首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Understanding the dynamics of metapopulations close to extinction is of vital importance for management. Levins-like models, in which local patches are treated as either occupied or empty, have been used extensively to explore the extinction dynamics of metapopulations, but they ignore the important role of local population dynamics. In this paper, we consider a stochastic metapopulation model where local populations follow a stochastic, density-dependent dynamics (the Ricker model), and use this framework to investigate the behaviour of the metapopulation on the brink of extinction. We determine under which circumstances the metapopulation follows a time evolution consistent with Levins’ dynamics. We derive analytical expressions for the colonisation and extinction rates (c and e) in Levins-type models in terms of reproduction, survival and dispersal parameters of the local populations, providing an avenue to parameterising Levins-like models from the type of information on local demography that is available for a number of species. To facilitate applying our results, we provide a numerical algorithm for computing c and e.  相似文献   

2.
Alternative causes for range limits: a metapopulation perspective   总被引:1,自引:1,他引:0  
All species have limited distributions at broad geographical scales. At local scales, the distribution of many species is influenced by the interplay of the three factors of habitat availability, local extinctions and colonization dynamics. We use the standard Levins metapopulation model to illustrate how gradients in these three factors can generate species' range limits. We suggest that the three routes to range limits have radically different evolutionary implications. Because the Levins model makes simplifying assumptions about the spatial coupling of local populations, we present numerical studies of spatially explicit metapopulation models that complement the analytical model. The three routes to range limits give rise to distinct spatiotemporal patterns. Range limits in one species can also arise because of environmental gradients impinging upon other species. We briefly discuss a predator–prey example, which illustrates indirect routes to range limits in a metacommunity context.  相似文献   

3.
The Levins model is a simple and widely used metapopulation model that describes temporal changes in the regional abundance of a single species and has increasingly been applied to metacommunity contexts including multiple species. Although a fundamental assumption commonly made when using the model is that species randomly move between habitat patches, most organisms exhibit habitat preference in reality. A method of incorporating habitat preference (directed dispersal) into the Levins metapopulation model was developed in a previous study. In the current study, we extended the approach to explore two‐species metacommunity dynamics (i.e. competition and predation) mediated by habitat preference. Our results theoretically revealed that coexistence of competing metapopulations requires conspecific aggregation and heterospecific segregation whereas the conspecific segregation of prey and effective avoidance of unsuitable prey‐free patches are crucial for persistence of predator metapopulations. In addition, we qualitatively and quantitatively demonstrated the effect of habitat preference on the outcomes of interspecific interactions. The present study opens a new research avenue in metacommunity ecology in complex nature and contributes to improved landscape management for the conservation of species (e.g. territorial and group‐living animals) and biodiversity.  相似文献   

4.
The genetic effective size of a metapopulation   总被引:8,自引:0,他引:8  
The structure of a population over time, space and categories of social and sexual role governs its ability to retain genetic variation in the face of drift. A metapopulation is an extreme form of spatial structure in which loosely coupled local populations 'turnover', that is, suffer extinction followed by recolonization from elsewhere within the metapopulation. These local populations turn over with a characteristic half-life. Based on a simulation model that incorporates both realistic features of population ecology and population genetics, the ability of such a metapopulation to retain genetic variation, which may be defined as proportional to its so-called effective population size, denoted Ne(meta), can be one to two orders of magnitude lower than the maximum total number of individuals in the system. Ne(meta) depends on the persistence time associated with longevity of local populations (the turnover half-life), the average number of local populations extant in the metapopulation and the gene flow between local populations. Habitat fragmentation, which can create a metapopulation from a formerly continuously distributed species, may have unappreciated large genetic consequences for species impacted by human development.  相似文献   

5.
In this paper three extensions of the Levins metapopulation model are discussed: (1) It is shown that the Levins model is still valid if patches contain local populations of different sizes with different colonization and extinction rates. (2) A more mechanistic formulation of the rescue effect is presented. (3) The addition of preference of dispersers for occupied or empty patches and its consequences for conservation strategies are studied.  相似文献   

6.
Transient time in population dynamics refers to the time it takes for a population to return to population-dynamic equilibrium (or close to it) following a perturbation in the environment or in population size. Depending on the direction of the perturbation, transient time may either denote the time until extinction (or until the population has decreased to a lower equilibrium level), or the recovery time needed to reach a higher equilibrium level. In the metapopulation context, the length of the transient time is set by the interplay between population dynamics and landscape structure. Assuming a spatially realistic metapopulation model, we show that transient time is a product of four factors: the strength of the perturbation, the ratio between the metapopulation capacity of the landscape and a threshold value determined by the properties of the species, and the characteristic turnover rate of the species, adjusted by a factor depending on the structure of the habitat patch network. Transient time is longest following a large perturbation, for a species which is close to the threshold for persistence, for a species with slow turnover, and in a habitat patch network consisting of only a few dynamically important patches. We demonstrate that the essential behaviour of the n-dimensional spatially realistic Levins model is captured by the one-dimensional Levins model with appropriate parameter transformations.  相似文献   

7.
Although the Levins model has made important theoretical contributions to ecology, its empirical support has not been conclusively established yet. We used published colonization and extinction data from 55 metapopulations to calculate their Levins equilibrium patch occupancy. Over all species, there were not significant differences between the observed patch occupancies and the Levins model's estimates. However, invertebrates and vertebrate species with some degree of threat had patch occupancies larger than the model's expectancies. A temporal sampling effect was found for invertebrate species, with departure from the Levins model decreasing as the length of the study period increased. There was a negative relationship between patch occupancy and extinction probability, as expected under the “rescue effect”. The high rates at which invertebrates produce propagules could lead the Levins model to underestimate patch occupancy, whereas the observed patch occupancy of threatened species may be a transient phenomenon that results from extinction probabilities that increase over time. Therefore, the Levins model captures the metapopulation dynamics of a wide range of species in a simple formula whereas its equilibrium point can be used as evidence of metapopulation stability. Although mechanistic models provide more precise and accurate metapopulation predictions, they also can sacrifice the generality and simplicity of the Levins model.  相似文献   

8.
In this paper, we investigate a spatially explicit metapopulation model with Allee effects. We refer to the patch occupancy model introduced by Levins (Bull Entomol Soc Am 15:237–240, 1969) as a spatially implicit metapopulation model, i.e., each local patch is either occupied or vacant and a vacant patch can be recolonized by a randomly chosen occupied patch from anywhere in the metapopulation. When we transform the model into a spatially explicit one by using a lattice model, the obtained model becomes theoretically equivalent to a “lattice logistic model” or a “basic contact process”. One of the most popular or standard metapopulation models with Allee effects, developed by Amarasekare (Am Nat 152:298–302, 1998), supposes that those effects are introduced formally by means of a logistic equation. However, it is easier to understand the ecological meaning of associating Allee effects with this model if we suppose that only the logistic colonization term directly suffers from Allee effects. The resulting model is also well defined, and therefore we can naturally examine it by Monte Carlo simulation and by doublet and triplet decoupling approximation. We then obtain the following specific features of one-dimensional lattice space: (1) the metapopulation as a whole does not have an Allee threshold for initial population size even when each local population follows the Allee effects; and (2) a metapopulation goes extinct when the extinction rate of a local population is lower than that in the spatially implicit model. The real ecological metapopulation lies between two extremes: completely mixing interactions between patches on the one hand and, on the other, nearest neighboring interactions with only two nearest neighbors. Thus, it is important to identify the metapopulation structure when we consider the problems of invasion species such as establishment or the speed of expansion.  相似文献   

9.
Allee-like effects in metapopulation dynamics   总被引:4,自引:0,他引:4  
The existences of the Allee effect at the local population level and of the Allee-like effect at the metapopulation level are important for both ecology and conservation. Although there have been a great many papers on the Allee effect, they have mainly referred to only local populations and have not dealt with the relationship between the two. In this paper, we begin with local population dynamics and then construct a model including both local population and metapopulation dynamics. Then we simulate with computer at these two levels. The results indicate that the Allee-like effect in a metapopulation may emerge from the imposed Allee effect at the local population level. This threshold fraction of occupied patches below which the metapopulation goes extinct is seriously affected by the per capita migration rate, the survival rate during migration and the initial population size on the occupied patches. We also find that severe demographic stochasticity may compound the metapopulation extinction risk posed by the Allee effect. These conclusions are helpful for nature conservation, especially for the preservation of rare species.  相似文献   

10.
We model metapopulation dynamics in finite networks of discrete habitat patches with given areas and spatial locations. We define and analyze two simple and ecologically intuitive measures of the capacity of the habitat patch network to support a viable metapopulation. Metapopulation persistence capacity lambda(M) defines the threshold condition for long-term metapopulation persistence as lambda(M)>delta, where delta is defined by the extinction and colonization rate parameters of the focal species. Metapopulation invasion capacity lambda(I) sets the condition for successful invasion of an empty network from one small local population as lambda(I)>delta. The metapopulation capacities lambda(M) and lambda(I) are defined as the leading eigenvalue or a comparable quantity of an appropriate "landscape" matrix. Based on these definitions, we present a classification of a very general class of deterministic, continuous-time and discrete-time metapopulation models. Two specific models are analyzed in greater detail: a spatially realistic version of the continuous-time Levins model and the discrete-time incidence function model with propagule size-dependent colonization rate and a rescue effect. In both models we assume that the extinction rate increases with decreasing patch area and that the colonization rate increases with patch connectivity. In the spatially realistic Levins model, the two types of metapopulation capacities coincide, whereas the incidence function model possesses a strong Allee effect characterized by lambda(I)=0. For these two models, we show that the metapopulation capacities can be considered as simple sums of contributions from individual habitat patches, given by the elements of the leading eigenvector or comparable quantities. We may therefore assess the significance of particular habitat patches, including new patches that might be added to the network, for the metapopulation capacities of the network as a whole. We derive useful approximations for both the threshold conditions and the equilibrium states in the two models. The metapopulation capacities and the measures of the dynamic significance of particular patches can be calculated for real patch networks for applications in metapopulation ecology, landscape ecology, and conservation biology.  相似文献   

11.
In this paper, we examine, for small metapopulations, the stochastic analog of the classical Levins metapopulation model. We study its basic model output, the expected time to metapopulation extinction, for systems which are brought out of equilibrium by imposing sudden changes in patch number and the colonization and extinction parameters. We find that the expected metapopulation extinction time shows different behavior from the relaxation time of the original, deterministic, Levins model. This relaxation time is therefore limited in value for predicting the behavior of the stochastic model. However, predictions about the extinction time for deterministically unviable cases remain qualitatively the same. Our results further suggest that, if we want to counteract the effects of habitat loss or increased dispersal resistance, the optimal conservation strategy is not to restore the original situation, that is, to create habitat or decrease resistance against dispersal. As long as the costs for different management options are not too dissimilar, it is better to improve the quality of the remaining habitat in order to decrease the local extinction rate.  相似文献   

12.
Mark P. Johnson 《Oikos》2000,88(1):67-74
The classical view of metapopulations relates the regional abundance of a species to the balance between the extinction and colonization dynamics of identical local populations. Species in successional landscapes may represent the most appropriate examples of classical metapopulations. However, Levins‐type metapopulation models do not explicitly separate population loss due to successional habitat change from other causes of extinction. A further complication is that the chance of population loss due to successional habitat change may be related to the age of a patch. I developed simple patch occupancy models to include succession and included consideration of patch age structure to address two related questions: what are the implications of changes in patch demographic rates and when is a move to a structured patch occupancy model justified? Age‐related variation in patch demography could increase or decrease the equilibrium fraction of the available habitat occupied by a species when compared to the predictions of an unstructured model. Metapopulation persistence was enhanced when the age class of patches with the highest species occupancy suffered relatively low losses to habitat succession. Conversely, when the age class of patches with the highest species occupancy also had relatively high successional loss rates, extinction thresholds were higher that would be predicted by a simple unstructured model. Hence age‐related variation in patch successional rate introduces biases into the predictions of simple unstructured models. Such biases can be detected from field surveys of the fraction of occupied and unoccupied patches in each age class. Where a bias is demonstrated, unstructured models will not be adequate for making predictions about the effects of changing parameters on metapopulation size. Thinking in successional terms emphasizes how landscapes might be managed to enhance or reduce the patch occupancy by any particular metapopulation  相似文献   

13.
Simple models in theoretical ecology have a long-standing history of being used to understand how specific processes influence population dynamics as well as providing a foundation for future endeavors. The Levins model is the seminal example of this for continuous-time metapopulation dynamics. However, many natural populations have a distinct separation between processes and data is not collected continuously leading to the need for using a discrete-time model. Our goal is to develop a simple discrete-time metapopulation model of patch occupancy using difference equations. In our formulation, we consider the two fundamental processes of colonization and extinction that will be treated as sequential events and will only consider patch occupancy. To achieve this, we use a composition of two functions where one will reflect the extinction process and the other for the colonization process. Under some mild assumptions, we are able determine the dynamic behavior of the metapopulation. In addition, we provide numerous examples for the functions used to emulate the colonization and extinction processes. Our results illustrate that the dynamics of the model are tied to properties such as convexity and monotonicity of the colonization and extinction functions. In particular, if the model is non-monotone, then complex dynamics can arise such as cyclic and even chaotic behavior. Overall, our approach shows how certain properties of the colonization and extinction functions can influence metapopulation dynamics.  相似文献   

14.
局域种群的Allee效应和集合种群的同步性   总被引:3,自引:0,他引:3  
从包含Allee效应的局域种群出发,建立了耦合映像格子模型,即集合种群模型.通过分析和计算机模拟表明:(1)当局域种群受到Allee效应强度较大时,集合种群同步灭绝;(2)而当Allee效应强度相对较弱时,通过稳定局域种群动态(减少混沌)使得集合种群发生同步波动,而这种同步波动能够增加集合种群的灭绝风险;(3)斑块间的连接程度对集合种群同步波动的发生有很大的影响,适当的破碎化有利于集合种群的续存.全局迁移和Allee效应结合起来增加了集合种群同步波动的可能,从而增加集合种群的灭绝风险.这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义.  相似文献   

15.
The metapopulation framework considers that the spatiotemporal distribution of organisms results from a balance between the colonization and extinction of populations in a suitable and discrete habitat network. Recent spatially realistic metapopulation models have allowed patch dynamics to be investigated in natural populations but such models have rarely been applied to plants. Using a simple urban fragmented population system in which favourable habitat can be easily mapped, we studied patch dynamics in the annual plant Crepis sancta (Asteraceae). Using stochastic patch occupancy models (SPOMs) and multi‐year occupancy data we dissected extinction and colonization patterns in our system. Overall, our data were consistent with two distinct metapopulation scenarios. A metapopulation (sensu stricto) dynamic in which colonization occurs over a short distance and extinction is lowered by nearby occupied patches (rescue effect) was found in a set of patches close to the city centre, while a propagule rain model in which colonization occurs from a large external population was most consistent with data from other networks. Overall, the study highlights the importance of external seed sources in urban patch dynamics. Our analysis emphasizes the fact that plant distributions are governed not only by habitat properties but also by the intrinsic properties of colonization and dispersal of species. The metapopulation approach provides a valuable tool for understanding how colonization and extinction shape occupancy patterns in highly fragmented plant populations. Finally, this study points to the potential utility of more complex plant metapopulation models than traditionally used for analysing ecological and evolutionary processes in natural metapopulations.  相似文献   

16.
Gösta Nachman 《Oikos》2001,94(1):72-88
Predators and prey are usually heterogeneously distributed in space so that the ability of the predators to respond to the distribution of their prey may have a profound influence on the stability and persistence of a predator‐prey system. A special type of dynamics is “hide‐and‐seek” characterized by a high turnover rate of local populations of prey and predators, because once the predators have found a patch of prey they quickly overexploit it, whereupon the starving predators either should move to better places or die. Continued persistence of prey and predators thus hinges on a long‐term balance between local extinctions and founding of new subpopulations. The colonization rate depends on the rate of emigration from occupied patches and the likelihood of successfully arriving at a suitable new patch, while extinction rate depends on the local population dynamics. Since extinctions and colonizations are both discrete probabilistic events, these phenomena are most adequately modeled by means of a stochastic model. In order to demonstrate the qualitative differences between a deterministic and stochastic approach to population dynamics, a spatially explicit tritrophic predator‐prey model is developed in a deterministic and a stochastic version. The model is parameterized using data for the two‐spotted spider mite (Tetranychus urticae) and the phytoseiid mite predator Phytoseiulus persimilis inhabiting greenhouse cucumbers.
Simulations show that the deterministic and stochastic approaches yield different results. The deterministic version predicts that the populations will exhibit violent fluctuations, implying that the system is fundamentally unstable. In contrast, the stochastic version predicts that the two species will be able to coexist in spite of frequent local extinctions of both species, provided the system consists of a sufficiently large number of local populations. This finding is in agreement with experimental results. It is therefore concluded that demographic stochasticity in combination with dispersal is capable of producing and maintaining sufficient asynchrony between local populations to ensure long‐term regional (metapopulation) persistence.  相似文献   

17.
A recent study [Harding and McNamara, 2002. A unifying framework for metapopulation dynamics. Am. Nat. 160, 173-185] presented a unifying framework for the classic Levins metapopulation model by incorporating several realistic biological processes, such as the Allee effect, the Rescue effect and the Anti-rescue effect, via appropriate modifications of the two basic functions of colonization and extinction rates. Here we embed these model extensions on a spatially explicit framework. We consider population dynamics on a regular grid, each site of which represents a patch that is either occupied or empty, and with spatial coupling by neighborhood dispersal. While broad qualitative similarities exist between the spatially explicit models and their spatially implicit (mean-field) counterparts, there are also important differences that result from the details of local processes. Because of localized dispersal, spatial correlation develops among the dynamics of neighboring populations that decays with distance between patches. The extent of this correlation at equilibrium differs among the metapopulation types, depending on which processes prevail in the colonization and extinction dynamics. These differences among dynamical processes become manifest in the spatial pattern and distribution of “clusters” of occupied patches. Moreover, metapopulation dynamics along a smooth gradient of habitat availability show significant differences in the spatial pattern at the range limit. The relevance of these results to the dynamics of disease spread in metapopulations is discussed.  相似文献   

18.
Metapopulation viability depends upon a balance of extinction and colonization of local habitats by a species. Mechanisms that can affect this balance include physical characteristics related to natural processes (e.g. succession) as well as anthropogenic actions. Plant restorations can help to produce favorable metapopulation dynamics and consequently increase viability; however, to date no studies confirm this is true. Population viability analysis (PVA) allows for the use of empirical data to generate theoretical future projections in the form of median time to extinction and probability of extinction. In turn, PVAs can inform and aid the development of conservation, recovery, and management plans. Pitcher's thistle (Cirsium pitcheri) is a dune endemic that exhibited metapopulation dynamics. We projected viability of three natural and two restored populations with demographic data spanning 15–23 years to determine the degree the addition of reintroduced population affects metapopulation viability. The models were validated by comparing observed and projected abundances and adjusting parameters associated with demographic and environmental stochasticity to improve model performance. Our chosen model correctly predicted yearly population abundance for 60% of the population‐years. Using that model, 50‐year projections showed that the addition of reintroductions increases metapopulation viability. The reintroduction that simulated population performance in early‐successional habitats had the maximum benefit. In situ enhancements of existing populations proved to be equally effective. This study shows that restorations can facilitate and improve metapopulation viability of species dependent on metapopulation dynamics for survival with long‐term persistence of C. pitcheri in Indiana likely to depend on continued active management.  相似文献   

19.
Single-species metapopulation dynamics: concepts, models and observations   总被引:24,自引:0,他引:24  
This paper outlines a conceptual and theoretical framework for single-species metapopulation dynamics based on the Levins model and its variants. The significance of the following factors to metapopulation dynamics are explored: evolutionary changes in colonization ability; habitat patch size and isolation; compensatory effects between colonization and extinction rates; the effect of immigration on local dynamics (the rescue effect); and heterogeneity among habitat patches. The rescue effect may lead to alternative stable equilibria in metapopulation dynamics. Heterogeneity among habitat patches may give rise to a bimodal equilibrium distribution of the fraction of patches occupied in an assemblage of species (the core-satellite distribution). A new model of incidence functions is described, which allows one to estimate species' colonization and extinction rates on islands colonized from mainland. Four distinct kinds of stochasticity affecting metapopulation dynamics are discussed with examples. The concluding section describes four possible scenarios of metapopulation extinction.  相似文献   

20.
We consider optimal strategies for harvesting a population that is composed of two local populations. The local populations are connected by the dispersal of juveniles, e.g. larvae, and together form a metapopulation. We model the metapopulation dynamics using coupled difference equations. Dynamic programming is used to determine policies for exploitation that are economically optimal. The metapopulation harvesting theory is applied to a hypothetical fishery and optimal strategies are compared to harvesting strategies that assume the metapopulation is composed either of single unconnected populations or of one well-mixed population. Local populations that have high per capita larval production should be more conservatively harvested than would be predicted using conventional theory. Recognizing the metapopulation structure of a stock and using the appropriate theory can significantly improve economic gains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号