首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background  

DNA transposons have emerged as indispensible tools for manipulating vertebrate genomes with applications ranging from insertional mutagenesis and transgenesis to gene therapy. To fully explore the potential of two highly active DNA transposons, piggyBac and Tol2, as mammalian genetic tools, we have conducted a side-by-side comparison of the two transposon systems in the same setting to evaluate their advantages and disadvantages for use in gene therapy and gene discovery.  相似文献   

2.

Background  

The Brucella genome contains an insertion sequence (IS) element called IS711 or IS6501, which is specific to the genus. The copy number of IS711 varies in the genome of the different Brucella species, ranging from 7 in B. abortus, B. melitensis and B. suis to more than 30 in B. ovis and in Brucella strains isolated from marine mammals. At present, there is no experimental evidence of transposition of IS711, but the occurrence of this element with a high copy number in some species, and the isolation of Brucella strains with "ectopic" copies of IS711 suggested that this IS could still transpose.  相似文献   

3.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

4.

Background  

Integrative and conjugative elements (ICE) form a diverse group of DNA elements that are integrated in the chromosome of the bacterial host, but can occasionally excise and horizontally transfer to a new host cell. ICE come in different families, typically with a conserved core for functions controlling the element's behavior and a variable region providing auxiliary functions to the host. The ICEclc element of Pseudomonas knackmussii strain B13 is representative for a large family of chromosomal islands detected by genome sequencing approaches. It provides the host with the capacity to degrade chloroaromatics and 2-aminophenol.  相似文献   

5.
P transposons belong to the eukaryotic DNA transposons, which are transposed by a cut and paste mechanism using a P-element-coded transposase. They have been detected in Drosophila, and reside as single copies and stable homologous sequences in many vertebrate species. We present the P elements Pcin1, Pcin2 and Pcin3 from Ciona intestinalis, a species of the most primitive chordates, and compare them with those from Ciona savignyi. They showed typical DNA transposon structures, namely terminal inverted repeats and target site duplications. The coding region of Pcin1 consisted of 13 small exons that could be translated into a P-transposon-homologous protein. C. intestinalis and C. savignyi displayed nearly the same phenotype. However, their P elements were highly divergent and the assumed P transposase from C. intestinalis was more closely related to the transposase from Drosophila melanogaster than to the transposase of C. savignyi. The present study showed that P elements with typical features of transposable DNA elements may be found already at the base of the chordate lineage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background  

Mariner-like elements (MLEs) are widespread DNA transposons in animal genomes. Although in vitro transposition reactions require only the transposase, various factors depending on the host, the physico-chemical environment and the transposon sequence can interfere with the MLEs transposition in vivo.  相似文献   

7.

Background  

Wolbachia are endosymbiotic bacteria that commonly infect numerous arthropods. Despite their broad taxonomic distribution, the transmission patterns of these bacteria within and among host species are not well understood. We sequenced a portion of the wsp gene from the Wolbachia genome infecting 138 individuals from eleven geographically distributed native populations of the fire ant Solenopsis invicta. We then compared these wsp sequence data to patterns of mitochondrial DNA (mtDNA) variation of both infected and uninfected host individuals to infer the transmission patterns of Wolbachia in S. invicta.  相似文献   

8.

   

Most sequenced strains from Pasteurellaceae and Neisseriae contain hundreds to thousands of uptake sequence (US) motifs in their genome, which are associated with natural competence for DNA uptake. The mechanism of their recognition is still unclear, and I searched for intragenic location patterns of these motifs for clues about their distribution. In all cases, one orientation of the US has a higher occurrence in the reading frame, and in all Pasteurellaceae, the US and the reverse complement motifs are biased towards the gene termini. These findings could help design experimental set-ups to study preferential DNA uptake, thereby further unravelling the phenomenon of natural competence.  相似文献   

9.
10.

Background  

The mal genes that encode maltose transporters have undergone extensive lateral transfer among ancestors of the archaea Thermococcus litoralis and Pyrococcus furiosus. Bacterial hyperthermophiles of the order Thermotogales live among these archaea and so may have shared in these transfers. The genome sequence of Thermotoga maritima bears evidence of extensive acquisition of archaeal genes, so its ancestors clearly had the capacity to do so. We examined deep phylogenetic relationships among the mal genes of these hyperthermophiles and their close relatives to look for evidence of shared ancestry.  相似文献   

11.

Background  

Campylobacter jejuni has been divided into two subspecies: C. jejuni subsp. jejuni (Cjj) and C. jejuni subsp. doylei (Cjd). Nearly all of the C. jejuni strains isolated are Cjj; nevertheless, although Cjd strains are isolated infrequently, they differ from Cjj in two key aspects: they are obtained primarily from human clinical samples and are associated often with bacteremia, in addition to gastroenteritis. In this study, we utilized multilocus sequence typing (MLST) and a DNA microarray-based comparative genomic indexing (CGI) approach to examine the genomic diversity and gene content of Cjd strains.  相似文献   

12.

Background  

Bacterial genome sequences are being determined rapidly, but few species are physiologically well characterized. Predicting regulation from genome sequences usually involves extrapolation from better-studied bacteria, using the hypothesis that a conserved regulator, conserved target gene, and predicted regulator-binding site in the target promoter imply conserved regulation between the two species. However many compared organisms are ecologically and physiologically diverse, and the limits of extrapolation have not been well tested. In E. coli K-12 the leucine-responsive regulatory protein (Lrp) affects expression of ~400 genes. Proteus mirabilis and Vibrio cholerae have highly-conserved lrp orthologs (98% and 92% identity to E. coli lrp). The functional equivalence of Lrp from these related species was assessed.  相似文献   

13.

Background  

Genome degradation is an ongoing process in all members of the Rickettsiales order, which makes these bacterial species an excellent model for studying reductive evolution through interspecies variation in genome size and gene content. In this study, we evaluated the degree to which gene loss shaped the content of some Rickettsiales genomes. We shed light on the role played by horizontal gene transfers in the genome evolution of Rickettsiales.  相似文献   

14.

Background  

Molecular genetic maps provide a means to link heritable traits with underlying genome sequence variation. Several genetic maps have been constructed for Brassica species, yet to date, there has been no simple means to compare this information or to associate mapped traits with the genome sequence of the related model plant, Arabidopsis.  相似文献   

15.

Background  

Insertion sequences (ISs) are small, mobile DNA entities able to expand in prokaryotic genomes and trigger important rearrangements. To understand their role in evolution, accurate IS taxonomy is essential. The IS 4 family is composed of ~70 elements and, like some other families, displays extremely elevated levels of internal divergence impeding its classification. The increasing availability of complete genome sequences provides a valuable source for the discovery of additional IS 4 elements. In this study, this genomic database was used to update the structural and functional definition of the IS 4 family.  相似文献   

16.

Background  

It is widely recognized that interspecific hybridization may induce "genome shock", and lead to genetic and epigenetic instabilities in the resultant hybrids and/or backcrossed introgressants. A prominent component involved in the genome shock is reactivation of cryptic transposable elements (TEs) in the hybrid genome, which is often associated with alteration in the elements' epigenetic modifications like cytosine DNA methylation. We have previously reported that introgressants derived from hybridization between Oryza sativa (rice) and Zizania latifolia manifested substantial methylation re-patterning and rampant mobilization of two TEs, a copia retrotransposon Tos17 and a MITE mPing. It was not known however whether other types of TEs had also been transpositionally reactivated in these introgressants, their relevance to alteration in cytosine methylation, and their impact on expression of adjacent cellular genes.  相似文献   

17.

Background  

Alu elements are short (~300 bp) interspersed elements that amplify in primate genomes through a process termed retroposition. The expansion of these elements has had a significant impact on the structure and function of primate genomes. Approximately 10 % of the mass of the human genome is comprised of Alu elements, making them the most abundant short interspersed element (SINE) in our genome. The majority of Alu amplification occurred early in primate evolution, and the current rate of Alu retroposition is at least 100 fold slower than the peak of amplification that occurred 30–50 million years ago. Alu elements are therefore a rich source of inter- and intra-species primate genomic variation.  相似文献   

18.

Background  

The cellulose synthase and cellulose synthase-like gene superfamily (CESA/CSL) is proposed to encode enzymes for cellulose and non-cellulosic matrix polysaccharide synthesis in plants. Although the rice (Oryza sativa L.) genome has been sequenced for a few years, the global expression profiling patterns and functions of the OsCESA/CSL superfamily remain largely unknown.  相似文献   

19.
Tc1, one of the founding members of the Tc1/mariner transposon superfamily, was identified in the nematode Caenorhabditis elegans more than 25 years ago. Over the years, Tc1 and other endogenous mariner transposons became valuable tools for mutagenesis and targeted gene inactivation in C. elegans. However, transposition is naturally repressed in the C. elegans germline by an RNAi-like mechanism, necessitating the use of mutant strains in which transposition was globally derepressed, which causes drawbacks such as uncontrolled proliferation of the transposons in the genome and accumulation of background mutations. The more recent mobilization of the Drosophila mariner transposon Mos1 in the C. elegans germline circumvented the problems inherent to endogenous transposons. Mos1 transposition strictly depends on the expression of the Mos transposase, which can be controlled in the germline using inducible promoters. First, Mos1 can be used for insertional mutagenesis. The mobilization of Mos1 copies present on an extrachromosomal array results in the generation of a small number of Mos1 genomic insertions that can be rapidly cloned by inverse PCR. Second, Mos1 insertions can be used for genome engineering. Triggering the excision of a genomic Mos1 insertion causes a chromosomal break, which can be repaired by transgene-instructed gene conversion. This process is used to introduce specific changes in a given gene, such as point mutations, deletions or insertions of a tag, and to create single-copy transgenes.  相似文献   

20.

Background  

Of the major families of long terminal repeat (LTR) retrotransposons, the Pao/BEL family is probably the least well studied. It is becoming apparent that numerous LTR retrotransposons and other mobile genetic elements have colonized the genome of the human blood fluke, Schistosoma mansoni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号