首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbamate kinase has been prepared from Lactobacillus buchneri NCDO110. An approximately 91-fold increase in the specific activity of the enzyme was achieved. The purified extract exhibited a single band following polyacrylamide gel electrophoresis. The apparent molecular weight as determined by gel electrophoresis was about 97,000. The enzyme is stable for 2 weeks at -20 degrees C. Maximum enzymatic activity was observed at 30 degrees C and pH 5.4 in 0.1 M acetate buffer. L. buchneri carbamate kinase requires Mg2+ or Mn2+; its activity is higher with Mn2+. The activation energy of the reaction was 4078 cal mol-1 for the reaction with Mn2+ and 3059 cal mol-1 for the reaction with Mg2+. From a Dixon plot a pK value of 4.8 was calculated. The apparent Km values for ADP with Mg2+ or Mn2+ were 0.71 X 10(-3) and 1.17 X 10(-3) M, respectively, and the apparent Km values for carbamyl phosphate with Mg2+ or Mn2+ were 1.63 X 10(-3) and 1.53 X 10(-3) M, respectively. ATP and CTP acted as inhibitors of this reaction and the following values were obtained: Ki (ATP)Mg2+ = 9.4 mM, Ki (ATP)Mn2+ = 6.2 mM, and Ki (CTP)Mg2+ = 4.4 mM.  相似文献   

2.
Inorganic pyrophosphatase was purified from the vacuolar membrane of mung bean hypocotyl tissue by solubilization with lysophosphatidylcholine and QAE-Toyopearl chromatography. The molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 73,000 daltons. Among the amino-terminal first 30 amino acids are 25 nonpolar hydrophobic residues. For maximum activity, the purified pyrophosphatase required 1 mM Mg2+ and 50 mM K+. The enzyme reaction was stimulated by exogenous phospholipid in the presence of detergent. Excess pyrophosphate as well as excess magnesium inhibited the pyrophosphatase. The enzyme reaction was strongly inhibited by ATP, GTP, and CTP at 2 mM, and the inhibition was reversed by increasing the Mg2+ concentration. An antibody preparation raised in a rabbit against the purified enzyme inhibited both the reactions of pyrophosphate hydrolysis of the purified preparation and the pyrophosphate-dependent H+ translocation in the tonoplast vesicles. N,N'-Dicyclohexylcarbodiimide became bound to the purified pyrophosphatase and inhibited the reaction of pyrophosphate hydrolysis. It is concluded that the 73-kDa protein in vacuolar membrane functions as an H+-translocating inorganic pyrophosphatase.  相似文献   

3.
Inositol-1,4-bisphosphate 4-phosphohydrolase (inositol-1,4-bisphosphatase) was highly purified from a soluble fraction of rat brain. On SDS-polyacrylamide gel electrophoresis, the purified enzyme gave a single protein band and its molecular weight was estimated to be 42000. The isoelectric point of the enzyme was 4.3. The enzyme specifically hydrolyzed the 4-phosphomonoester linkage of inositol 1,4-bisphosphate. The Km value for inositol 1,4-bisphosphate was 30 microM, and it required Mg2+ for activity. Ca2+ was a competitive inhibitor with a Ki value of 60 microM as regards the Mg2+ binding. Li+, which is known to be a strong inhibitor of inositol 1-phosphatase (EC 3.1.3.25), inhibited the enzyme activity and caused 50% inhibition at a concentration of 1 mM (IC50 = 1 mM). Li+ was an uncompetitive inhibitor of substrate binding with a Ki value of 0.6 mM. These inhibitory parameters of Li+ were quite similar to those for inositol 1-phosphatase (IC50 = 1 mM, Ki = 0.3 mM). Thus, the effect of Li+ on decreasing the free inositol level with a subsequent decrease in agonist-sensitive phosphoinositides, is caused by its inhibition of multiple enzymes involved in conversion of inositol 1,4-bisphosphate to inositol.  相似文献   

4.
We have isolated D-myo-inositol 1:2-cyclic phosphate 2-inositolphosphohydrolase (EC 3.1.4.36) from human placenta. This enzyme catalyzes the conversion of inositol 1:2-cyclic phosphate to inositol 1-phosphate. The enzyme was purified 1300-fold to apparent homogeneity from the soluble fraction of human placenta. The enzyme requires Mn2+ or Mg2+ ions for activity, has an apparent Km for inositol 1:2-cyclic phosphate of 0.15 mM and forms 2.2 mumol of inositol 1-phosphate/min/mg protein. The enzyme does not utilize the cyclic esters of inositol polyphosphates as substrates. The molecular weight determined by gel filtration chromatography is approximately 55,000. Upon electrophoresis in polyacrylamide gels in sodium dodecyl sulfate, the molecular weight was found to be 29,000 both in the presence and absence of beta-mercaptoethanol. The enzyme was inhibited by inositol 2-phosphate (IC50 = 4 microM) and to a lesser degree by inositol 1-phosphate (IC50 = 2 mM) and inositol (IC50 = 4 mM). Zn2+ is a potent inhibitor of enzyme activity (IC50 = 10 microM). Neither Li+ nor Ca2+ had any effect on enzyme activity. This enzyme may serve to generate inositol from inositol cyclic phosphate metabolites produced by the phosphoinositide signaling pathway in cells.  相似文献   

5.
Purification and properties of myo-inositol-1-phosphatase from rat brain   总被引:10,自引:0,他引:10  
myo-Inositol-1-phosphatase [EC 3.1.3.25] was purified from a cytosolic fraction of rat brain. The purified enzyme appeared homogeneous on SDS-polyacrylamide gel electrophoresis and its molecular weight was estimated to be 29,000. The molecular weight of the native enzyme was 55,000 as determined by molecular sieve chromatography. These values indicated that the native enzyme was composed of two identical subunits. The isoelectric point of the enzyme was 4.6. The enzyme hydrolyzed inositol-1-phosphate, 2'-AMP, 2'-GMP, beta-glycerophosphate, and alpha-glycerophosphate; the ratio of the reaction rates was 100 : 84 : 73 : 64 : 32. The Km values for inositol-1-phosphate, 2'-AMP, and beta-glycerophosphate were 1.2 X 10(-4) M, 1.9 X 10(-4) M, and 7.7 X 10(-4) M, respectively. Mn2+ and Ca2+ were strong competitive inhibitors against Mg2+, with Ki values of 3 microM and 20 microM, respectively. This result suggests that myo-inositol-1-phosphatase might be regulated by intracellular Ca2+ and/or Mn2+. Li+, which is known to show a therapeutic effect on manic-depressive disease and also to prolong the intrinsic periods of circadian rhythms in various organisms, was a potent uncompetitive inhibitor and inhibited 50% of the activity at 1 mM. The possibility that myo-inositol-1-phosphatase and inositol phospholipid metabolism are involved in circadian rhythm oscillation is discussed in terms of Li actions.  相似文献   

6.
Membrane-bound ATPase was found in membranes of the archaebacterium Methanosarcina barkeri. The ATPase activity required divalent cations, Mg2+ or Mn2+, and maximum activity was obtained at pH 5.2. The activity was specifically stimulated by HSO3- with a shift of optimal pH to 5.8, and N,N'-dicyclohexylcarbodiimide inhibited ATP hydrolysis. The enzyme could be solubilized from membranes by incubation in 1 mM Tris-maleate buffer (pH 6.9) containing 0.5 mM EDTA. The solubilized ATPase was purified by DEAE-Sepharose and Sephacryl S-300 chromatography. The molecular weight of the purified enzyme was estimated to be 420,000 by gel filtration through Sephacryl S-300. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate revealed two classes of subunit, Mr 62,000 (alpha) and 49,000 (beta) associated in the molar ratio 1:1. These results suggest that the ATPase of M. barkeri is similar to the F0F1 type ATPase found in many eubacteria.  相似文献   

7.
A carbamoyl-phosphate synthase has been purified from mycelia of Phycomyces blakesleeanus NRRL 1555 (-). The molecular weight of the enzyme was estimated to be 188,000 by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed that the enzyme consists of two unequal subunits with molecular weights of 130,000 and 55,000. The purified enzyme has been shown to be highly unstable. The carbamoyl-phosphate synthase from Phycomyces uses ammonia and not L-glutamine as a primary N donor and does not require activation by N-acetyl-L-glutamate, but it does require free Mg2+ for maximal activity. Kinetic studies showed a hyperbolic behavior with respect to ammonia (Km 6.34 mM), bicarbonate (Km 10.5 mM) and ATP.2 Mg2+ (Km 0.93 mM). The optimum pH of the enzyme activity was 7.4-7.8. The Phycomyces carbamoyl-phosphate synthase showed a transition temperature at 38.5 degrees C. It was completely indifferent to ornithine, cysteine, glycine, IMP, dithiothreitol, glycerol, UMP, UDP and UTP. The enzyme was inhibited by reaction with 5 mM N-ethylmaleimide.  相似文献   

8.
Membrane-bound 5'-nucleotidase from Vibrio parahaemolyticus was solubilized and purified using a nonionic detergent, heptyl-beta-D-thioglucoside, and was characterized. This enzyme required Mg2+ for activity, maximum activity being observed at 5 and 20 mM Mg2+ with AMP and ATP, respectively, as substrates. Of the divalent cations tested, Mn2+ and Co2+ were able to replace Mg2+ partially, whereas Ca2+ was ineffective. Zinc strongly inhibited the enzyme activity and Ni2+ caused partial inhibition. This enzyme required Cl- for activity, the optimal concentration being 20 mM or more. The order of effectiveness of anions was Cl- greater than Br- greater than I- approximately NO3-. Sulfate and acetate were ineffective. The optimal pH was 8.0. The activity of the purified enzyme was stimulated by the addition of lipid to the assay mixture. This enzyme hydrolyzed all 5'-nucleotides tested, but did not hydrolyze 3'-nucleotides or ribose 5-phosphate. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the enzyme appeared to be a single polypeptide, with a molecular weight of 72 kDa.  相似文献   

9.
3-Hexulosephosphate synthase, the first enzyme of the ribulose monophosphate cycle, was purified 15-fold from methanol-grown Methylomonas M 15. The purification procedure involved chromatography on DEAE-cellulose, Sephadex G-75, and DEAE-Sephadex A-50. The purified enzyme was more than 95% pure as judged by analytical polyacrylamide gel electrophoresis. The molecular weight was calculated to be 43000 from sedimentation equilibrium experiments. Electrophoresis in sodium dodecylsulfate gels gave a single band corresponding to a molecular weight of 22000. The enzyme catalyzes specifically the condensation formaldehyde with ribulose 5-phosphate to yield D-arabino-3-hexulose 6-phosphate. The Km values were found to be 1.1 mM for formaldehyde and 1.6 mM for ribulose 5-phosphate. A bivalent cation is essential for activity and stability of the enzyme, Mg2+ and Mn2+ serve best for this purpose. The optimum of pH for enzyme activity is 7.5--8.0.  相似文献   

10.
CTP-phosphatidic acid cytidyltransferase catalyzes the formation of CDP-diglyceride from CTP and phosphatidic acid. The enzyme was solubilized from crude mitochondrial membrane by treatment with digitonin and was further purified by chromatography on DEAE-Sephadex, quaternary aminoethyl (QAE) Sephadex, and Sepharose 6B columns. At this stage the enzyme, enriched 550-fold over crude cell homogenate, still remains associated with phospholipid and has an estimated approximate molecular weight of 400,000 on the basis of gel filtration chromatography. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the 550-fold enriched enzyme yielded two major protein bands having molecular weights of 45,000 and 19,000. The enzyme exhibits an absolute dependence on Triton X-100, a sharp Mg2+ dependence with an optimum at 20 mM, and a pH optimum of 6.5 for activity. The product of the CTP-phosphatidic acid cytidyl-transferase reaction has been isolated and identified as CDP-diglyceride, both for the crude enzyme preparation as well as for the 550-fold enriched enzyme. CTP-phosphatidic acid cytidyltransferase is capable of catalyzing the reverse reaction in the presence of pyrophosphate, utilizing CDP-diglyceride as substrate. The product of the reverse reaction was identified as CTP. Kinetic analysis of the behavior of CTP-phosphatidic acid cytidyltransferase was performed at three different stages of its purification. Initial analysis of the data yielded biphasic behavior in double reciprocal plots with respect to both substrates. Hill plots of the data indicated the presence of negative cooperativity. A detailed analysis of the kinetic behavior was performed on the enzyme purified 550-fold. The data suggest a mechanism involving two distinct cycles of catalysis, responsive to homotropic modification, with different affinities for both substrates. Further analysis of the kinetic behavior in the presence of inhibitors (dCTP and PPi) yielded a reaction order for the entrance of substrates and departure of products from the reaction cycles. The high affinity site catalyzes the reaction via a double displacement mechanism and is the predominant form at low concentrations of substrates. At high concentrations of substrates the low affinity site starts contributing significantly to the reaction velocity with an ordered single displacement mechanism. In each case CTP is the first substrate to attach and PPi is the first product released.  相似文献   

11.
1. On subcellular fractionation of rat brain homogenate, polyphosphoinositide phosphomonoesterase activity was greater in the cytosol than the membranous fractions. 2. The enzyme was purified from the cytosol by column chromatography on DEAE-cellulose, calcium phosphate gel and Sephadex G-100. 3. The final preparation of the enzyme showed a 430-fold purification over the whole homogenate and appeared to be homogeneous since it gave a single band on sodium dodecyl sulphate-polyacrylamide gel electrophoresis and on isoelectric focusing. The enzyme has a relatively low molecular weight and an isoelectric point of 6.8. 4. The phosphatase showed a high affinity for triphosphoinositide. Without added Mg2+, the Km was 25 muM and V was 33 mumol Pi released/min/mg protein. 5. The enzyme hydrolysed diphosphoinositide at a slower rate than triphosphoinositide. In the presence of 10 mM Mg2+, the Km values for triphosphoinositide and diphosphoinositide were 5 muM and 25 muM respectively and V was the same for each substrate. 6. Both Mg2+ and Ca2+ activated the enzyme. While Ca2+ produced maximum activation at 100 muM, a much higher concentration of Mg2+ (10 mM) was required to elicit comparable activation. The enzyme did not show an absolute requirement for Mg2+ or Ca2+ as it exhibited low activity in the presence of 0.5 mM EDTA or EGTA. 7. The phosphatase showed maximum activity between 7.4 and 7.6. A drop in pH to 7.0 activated it almost completely, whereas an increase in pH to 8.0 halved the activity. 7.0 activated it almost completely, whereas an increase in pH to 8.0 halved the activity.  相似文献   

12.
Platelets, and a variety of other cells, rapidly hydrolyze the phosphoinositides in response to stimulation by agonists. One of the products of hydrolysis of phosphatidylinositol 4,5-diphosphate is inositol 1,4,5-trisphosphate, which recently has been suggested to mediate intracellular Ca2+ mobilization. We have found that human platelets contain an enzyme that degrades inositol 1,4,5-trisphosphate. We have isolated this soluble enzyme and find that it hydrolyzes the 5-phosphate of inositol 1,4,5-trisphosphate (Km = 30 microM, Vmax = 5.3 microM/min/mg of protein). The products of the reaction are inositol 1,4-diphosphate and phosphate. The apparent molecular weight of the enzyme is 38,000 as determined both by gel filtration and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence and absence of 2-mercaptoethanol. This enzyme is specific for inositol 1,4,5-trisphosphate. Other water soluble inositol phosphates as well as phosphorylated sugars are not hydrolyzed, while the only inositol containing phospholipid hydrolyzed is phosphatidylinositol 4,5-diphosphate at a rate less than 1% that for inositol 4,5-trisphosphate. The inositol 1,4,5-trisphosphate 5-phosphomonoesterase requires Mg2+ for activity and is inhibited by Ca2+, Ki = 70 microM. Li+, up to 40 mM, has no effect on enzyme activity. The duration and magnitude of any inositol 1,4,5-trisphosphate response in stimulated platelets may be determined by the activity of this enzyme.  相似文献   

13.
An enzyme catalysing the O-methylation of isobutyraldoxime by S-adenosyl-L-methionine was isolated from Pseudomonas sp. N.C.I.B. 11652. The enzyme was purified 220-fold by DEAE-cellulose chromatography, (NH4)2SO4 fractionation, gel filtration on Sephadex G-100 and chromatography on calcium phosphate gel. Homogeneity of the enzyme preparation was confirmed by isoelectric focusing on polyacrylamide gel and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The enzyme showed a narrow pH optimum at 10.25, required thiol-protecting agents for activity and was rapidly denatured at temperatures above 35 degrees C. The Km values for isobutyraldoxime and S-adenosyl-L-methionine were respectively 0.24 mM and 0.15 mM. Studies on substrate specificity indicated that attack was mainly restricted to oximes of C4-C6 aldehydes, with preference being shown for those with branching in the 2- or 3-position. Ketoximes were not substrates for the enzyme. Gel filtration on Sephadex G-100 gave an Mr of 84 000 for the intact enzyme, and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis indicated an Mr of 37 500, suggesting the presence of two subunits in the intact enzyme. S-Adenosylhomocysteine was a powerful competitive inhibitor of S-adenosylmethionine, with a Ki of 0.027 mM. The enzyme was also susceptible to inhibition by thiol-blocking reagents and heavy-metal ions. Mg2+ was not required for maximum activity.  相似文献   

14.
A polynucleotide kinase, which catalyzes the phosphorylation of 5'-hydroxyl ends of deoxyribonucleic acid in the presence of adenosine triphosphate, has been purified 260-fold with a yield of 14% from 0.15 M NaCl extracts of rat liver nuclei. The purified enzyme has a pH optimum of 5.5. The enzyme is reversible inhibited by p-chloromercuribenzoate. The S0.5 value (ligand concentration required for a half-maximal activity) for ATP is 2.5 muM. A bivalent cation is essential for the reaction and S0.5 values for Mg2+, Ca2+ and Mn2+ are 3.3 mM, 4 mM and 0.05 mM respectively. Pyrophosphate remarkable inhibits the activity with I0.5 value (ligand concentration required for a half-maximal inhibition) of 0.2 mM, and sulfate, with I0.5 of 0.5 mM, whereas phosphate weakly inhibits the activity with I0.5 of about 20 mM. An apparent molecular weight of the purified enzyme is estimated to be 8 X 10(4) by gel filtration on a column of Sephadex G-150, and the Stokes radius of the enzyme molecule is shown to be about 0.36 nm. Sucrose density gradient centrifugation reveals that the enzyme has a sedimentation coefficient of about 4.4 S.  相似文献   

15.
A Mg2+-dependent phosphatase has been purified to apparent homogeneity from turkey gizzard smooth muscle. The enzyme has a Mr = 43,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 44,500 as determined by sedimentation equilibrium centrifugation under nondenaturing conditions. Using polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate all of the phosphatase activity was found to migrate as a single band, subsequently shown to have an Mr = 43,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is inactive in the absence of Mg2+ and maximum activity is reached at a free concentration of 12 mM Mg2+. Mn2+ can replace Mg2+, but the activity is only about one-fifth of that found with 12 mM Mg2+. NaF and the nucleotides ATP, ADP, and AMP inhibit phosphatase activity. This inhibition appears to be independent of their ability to bind Mg2+. The phosphatase purified from turkey smooth muscle appears to be identical with that purified from canine heart (Binstock, J. F., and Li, H. C. (1979) Biochem. Biophys. Res. Commun. 87, 1226-1234) and rat liver (Hiraga, A., Kikuchi, K., Tamura, S., and Tsuiki, S. (1981) Eur. J. Biochem. 119, 503-510).  相似文献   

16.
The membrane ATPase (EC 3.6.1.3) of Bacillus subtilis can be solubilized by a shock-wash process. Two procedures for purifying the solubilized enzyme are reported. A protease inhibitor, phenylmethane sulfonylfluoride, was introduced in the solubilization and purification step. The resultant ATPase purified by density gradient centrifugation has a molecular weight of 315 000, an s20,w of 13,4 and an amino acid composition very similar to bacterial ATPases already studied. After exposure to polyacrylamide gel electrophoresis in presence of sodium dodecyl sulphate (SDS), or 8 M urea or SDS-urea, the purified ATPase can be dissociated in two non-identical subunits of molecular weights 59 000 (alpha) and 57 000 (beta) with different charges. Kinetic studies showed that Ca2+ or Zn2+ are required for ATPase activity, although Mg2+ was uneffective. At optimal Ca2+ concentration, the Mg2+ has an inhibitory effect. The Km for ATP is 1.3 mM. Inhibitors of the oxydative phosphorylation, of the mitochondrial ATPase and of the (Na+ + K+)-ATPase are studied.  相似文献   

17.
Culture medium of exponentially growing Bordetella pertussis (strain 114) contains significant quantities of soluble (100,000 X g for 1 h) adenylate cyclase. The enzyme was purified by chromatography on diethylaminoethyl-cellulose and Sephadex G-200. The purest material yielded a single band on sodium dodecyl sulfate-disc gel electrophoresis. It is heat labile, has a temperature optimum of 30 degrees C, a pH optimum of pH 7 to 8, and a Km for adenosine 5'-triphosphate of 0.4 mM, and requires Mg2+ for maximum activity. The molecular weight, by sodium dodecyl sulfate-disc gel electrophoresis and sucrose density gradient, is approximately 70,000. The enzyme is markedly inhibited by fluoride and weakly inhibited by monovalent salts, but its activity is not altered by alpha-keto acids of nonsubstrate nucleoside triphosphates. Thus, but its presence in the culture supernatant, its smaller molecular weight, and its insensitivity to alpha-keto acids and nucleotides, this enzyme differs from the bacterial adenylate cyclases previously described.  相似文献   

18.
An inorganic pyrophosphatase [EC 3.6.1.1] was isolated from Thiobacillus thiooxidans and purified 975-fold to a state of apparent homogeneity. The enzyme catalyzed the hydrolysis of inorganic pyrophosphate and no activity was found with a variety of other phosphate esters. The cation Mg2+ was required for maximum activity; Co2+ and Mn2+ supported 25 per cent and 10.6 per cent of the activity with Mg2+, respectively. The pH optimum was 8.8. The molecular weight was estimated to be 88,000 by gel filtration and SDS gel electrophoresis, and the enzyme consisted of four identical subunits. The isoelectric point was found to be 5.05. The enzyme was exceptionally heat-stable in the presence of 0.01 M Mg2+.  相似文献   

19.
D-Ribose isomerase, which catalyzes the conversion of D-ribose to D-ribulose, was purified from extracts of Mycobacterium smegmatis grown on D-ribose. The purified enzyme crystalized as hexagonal plates from a 44% solution of ammonium sulfate. The enzyme was homogenous by disc gel electrophoresis and ultracentrifugal analysis. The molecular weight of the enzyme was between 145,000 and 174,000 by sedimentation equilibrium analysis. Its sedimentation constant of 8.7 S indicates it is globular. On the basis of sodium dodecyl sulfate gel electrophoresis in the presence of Mn2+, the enzyme is probably composed of 4 identical subunits of molecular weight about 42,000 to 44,000. The enzyme was specific for sugars having the same configuration as D-ribose at carbon atoms 1 to 3. Thus, the enzyme could also utilize L-lyxose, D-allose, and L-rhamnose as substrates. The Km for D-ribose was 4 mM and for L-lyxose it was 5.3 mM. The enzyme required a divalent cation for activity with optimum activity being shown with Mn2+. the Km for the various cations was as follows: Mn2+, 1 times 10(-7) M, Co2+, 4 times 10(-7) M, and Mg2+, 1.8 times 10(-5) M. The pH optimum for the enzyme was 7.5 to 8.5. Polyols did not inhibit the enzyme to any great extent. The product of the reaction was identified as D-ribulose by thin layer chromatography and by preparation of the O-nitrophenylhydrazone derivative.  相似文献   

20.
D-Ribulose-1,5-bisphosphate (RuBP) carboxylase has been purified from glutamate-CO2-S2O3(2)-grown Thiobacillus intermedius by pelleting the enzyme from the high-speed supernatant and by intermediary crystallization followed by sedimentation into a discontinuous 0.2 to 0.8 M sucrose gradient. The enzyme was homogeneous by the criteria of electrophoresis on polyacrylamide gels of several acrylamide concentrations, sedimentation velocity and equilibrium measurements, and electron microscopic observations of negatively stained preparations. The molecular weights of the enzyme determined by sedimentation equilibrium and light-scattering measurements averaged 462,500 +/- 13,000. The enzyme consisted of closely similar or identical polypeptide chains of a molecular weight of 54,500 +/- 5,450 determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The S(0)20,w of the enzyme was 18.07S +/- 0.22. Electron microscopic examination suggested that the octomeric enzyme (inferred from the molecular measurements mentioned) had a cubical structure. The specific activity of the enzyme was 2.76 mumol of RuBP-dependent CO2 fixed/min per mg of protein (at pH 8 and 30 C), and the turnover number in terms of moles of CO2 fixed per mole of catalytic site per second was 2.6. The enzyme was stable for 3 months at -20 C and at least 4 weeks at 0 C. The apparent Km for CO2 was 0.75 mM, and Km values for RuBP and Mg2+ were 0.076 and 3.6 mM, respectively. Dialyzed enzyme could be fully reactivated by the addition of 20 mM Mg2+ and partially reactivated by 20 mM Co2+, but Cd2+, Mn2+, Ca2+, and Zn2+ had no effect. The compound 6-phosphogluconate was a linear competitive inhibitor with respect to RuBP when it had been preincubated with enzyme, Mg2+, and HCO3-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号