distributed widely throughout Europe, has been considered the zenith of sociality within halictids. A single queen heads a colony of smaller daughter workers which, by mid-summer, produce new sexuals (males and gynes), of which only the mated gynes overwinter to found new colonies the following spring. We excavated successfully 18 nests during the worker- and gyne-producing phases of the colony cycle and analysed each nest's queen and either all workers or all gynes using highly variable microsatellite loci developed specifically for this species. Three important points arise from our analyses. First, queens are facultatively polyandrous (queen effective mating frequency: range 1-3, harmonic mean 1.13). Second, queens may head colonies containing unrelated individuals (n = 6 of 18 nests), most probably a consequence of colony usurpation during the early phase of the colony cycle before worker emergence. Third, nonqueen's workers may, but the queen's own workers do not, lay fertilized eggs in the presence of the queen that successfully develop into gynes, in agreement with so-called 'concession' models of reproductive skew.  相似文献   

10.
Factors affecting relatedness among nest members in ant colonies with high queen number are still poorly understood. In order to identify the major determinants of nest kin structure, we conducted a detailed analysis of the breeding system of the ant Formica exsecta. We estimated the number of mature queens by mark-release-recapture in 29 nests and dissected a sub-sample of queens to assess their reproductive status. We also used microsatellites to estimate relatedness within and between all classes of nestmates (queens, their mates, worker brood, queen brood and male brood). Queen number was very high, with an arithmetic mean of 253 per nest. Most queens (90%) were reproductively active, consistent with the genetic analyses revealing that there was only a minimal reproductive skew among nestmate queens. Despite the high queen number and low reproductive skew, almost all classes of individuals were significantly related to each other. Interestingly, the number of resident queens was a poor predictor of kin structure at the nest level, consistent with the observation that new queens are produced in bursts leading to highly fluctuating queen number across years. Queen number also varied tremendously across nests, with estimates ranging from five to several hundred queens. Accordingly, the harmonic mean queen number (40.5) was six times lower than the arithmetic mean. The variation in queen number was the most important factor of the breeding system contributing to a significant relatedness between almost all classes of nestmates despite a high average number of queens per nest. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 12 November 2007; revised 4 May 2008; accepted 8 May 2008.  相似文献   

11.
REPRODUCTIVE SKEW AND SPLIT SEX RATIOS IN SOCIAL HYMENOPTERA   总被引:1,自引:0,他引:1  
Abstract I present a model demonstrating that, in social Hymenoptera, split sex allocation can influence the evolution of reproductive partitioning (skew). In a facultatively polygynous population (with one to several queens per colony), workers vary in their relative relatedness to females (relatedness asymmetry). Split sex‐ratio theory predicts that workers in monogynous (single‐queen) colonies should concentrate on female production, as their relatedness asymmetry is relatively high, whereas workers in the polygynous colonies should concentrate on male production, as their relatedness asymmetry is relatively low. By contrast, queens in all colonies value males more highly per capita than they value females, because the worker‐controlled population sex ratio is too female‐biased from the queens' standpoint. Consider a polygynous colony in a facultatively polygynous population of perennial, social Hymenoptera with split sex ratios. A mutant queen achieving reproductive monopoly would gain from increasing her share of offspring but, because the workers would assess her colony as monogynous, would lose from the workers rearing a greater proportion of less‐valuable females from the colony's brood. This sets an upper limit on skew. Therefore, in social Hymenoptera, skew evolution is potentially affected by queen‐worker conflict over sex allocation.  相似文献   

12.
Workers in eusocial insects usually tend the brood of the queenand so achieve representation in the next generation throughaiding relatives to reproduce. However, workers of some eusocialspecies, such as bumblebees, are capable of reproductive activityeven in the presence of the queen (in queen-right colonies),and worker reproduction is associated with aggressive behaviorsand egg cannibalism, both of which reduce colony efficiency.Thus, factors that affect worker ovariandevelopment, a preconditionfor reproduction, can influence social harmony and colony productivity.Parasites are a ubiquitous and important part of the bioticenvironment of all organisms. Here we show that parasites playan important role in the reproductive physiology of worker bumblebeesin queen-right colonies of Bombus terrestris, affecting thepattern and timing of ovarian development and oviposition. Workersfrom colonies parasitized with the intestinal trypanosome Crithidiabombi had less developed ovaries than workers of the same agefrom unparasitized colonies. In addition, parasitized colonieswere smaller than unparasitized colonies for about the firsthalf of colony development. This generated further demographiceffects such that workers were on average younger in parasitizedthan in unparasitized colonies around the time of the onsetof worker oviposition, and worker oviposition occurred significantlylater in parasitized colonies. Workers in parasitized coloniestherefore had lower individual reproductive potential and werecooperative for a larger proportion of the colony cycle thanthose in unparasitized colonies. In this system, where transmissionof the parasite between years probably occurs only in infested,young queens, this effect may represent an adaptation on thepart of the parasite to ensure its successful passage throughthe winter. Parasites, by reducing the cost of worker cooperation,may facilitate queen control over her worker force and playan important role in moderating the social organization of eusocialinsect colonies.  相似文献   

13.
Sex ratios in social insects have become a general model for tests of inclusive fitness theory, sex ratio theory and parent–offspring conflict. In populations of Formica exsecta with multiple queens per colony , sex ratios vary greatly among colonies and the dry-weight sex ratio is extremely male-biased, with 89% of the colonies producing males but no gynes (reproductive females). Here we test the queen-replenishment hypothesis, which was proposed to explain sex ratio specialization in this and other highly polygynous ants (i.e. those with many queens per nest). This hypothesis proposes that, in such ants, colonies produce gynes to recruit them back into the colony when the number of resident queens falls below a given threshold limiting colony productivity or survival. We tested predictions of the queen-replenishment hypothesis by following F. exsecta colonies across two breeding seasons and relating the change in effective queen number with changes in sex ratio, colony size and brood production. As predicted by the queen-replenishment hypothesis, we found that colonies that specialized in producing females increased their effective queen number and were significantly more likely to specialize in male production the following year. The switch to male production also coincided with a drop in productivity per queen as predicted. However, adoption of new queens did not result in a significant increase in total colony productivity the following year. We suggest that this is because queen production comes at the expense of worker production and thus queen production leads to resource limitation the following year, buffering the effect of greater queen number on total productivity.  相似文献   

14.
Honey bee colonies consist of tens of thousands of workers and a single reproductive queen that produces a pheromone blend which maintains colony organization. Previous studies indicated that the insemination quantity and volume alter queen mandibular pheromone profiles. In our 11-month long field study we show that workers are more attracted to high-volume versus low-volume inseminated queens, however, there were no significant differences between treatments in the number of queen cells built by workers in preparation for supersedure. Workers exposed to low-volume inseminated queens initiated production of queen-like esters in their Dufour's glands, but there were no significant difference in the amount of methyl farnesoate and juvenile hormone in worker hemolymph. Lastly, queen overwintering survival was unexpectedly lower in high-volume inseminated queens. Our results suggest that the queen insemination volume could ultimately affect colony health and productivity.  相似文献   

15.
Assessing the mating 'health' of commercial honey bee queens   总被引:1,自引:0,他引:1  
Honey bee queens mate with multiple males, which increases the total genetic diversity within colonies and has been shown to confer numerous benefits for colony health and productivity. Recent surveys of beekeepers have suggested that 'poor queens' are a top management concern, thus investigating the reproductive quality and mating success of commercially produced honey bee queens is warranted. We purchased 80 commercially produced queens from large queen breeders in California and measured them for their physical size (fresh weigh and thorax width), insemination success (stored sperm counts and sperm viability), and mating number (determined by patriline genotyping of worker offspring). We found that queens had an average of 4.37 +/- 1.446 million stored sperm in their spermathecae with an average viability of 83.7 +/- 13.33%. We also found that the tested queens had mated with a high number of drones (average effective paternity frequency: 17.0 +/- 8.98). Queen "quality" significantly varied among commercial sources for physical characters but not for mating characters. These findings suggest that it may be more effective to improve overall queen reproductive potential by culling lower-quality queens rather than systematically altering current queen production practices.  相似文献   

16.
Rolf Kümmerli  Laurent Keller 《Oikos》2008,117(4):580-590
Due to their haplo‐diploid sex determination system and the resulting conflict over optimal sex allocation between queens and workers, social Hymenoptera have become important model species to study variation in sex allocation. While many studies indeed reported sex allocation to be affected by social factors such as colony kin structure or queen number, others, however, found that sex allocation was impacted by ecological factors such as food availability. In this paper, we present one of the rare studies that simultaneously investigated the effects of social and ecological factors on social insect nest reproductive parameters (sex and reproductive allocation, nest productivity) across several years. We found that the sex ratio was extremely male biased in a polygynous (multiple queens per nest) population of the ant Formica exsecta. Nest‐level sex allocation followed the pattern predicted by the queen‐replenishment hypothesis, which holds that gynes (new queens) should only be produced and recruited in nests with low queen number (i.e. reduced local resource competition) to ensure nest survival. Accordingly, queen number (social factor) was the main determinant on whether a nest produced gynes or males. However, ecological factors had a large impact on nest productivity and therefore on a nest's resource pool, which determines the degree of local resource competition among co‐breeding queens and at what threshold in queen number nests should switch from male to gyne production. Additionally, our genetic data revealed that gynes are recruited back to their parental nests after mating. However, our genetic data are also consistent with some adult queens dispersing on foot from nests where they were produced to nests that never produced queens. As worker production is reduced in gyne‐producing nests, queen migration might be offset by workers moving in the other direction, leading to a nest network characterized by reproductive division of labour. Altogether our study shows that both, social and ecological factors can influence long‐term nest reproductive strategies in insect societies.  相似文献   

17.
Conflict is rare among the members of a highly cooperative society such as a honey bee colony. However, conflict within a colony increases drastically during colony reproduction ('swarming') when newly produced queens fight each other until only one queen remains in the nest. This study describes the behavior of queens and workers during naturally occurring queen combat. The duels of five pairs of queens were observed in three observation colonies. A typical duel is described qualitatively and the events of all five duels are described quantitatively. Several aspects of duels that are of particular interest are examined in detail, including the behavior of queens near capped queen cells, worker aggression toward queens, queen tooting, and the relation of queen and worker behavior to the outcome of the duel. The results of this investigation serve as a foundation for rigorous tests of hypotheses regarding the adaptive significance of queen and worker behavior during queen combat. The results presented suggest that: young queens patrol queen cells to kill rival queens while they are vulnerable; workers aggress queens to prevent them from destroying queen cells; queens toot to inhibit worker aggression; workers immobilize queens to make them easy targets for rival queens; and queens eject hind-gut contents to cause their rival to be immobilized by the workers.  相似文献   

18.
To date very few studies have addressed the effects of inbreeding in social Hymenoptera, perhaps because the costs of inbreeding are generally considered marginal owing to male haploidy whereby recessive deleterious alleles are strongly exposed to selection in males. Here, we present one of the first studies on the effects of queen and worker homozygosity on colony performance. In a wild population of the ant Formica exsecta, the relative investment of single‐queen colonies in sexual production decreased with increased worker homozygosity. This may either stem from increased homozygosity decreasing the likelihood of diploid brood to develop into queens or a lower efficiency of more homozygous workers at feeding larvae and thus a lower proportion of the female brood developing into queens. There was also a significant negative association between colony age and the level of queen but not worker homozygosity. This association may stem from inbreeding affecting queen lifespan and/or their fecundity, and thus colony survival. However, there was no association between queen homozygosity and colony size, suggesting that inbreeding affects colony survival as a result of inbred queens having a shorter lifespan rather than a lower fecundity. Finally, there was no significant association between either worker or queen homozygosity and the probability of successful colony founding, colony size and colony productivity, the three other traits studied. Overall, these results indicate that inbreeding depression may have important effects on colony fitness by affecting both the parental (queen) and offspring (worker) generations cohabiting within an ant colony.  相似文献   

19.
In polygyne ants (multiple queens per colony) factors that affect the distribution and survival of queens may play a key role in shaping the population-wide mating system and colony kin structure. The aim of this paper was to study the breeding system in two populations of different age in the facultatively polygyne ant Formica fusca. Both the observed numbers of queens, and the relatedness patterns among queens, workers and colony fathers were compared in two adjacent populations (ages 17 years and > 100 years) in Southern Finland. The results showed that both the mating system and colony kin structure differed between the study populations. In the old population the relatedness among workers, queens and colony fathers was high. The queens were also related to their mates, resulting in significant inbreeding in workers, but not in queens. Finally, the number of queens per colony fluctuated between years, suggesting queen turnover, and nest-mate queens shared their reproduction unequally (reproductive skew). In the younger population relatedness among queens and workers was lower than in the old population, and the colony fathers were unrelated. Furthermore, inbreeding was absent, and no conclusive evidence was found for reproductive skew among nest-mate queens. Finally, the number of queens per colony appeared more stable between years, although queen turnover occurred also in this population. The observed differences in dispersal and mating behaviour are discussed in the light of a potential connection between population age and habitat saturation.  相似文献   

20.
Kin selection theory predicts potential conflict between queen and workers over male parentage in hymenopteran societies headed by one, singly mated queen, because each party is more closely related to its own male offspring. In ‘late-switching’ colonies of the bumblebee Bombus terrestris, i.e. colonies whose queens lay haploid eggs relatively late in the colony cycle, workers start to lay male eggs shortly after the queen lays the female eggs that will develop into new queens. It has been hypothesized that this occurs because workers recognize, via a signal given by the queen instructing female larvae to commence development as queens, that egg laying is now in their kin-selected interest. This hypothesis assumes that aggressive behaviour in egg-laying workers does not substantially reduce the production of new queens, which would decrease the workers' fitness payoff from producing males. We tested the hypothesis that reproductive activity inB. terrestris workers does not reduce the production of new queens. We used microsatellite genotyping to sex eggs and hence to select eight size-matched pairs of ‘late-switching’ colonies from a set of commercial colonies. From one colony of each pair we removed every egg-laying or aggressive worker observed. From the other colony, we simultaneously removed a nonegg-laying, nonaggressive worker. Removed workers were replaced with young workers from separate colonies at equal frequencies within the pair. There was no significant difference in queen productivity between colonies with reduced or normal levels of egg-laying or aggressive workers. Therefore, as predicted, reproductive B. terrestris workers did not significantly reduce the production of new queens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号