首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Evolution of glucagon genes   总被引:1,自引:0,他引:1  
Statistical analyses of DNA sequences of the preproglucagon genes from bovine, human, hamster, and anglerfish suggest that a gene duplication creating two anglerfish genes (AF I and II) occurred about 160 Myr ago, long after the separation of fish and mammals. The analyses further suggest that the internal duplication producing the glucagon and glucagon-like peptide II (GLP-II) regions occurred about 1.2 billion years ago, which would indicate that the GLP-II region was present in the ancestral anglerfish sequence but was silenced or deleted before the gene duplication separating AF I and II. The glucagon-like peptide I (GLP-I) was derived from a duplication of the ancestral glucagon region about 800 Myr ago. The rate of synonymous substitution in these genes is approximately 4.3 x 10(-9) substitutions per year per synonymous site. The rate of nonsynonymous substitution in the signal peptide region is about 1.1 x 10(-9) substitutions per year per nonsynonymous site, a high rate comparable to that in the C-peptide region of preproinsulin. The rate of nonsynonymous substitution in the glicentin-related pancreatic polypeptide (GRPP) region is 0.63 x 10(-9) for the comparisons between mammalian species and 1.8 x 10(-9) for the comparisons between fish and mammals; the moderate rate in mammals suggests a physiological role for GRPP. The glucagon region is extremely conservative; no nonsynonymous substitution is observed in the mammalian genes, and a nonsynonymous rate of 0.18 x 10(-9) was obtained from the comparisons between fish and mammals. In the GLP-I region, the rate of nonsynonymous substitution was estimated to be 0.08 x 10(-9) for the comparisons between mammalian species and 0.30 x 10(- 9) for the comparisons between fish and mammals. In the GLP-II region, the rate was estimated to be 0.25 x 10(-9) for the comparisons between mammalian species. Thus, GLP-I and II are also very conservative, which suggests an important physiological role for these peptides.   相似文献   

2.
Molecular Evolution of the Plant R Regulatory Gene Family   总被引:8,自引:2,他引:6  
Anthocyanin pigmentation patterns in different plant species are controlled in part by members of the myc-like R regulatory gene family. We have examined the molecular evolution of this gene family in seven plant species. Three regions of the R protein show sequence conservation between monocot and dicot R genes. These regions encode the basic helix-loop-helix domain, as well as conserved N-terminal and C-terminal domains; mean replacement rates for these conserved regions are 1.02 X 10(-9) nonsynonymous nucleotide substitutions per site per year. More than one-half of the protein, however, is diverging rapidly, with nonsynonymous substitution rates of 4.08 X 10(-9) substitutions per site per year. Detailed analysis of R homologs within the grasses (Poaceae) confirm that these variable regions are indeed evolving faster than the flanking conserved domains. Both nucleotide substitutions and small insertion/deletions contribute to the diversification of the variable regions within these regulatory genes. These results demonstrate that large tracts of sequence in these regulatory loci are evolving at a fairly rapid rate.  相似文献   

3.
Molecular evolution of chloroplast DNA sequences   总被引:13,自引:1,他引:12  
Comparative data on the evolution of chloroplast genes are reviewed. The chloroplast genome has maintained a similar structural organization over most plant taxa so far examined. Comparisons of nucleotide sequence divergence among chloroplast genes reveals marked similarity across the plant kingdom and beyond to the cyanobacteria (blue-green algae). Estimates of rates of nucleotide substitution indicate a synonymous rate of 1.1 x 10(-9) substitutions per site per year. Noncoding regions also appear to be constrained in their evolution, although addition/deletion events are common. There have also been evolutionary changes in the distribution of introns in chloroplast encoded genes. Relative to mammalian mitochondrial DNA, the chloroplast genome evolves at a conservative rate.   相似文献   

4.
We screened two human genomic libraries and isolated 14 different clones, designated λG1 and EG1-EG13, homologous to human glyceraldehyde-3-phosphate dehydrogenase (GAPD) cDNA. Subcloning and sequencing these recombinant phages led us to classify them as five different pseudogenes (ψG1–ψG5). All these sequences show such features typical of processed pseudogenes as numerous mutations, insertions, and deletions. The identity of numerous mutated sites among these pseudogenes and the presence of two Alu sequences flanking both ends of ψG1 suggest that GAPD pseudogenes originated from a unique reverse transcribed mRNA followed by gene duplication. The rate of nucleotide substitutions per site per year for known GAPD functional genes is low both for the synonymous substitutions (1.87×10−9) and for the nonsynonymous substitutions (0.12¢10−9) and indicates that the GAPD cDNA sequence is well conserved not only at the amino acid level, but also at the nucleotide level. The rate of nucleotide substitutions per site per year for GAPD pseudogenes shows a higher value (5.9×10−9) and suggests that these pseudogenes do not have any functional role. This work was supported by grants from the Consiglio Nazionale delle Ricerche and the Ministero Pubblica Istruzione (Rome, Italy). Special acknowledgment is given to the “Progetto Finalizzato Ingegneria Genetica e Basi Molecolari delle Malattie Ereditarie.”  相似文献   

5.
Summary Nine different actin DNA sequences were isolated from the common potato,Solanum tuberosum, and the nucleotide sequence of five actin loci and of two allelic variants are presented. Unlike the wide variation in intron position among animal actin genes, the potato actin genes have three introns situated in the same positions as reported for all other angiosperm actin genes. Using a novel combination of analytical procedures (G-test and compatibility analysis), we could not find evidence of frequent large or small nonreciprocal exchanges of genetic material between the sequenced loci, although there were a few candidates. Resolution of such gene conversion events and the quantification of independence of gene evolution in multigene families is critical to the inference of phylogenetic relationships. Comparison with actin genes in other angiosperm species suggests that the actin multigene family can be divided into a number of subfamilies, evolved by descent rather than gene conversion, which are of possible functional origin, with one major subfamily diversification occurring before the divergence of monocots and dicots. The silent rate of nucleotide substitution was estimated to be similar to that suggested for a number of other plant nuclear genes, whereas the replacement rate was extremely slow, suggestive of selective constraints.  相似文献   

6.
A mouse genomic clone containing a lactate dehydrogenase-A (LDH-A) processed pseudogene and a B1 repetitive element was isolated, and a nucleotide sequence of approximately 3 kb was determined. The pseudogene and B1 element are flanked by perfect 13-bp repeats, and the B1 sequence starts at 14 nucleotides 3' to the presumptive polyadenylation signal of the pseudogene. The nucleotide sequences of the LDH-A genes and processed pseudogenes from mouse, rat, and human were compared, and a phylogenetic tree was constructed. The rate and pattern of nucleotide substitutions in the LDH-A pseudogenes are similar to previously reported results (Li et al. 1984). The average rate of nucleotide substitutions in the LDH-A pseudogenes is 4.3 X 10(- 9)/site/year. The substitutions of C----T and G----A are most frequent, and A----G substitutions are relatively high. The rate of synonymous substitutions in the LDH-A genes is 5.3 X 10(-9), which is not significantly higher than the average rate of 4.7 X 10(-9) for 35 mammalian genes. The rate of nonsynonymous substitutions in the LDH-A genes is 0.20 X 10(-9), which is considerably lower than the average rate of 0.88 X 10(-9) for 35 mammalian genes. Thus, the mammalian LDH-A gene appears to be highly conserved in evolution.   相似文献   

7.
E. N. Moriyama  T. Gojobori 《Genetics》1992,130(4):855-864
We compared the rates of synonymous (silent) substitution among various genes in a number of species of Drosophila. First, we found that even for a particular gene, the rate of synonymous substitution varied considerably with Drosophila lineages. Second, we showed a large variation in synonymous substitution rates among nuclear genes in Drosophila. These rates of synonymous substitution were correlated negatively with C content and positively with A content at the third codon positions. Nucleotide sequences were also compared between pseudogenes and their functional homologs. The C content of the pseudogenes was lower than that of the functional genes and the A content of the former was higher than that of the latter. Because the synonymous substitution for functional genes and the nucleotide substitution for pseudogenes are exempted from any selective constraint at the protein level, these observations could be explained by a biased pattern of mutation in the Drosophila nuclear genome. Such a bias in the mutation pattern may affect the molecular clock (local clock) of each nuclear gene of each species. Finally, we obtained the average rates of synonymous substitution for three gene groups in Drosophila; 11.0 x 10(-9), 17.5 x 10(-9) and 27.1 x 10(-9)/site/year.  相似文献   

8.
A new method is proposed for estimating the number of synonymous and nonsynonymous nucleotide substitutions between homologous genes. In this method, a nucleotide site is classified as nondegenerate, twofold degenerate, or fourfold degenerate, depending on how often nucleotide substitutions will result in amino acid replacement; nucleotide changes are classified as either transitional or transversional, and changes between codons are assumed to occur with different probabilities, which are determined by their relative frequencies among more than 3,000 changes in mammalian genes. The method is applied to a large number of mammalian genes. The rate of nonsynonymous substitution is extremely variable among genes; it ranges from 0.004 X 10(-9) (histone H4) to 2.80 X 10(-9) (interferon gamma), with a mean of 0.88 X 10(-9) substitutions per nonsynonymous site per year. The rate of synonymous substitution is also variable among genes; the highest rate is three to four times higher than the lowest one, with a mean of 4.7 X 10(-9) substitutions per synonymous site per year. The rate of nucleotide substitution is lowest at nondegenerate sites (the average being 0.94 X 10(-9), intermediate at twofold degenerate sites (2.26 X 10(-9)). and highest at fourfold degenerate sites (4.2 X 10(-9)). The implication of our results for the mechanisms of DNA evolution and that of the relative likelihood of codon interchanges in parsimonious phylogenetic reconstruction are discussed.  相似文献   

9.
10.
We have calibrated five different molecular clocks for circulating poliovirus based upon the rates of fixation of total substitutions (K(t)), synonymous substitutions (K(s)), synonymous transitions (A(s)), synonymous transversions (B(s)), and nonsynonymous substitutions (K(a)) into the P1/capsid region (2,643 nucleotides). Rates were determined over a 10-year period by analysis of sequences of 31 wild poliovirus type 1 isolates representing a well-defined phylogeny derived from a common imported ancestor. Similar rates were obtained by linear regression, the maximum likelihood/single-rate dated-tip method, and Bayesian inference. The very rapid K(t) [(1.03 +/- 0.10) x 10(-2) substitutions/site/year] and K(s) [(1.00 +/- 0.08) x 10(-2)] clocks were driven primarily by the A(s) clock [(0.96 +/- 0.09) x 10(-2)], the B(s) clock was approximately 10-fold slower [(0.10 +/- 0.03) x 10(-2)], and the more stochastic K(a) clock was approximately 30-fold slower [(0.03 +/- 0.01) x 10(-2)]. Nonsynonymous substitutions at all P1/capsid sites, including the neutralizing antigenic sites, appeared to be constrained by purifying selection. Simulation of the evolution of third-codon positions suggested that saturation of synonymous transitions would be evident at 10 years and complete at approximately 65 years of independent transmission. Saturation of synonymous transversions was predicted to be minimal at 20 years and incomplete at 100 years. The rapid evolution of the K(t), K(s), and A(s) clocks can be used to estimate the dates of divergence of closely related viruses, whereas the slower B(s) and K(a) clocks may be used to explore deeper evolutionary relationships within and across poliovirus genotypes.  相似文献   

11.
The growth hormone (GH) gene of teleost fish exhibits a higher degree of variability compared with other vertebrate groups. However, the different selective constraints at the sequence level are not well understood. In this study, maximum-likelihood (ML) models of codon substitutions were used to investigate Darwinian adaptive evolution of the GH gene in teleost fishes. Complete GH gene sequences of 54 fish species were classified into 4 orders, and the variable nature of GH was examined by determining the dN and dS rate variation and the rates of molecular evolution for each teleost order. The results indicate that although the overall evolution rate for teleost GH is high ((1.15 +/- 0.01) x 10(-9) substitutions/(aa site x y)) compared with the "slow phases" in mammals ((0.21 to 0.28 +/- 0.05) x 10(-9)), the vital structure of this gene has been retained. While the majority of the amino acid changes appear to be due to relaxation of purifying selection, some positively selected sites were detected in regions with no specifically identified role in protein function. The positively selected regions observed in salmoniformes lineage suggests a possible role for positive selection driving functional divergence in paralogous forms of the GH gene after whole-genome duplication in this lineage.  相似文献   

12.
The species divergence times and demographic histories of Drosophila melanogaster and its three sibling species, D. mauritiana, D. simulans, and D. yakuba, were investigated using a maximum likelihood (ML) method. Thirty-nine orthologous loci for these four species were retrieved from DDBJ/EMBL/GenBank database. Both autosomal and X-linked loci were used in this study. A significant degree of rate heterogeneity across loci was observed for each pair of species. Most loci have the GC content greater than 50% at the third codon position. The codon usage bias in Drosophila loci is considered to result in the high GC content and the heterogenous rates across loci. The chi-square, G, and Fisher's exact tests indicated that data sets with 11, 23, and 9 pairs of DNA sequences for the comparison of D. melanogaster with D. mauritiana, D. simulans, and D. yakuba, respectively, retain homogeneous rates across loci. We applied the ML method to these data sets to estimate the DNA sequence divergences before and after speciation of each species pair along with their standard deviations. Using 1.6 x 10(-8) as the rate of nucleotide substitutions per silent site per year, our results indicate that the D. melanogaster lineage split from D. yakuba approximately 5.1 +/- 0.8 million years ago (mya), D. mauritiana 2.7 +/- 0.4 mya, and D. simulans 2.3 +/- 0.3 mya. It implies that D. melanogaster became distinct from D. mauritiana and D. simulans at approximately the same time and from D. yakuba no earlier than 10 mya. The effective ancestral population size of D. melanogaster appears to be stable over evolutionary time. Assuming 10 generations per year for Drosophila, the effective population size in the ancestral lineage immediately prior to the time of species divergence is approximately 3 x 10(6), which is close to that estimated for the extant D. melanogaster population. The D. melanogaster did not encounter any obvious bottleneck during the past 10 million years.  相似文献   

13.
Huang CC  Hung KH  Wang WK  Ho CW  Huang CL  Hsu TW  Osada N  Hwang CC  Chiang TY 《Gene》2012,499(1):194-201
Recovering the genetic divergence between species is one of the major interests in the evolutionary biology. It requires accurate estimation of the neutral substitution rates. Arabidopsis thaliana, the first whole-genome sequenced plant, and its out-crossing relatives provide an ideal model for examining the split between sister species. In the study, rates of molecular evolution at markers frequently used for systematics and population genetics, including 14 nuclear genes spanning most chromosomes, three noncoding regions of chloroplast genome, and one intron of mitochondrial genome, between A. thaliana and four relatives were estimated. No deviation from neutrality was detected in the genes examined. Based on the known divergence between A. thaliana and its sisters about 8.0-17.6 MYA, evolutionary rates of the eighteen genes were estimated. Accordingly, the ratio of rates of synonymous substitutions among mitochondrial, chloroplast and nuclear genes was calculated with an average and 95% confidence interval of 1 (0.25-1.75): 15.77 (7.48-114.09): 74.79 (36.27-534.61). Molecular evolutionary rates of nuclear genes varied, with a range of 0.383-0.856×10(-8) for synonymous substitutions per site per year and 0.036-0.081×10(-9) for nonsynonymous substitutions per site per year. Compared with orthologs in Populus, a long life-span tree, genes in Arabidopsis evolved faster in an order of magnitude at the gene level, agreeing with a generation time hypothesis. The estimated substitution rates of these genes can be used as a reference for molecular dating.  相似文献   

14.
To study rapidly evolving male specific Y (MSY) genes we retrieved and analyzed nine such genes. VCY, HSFY and RBMY were found to have functional X gametologs, but the rest did not. Using chimpanzee orthologs for XKRY, CDY, HSFY, PRY, and TSPY, the average silent substitution is estimated as 0.017 +/- 0.006/site and the substitution rate is 1.42 x 10(-9)/site/year. Except for VCY, all other loci possess two or more pseudogenes on the Y chromosome. Sequence differences from functional genes show that BPY2, DAZ, XKRY, and RBMY each have one pseudogene for each one that is human specific, while others were generated well before the human-chimpanzee split, by means of duplication, retro-transposition or translocation. Some functional MSY gene duplication of VCY, CDY and HSFY, as well as X-linked VCX and HSFX duplication, occurred in the lineage leading to humans; these duplicates have accumulated nucleotide substitutions that permit their identification.  相似文献   

15.
Evolutionary rates for tuf genes in endosymbionts of aphids   总被引:5,自引:1,他引:4  
The gene encoding elongation factor Tu (tuf) in aphid endosymbionts (genus Buchnera) evolves at rates of 1.3 x 10(-10) to 2.5 x 10(-10) nonsynonymous substitutions and 3.9 x 10(-9) to 8.0 x 10(-9) synonymous substitutions per position per year. These rates, which are at present among the most reliable substitution rates for protein-coding genes of bacteria, have been obtained by calibrating the nodes in the phylogenetic tree produced from the Buchnera EF-Tu sequences using divergence times for the corresponding ancestral aphid hosts. We also present data suggesting that the rates of nonsynonymous substitutions are significantly higher in the endosymbiont lineages than in the closely related free-living bacteria Escherichia coli and Salmonella typhimurium. Synonymous substitution rates for Buchnera approximate estimated mutation rates for E. coli and S. typhimurium, as expected if synonymous changes act as neutral mutations in Buchnera. We relate the observed differences in substitution frequencies to the absence of selective codon preferences in Buchnera and to the influence of Muller's ratchet on small asexual populations.   相似文献   

16.
Geminiviruses are devastating viruses of plants that possess single-stranded DNA (ssDNA) DNA genomes. Despite the importance of this class of phytopathogen, there have been no estimates of the rate of nucleotide substitution in the geminiviruses. We report here the evolutionary rate of the tomato yellow leaf curl disease-causing viruses, an intensively studied group of monopartite begomoviruses. Sequences from GenBank, isolated from diseased plants between 1988 and 2006, were analyzed using Bayesian coalescent methods. The mean genomic substitution rate was estimated to be 2.88 x 10(-4) nucleotide substitutions per site per year (subs/site/year), although this rate could be confounded by frequent recombination within Tomato yellow leaf curl virus genomes. A recombinant-free data set comprising the coat protein (V1) gene in isolation yielded a similar mean rate (4.63 x 10(-4) subs/site/year), validating the order of magnitude of genomic substitution rate for protein-coding regions. The intergenic region, which is known to be more variable, was found to evolve even more rapidly, with a mean substitution rate of approximately 1.56 x 10(-3) subs/site/year. Notably, these substitution rates, the first reported for a plant DNA virus, are in line with those estimated previously for mammalian ssDNA viruses and RNA viruses. Our results therefore suggest that the high evolutionary rate of the geminiviruses is not primarily due to frequent recombination and may explain their ability to emerge in novel hosts.  相似文献   

17.
The antigenic diversity threshold theory predicts that antigenic sites of human immunodeficiency virus type 1, such as the V3 region of the external glycoprotein gp120, evolve more rapidly during the symptom-free period in individuals progressing to AIDS than in those who remain asymptomatic for a long time. To test this hypothesis, genomic RNA sequences were obtained from the sera of 44 individuals at seroconversion and 5 years later. The mean number of nonsynonymous nucleotide substitutions in the V3 region of the viruses circulating in 31 nonprogressors (1.1 x 10(-2) +/- 0.1 x 10(-2) per site per year) was higher than the corresponding value for 13 progressors (0.66 x 10(-2) +/- 0.1 x 10(-2) per site per year) (P < 0.01), while no difference between the mean numbers of synonymous substitutions in the two groups was seen (0.37 x 10(-2) +/- 0.1 x 10(-2) and 0.51 x 10(-2) +/- 0.2 x 10(-2) per site per year for nonprogressors and progressors, respectively; P > 0.1). The mean ratios of synonymous nucleotide p distance to nonsynonymous p distance were 0.35 for nonprogressors and 0.62 for progressors. The number of nonsynonymous substitutions was not associated with virus load or virus phenotype, which are established predictors of disease progression, but correlated strongly with the duration of the immunocompetent period (r2 = 0.41; P = 0.001). This indicates that there is no causative relationship between intrahost evolution and CD4+ cell decline. Our data suggest that intrahost evolution in human immunodeficiency virus type 1 infection is driven by selective forces, the strength of which is related to the duration of the immunocompetent period.  相似文献   

18.
Evolution of influenza virus genes   总被引:14,自引:1,他引:13  
The nucleotide sequences of the eight different influenza A virus segments (genes) were compared among 14 different subtypes. These comparisons demonstrate the presence of molecular clocks in the viral genes; they accumulated both silent and amino acid-changing substitutions at approximately constant rates with respect to time during evolution. In addition, comparison of the rates of evolution among the eight viral genes, excluding the P2 gene, revealed a rapid and roughly equal rate of silent substitution for different genes. The P2 gene exception is explained as the result of recombination (reassortment) between distantly related strains. The rate of amino acid-changing substitution differs greatly from gene to gene. The rate of silent substitution was estimated to be 1.1 X 10(-2)/site/year on the average--that is, about 2 X 10(6) times higher than eukaryotic gene equivalents, which is remarkable. Strain A/USSR/90/77 was shown to evolve with a rate that is similar to those of other strains but to behave as if replication was frozen during a certain period (Nakajima et al. 1978). The frozen period was estimated to be 25 yr on the basis of the molecular clock. A similar analysis revealed another example of frozen replication--in this case, apparently for a period of about 9 yr- -in a duck strain, A/duck/Ontario/77.   相似文献   

19.
Comparative genomics is a powerful tool for gaining insight into genomic function and evolution. However, in plants, sequence data that would enable detailed comparisons of both coding and noncoding regions have been limited in availability. Here we report the generation and analysis of sequences for an unduplicated conserved syntenic segment (CSS) in the genomes of five members of the agriculturally important plant family Solanaceae. This CSS includes a 105-kb region of tomato chromosome 2 and orthologous regions of the potato, eggplant, pepper, and petunia genomes. With a total neutral divergence of 0.73-0.78 substitutions/site, these sequences are similar enough that most noncoding regions can be aligned, yet divergent enough to be informative about evolutionary dynamics and selective pressures. The CSS contains 17 distinct genes with generally conserved order and orientation, but with numerous small-scale differences between species. Our analysis indicates that the last common ancestor of these species lived approximately 27-36 million years ago, that more than one-third of short genomic segments (5-15 bp) are under selection, and that more than two-thirds of selected bases fall in noncoding regions. In addition, we identify genes under positive selection and analyze hundreds of conserved noncoding elements. This analysis provides a window into 30 million years of plant evolution in the absence of polyploidization.  相似文献   

20.
The evolutionary rate of the human T-cell lymphotropic virus type-1 (HTLV-1) is considered to be very low, in strong contrast to the related human retrovirus HIV. However, current estimates of the HTLV-1 rate rely on the anthropological calibration of phylogenies using assumed dates of human migration events. To obtain an independent rate estimate, we analyzed two variable regions of the HTLV-1 genome (LTR and env) from eight infected families. Remarkable genetic stability was observed, as only two mutations in LTR (756 bp) and three mutations in env (522 bp) occurred within the 16 vertical transmission chains, including one ambiguous position in each region. The evolutionary rate in HTLV-1 was then calculated using a maximum-likelihood approach that used the highest and lowest possible times of HTLV-1 shared ancestry, given the known transmission histories. The rates for the LTR and env regions were 9.58 x 10(-8)-1.25 x 10(-5) and 7.84 x 10(-7) -2.33 x 10(-5)nucleotide substitutions per site per year, respectively. A more precise estimate was obtained for the combined LTR-env data set, which was 7.06 x 10(-7)-1.38 x 10(-5)substitutions per site per year. We also note an interesting correlation between the occurrence of mutations in HTLV-1 and the age of the individual infected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号