首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
After in vivo administration of lead nitrate, functional changes of the mitochondrial tricarboxylate carrier and of the cytosolic lipogenic enzymes acetyl-CoA carboxylase and fatty acid synthetase have been detected in rat liver. The rate of citrate transport was greatly reduced in rats during both the proliferative phase (3 days after the lead nitrate administration) and the involutive phase (5 days after the metal injection), which follows hepatic hyperplasia and corresponds to the peak of hepatocyte apoptosis. In both phases, a decrease of the lipogenic enzyme activities has been detected. In treated animals, an alteration of mitochondrial lipid composition has also been found. The modified lipid microenvironment could be responsible for the decreased carrier activity which, in turn, may account for the reduced activities of the lipogenic enzymes.  相似文献   

2.
The activity of the tricarboxylate (citrate) carrier has been assayed in intact liver mitochondria from yellow eel (Anguilla anguilla) and compared to that from rat. The eel-citrate carrier specific activity was approximately 1.7-fold higher than that assayed in rat-liver mitochondria. The content of the main mitochondrial phospholipids, phosphatidylethanolamine and phosphatidylcholine, did not show a significant difference between the two species, while in eel a higher cardiolipin level was observed. Fatty acid composition of eel-liver mitochondrial phospholipids was characterised by a large amount of unsaturated fatty acids, dominated by octadecaenoic acid (C(18:1) (n-9)) and docosahexaenoic acid (C(22:6) (n-3)). The cardiolipin fatty acid pattern of eel-liver mitochondria showed, with respect to the rat, a higher C(20:5) (n-3) and C(22:6) (n-3) content and a lower amount of C(18:2) (n-6) and C(20:4) (n-6). A noticeable activity of lipogenic enzymes was also detected in eel liver cytosol. The results of this study suggest that the remarkable activity of the citrate carrier in eel-liver mitochondria can most likely be ascribed to a considerable cardiolipin level. A covariance of citrate carrier and lipogenic enzyme activities was observed.  相似文献   

3.
Twenty-four lambs (Ovis aries) were used in a 45-day finishing study to evaluate the effects of feeding diets high in linoleic acid (C(18:2), omega-6) on liver lipid composition and on lipogenic enzyme activities in subcellular fractions of liver. Lambs were fed either a 5% safflower oil (SO, high linoleic acid) supplemented diet or a control diet without added oil. SO feeding caused a reduction in the amount of serum and liver triacylglycerols and cholesterol, whereas the level of phospholipids in both tissues was hardly affected. In liver of SO-treated lambs an increase in the levels of C(18:2) and arachidonic acid (C(20:4), omega-6), together with a simultaneous decrease of saturated fatty acids, was observed. In comparison to rat liver, rather low activities of enzymes in the pathway for de novo fatty acid synthesis, i.e. acetyl-CoA carboxylase and fatty acid synthase, were found in lamb-liver cytosol. Both enzyme activities, as well as those of the NADPH-furnishing enzymes, were significantly reduced by SO feeding. In contrast, microsomal and especially mitochondrial fatty acid chain elongation activity, the latter being much higher than that of rat liver, were significantly increased in SO-treated lambs. In these animals, a stimulation of triangle up(9)-desaturase activity was observed in liver microsomes.  相似文献   

4.
5.
Mitochondrial solute carrier family 25 member 10 (Slc25a10) transports dicarboxylates such as malate or succinate across the mitochondrial inner membrane. Although fatty acid synthesis in adipose tissue or the liver is initiated by citrate transport in exchange for malate across the mitochondrial membrane, the transporter responsible for supplying malate during citrate transport has not been identified. In the present study, we clarified the role of Slc25a10 in supplying malate for citrate transport and examined the effect of Slc25a10 suppression on the lipogenic pathway and lipid accumulation. We have reported an Slc25a10 increase in white adipose tissue in obese mouse models and a decrease in a fasted mouse model using expression profiles. Next, we examined the effect of Slc25a10 suppression by small interfering RNA on citrate transport in the lipogenic cell lines HepG2 and 3T3-L1. We observed that inhibition of malate transport by Slc25a10 suppression significantly reduced the citrate transport from the mitochondria to the cytosol. We also found that suppression of Slc25a10 down-regulated the lipogenic pathway, indicated by decreases in ACC1 expression and malonyl-CoA level. Furthermore, suppression of Slc25a10 decreased triglyceride lipid accumulation in adipose-differentiated 3T3-L1 cells. These results suggested that Slc25a10 plays an important role in supplying malate for citrate transport required for fatty acid synthesis and indicated that inhibition of Slc25a10 might effectively reduce lipid accumulation in adipose tissues.  相似文献   

6.
The effect of hypothyroidism on citrate carrier (CiC) activity has been investigated in rat-liver mitochondria. The rate of citrate transport was reduced by approximately 50% in mitochondria from hypothyroid as compared with euthyroid rats. In parallel, a decrease in the rate of de novo fatty acid synthesis was observed in the cytosol of the former animals. Kinetic analysis of citrate transport revealed that only the Vmax was reduced by hypothyroidism, while Km was almost unaffected. Hypothyroidism increased the mitochondrial percentage of phosphatidylcholine while decreased that of phosphatidylethanolamine; an altered fatty acid pattern but no significant difference in the sum of saturated and unsaturated fatty acids as well as in the unsaturation index was observed. The CiC Arrhenius plot did not show appreciable difference between the two groups of rats. However, Western blot analysis associated with mRNA quantitation indicated that both protein level and mRNA accumulation of hepatic CiC were noticeably decreased in hypothyroid state. Therefore, a reduced content of the carrier protein can represent a plausible mechanism to explain the decline in the CiC activity observed in rat liver mitochondria of hypothyroid rats.  相似文献   

7.
8.
When fasted rats were refed for 4 days with a carbohydrate and protein diet, a carbohydrate diet (without protein) or a protein diet (without carbohydrate), the effects of dietary nutrients on the fatty acid synthesis from injected tritiated water, the substrate and effector levels of lipogenic enzymes and the enzyme activities were compared in the livers. In the carbohydrate diet group, although acetyl-CoA carboxylase was much induced and citrate was much increased, the activity of acetyl-CoA carboxylase extracted with phosphatase inhibitor and activated with 0.5 mM citrate was low in comparison to the carbohydrate and protein diet group. The physiological activity of acetyl-CoA carboxylase seems to be low. In the protein diet group, the concentrations of glucose 6-phosphate, acetyl-CoA and malonyl-CoA were markedly higher than in the carbohydrate and protein group, whereas the concentrations of oxaloacetate and citrate were lower. The levels of hepatic cAMP and plasma glucagon were high. The activities of acetyl-CoA carboxylase and also fatty acid synthetase were low in the protein group. By feeding fat, the citrate level was not decreased as much as the lipogenic enzyme inductions. Comparing the substrate and effector levels with the Km and Ka values, the activities of acetyl-CoA carboxylase and fatty acid synthetase could be limited by the levels. The fatty acid synthesis from tritiated water corresponded more closely to the acetyl-CoA carboxylase activity (activated 0.5 mM citrate) than to other lipogenic enzyme activities. On the other hand, neither the activities of glucose-6-phosphate dehydrogenase and malic enzyme (even though markedly lowered by diet) nor the levels of their substrates appeared to limit fatty acid synthesis of any of the dietary groups. Thus, it is suggested that under the dietary nutrient manipulation, acetyl-CoA carboxylase activity would be the first candidate of the rate-limiting factor for fatty acid synthesis with the regulations of the enzyme quantity, the substrate and effector levels and the enzyme modification.  相似文献   

9.
This study examined the effect of dietary polyunsaturated fatty acids (PUFA) that were supplemented with vitamin E on lipid peroxidation, glutathione-dependent detoxifying enzyme system activity, and lipogenic fatty acid synthase (FAS) expression in rat liver. Male Sprague-Dawley rats were fed semipurified diets containing either 1% (w/w) corn oil or 10% each of beef tallow, corn oil, perilla oil, and fish oil for 4 wk. Alpha-tocopherol was supplemented in perilla oil (0.015%) and fish oil (0.019%). Hepatic thiobarbituric acid reactive substances, an estimate of lipid peroxidation, were not significantly different among the dietary groups. The glutathione peroxidase, glutathione reductase, and glutathione S-transferase activities were all elevated by the polyunsaturated fats, especially fish oil. The activity of FAS was reduced in the polyunsaturated fat-fed groups in the order of fish oil, perilla oil, and corn oil. The mRNA contents decreased in rats that were fed the 10% fat diets, particularly polyunsaturated fats, compared with the rats that were fed the 1% corn oil diet. Similarly, the inhibitory effect was the greatest in fish oil. These results suggest that lipid peroxidation can be minimized by vitamin E; PUFA in itself has a suppressive effect on lipogenic enzyme.  相似文献   

10.
The accumulation of toxic hydrophobic bile acids in hepatocytes, observed during chronic cholestasis, induces substantial modification in the redox state and in mitochondrial functions. Recent reports have suggested a significant role of impaired lipid metabolism in the progression of chronic cholestasis. In this work we report that changes observed in the expression of the lipogenic enzymes acetyl-CoA carboxylase and fatty acid synthase were associated with a decrease in the activity of citrate carrier (CIC), a protein of the inner mitochondrial membrane closely related to hepatic lipogenesis. We also verified that the impairment of citrate transport was dependent on modification of the phospholipid composition of the mitochondrial membrane and on cardiolipin oxidation. Silybin, an extract of silymarin with antioxidant and anti-inflammatory properties, prevented mitochondrial reactive oxygen species (ROS) production, cardiolipin oxidation, and CIC failure in cirrhotic livers but did not affect the expression of lipogenic enzymes. Moreover, supplementation of silybin was also associated with mitochondrial biogenesis. In conclusion, we demonstrate that chronic cholestasis induces cardiolipin oxidation that in turn impairs mitochondrial function and further promotes ROS production. The capacity of silybin to limit mitochondrial failure is part of its hepatoprotective property.  相似文献   

11.
This work was designed to study the effect of different lipid sources on the activities of lipoprotein lipase and lipogenic enzymes in adipose tissue from rats fedad libitum or energy-controlled diets. Male Wistar rats were fed diets containing 40% of energy as fat (olive oil, sunflower oil, palm oil or beef tallow), for 4 wk. Underad libitum feeding no differences were found among dietary fat groups in final body weight, adipose tissue weights and total body fat. Under energy-controlled feeding, despite isoenergetic intake, rats fed the beef tallow diet gained significantly less weight than rats fed the other three diets. Beef tallow fed rats showed the lowest values for adipose tissue weights and total body fat. When rats had free access to food no effect of dietary lipid source on lipogenic enzyme activities was found. In contrast, under energy-controlled feeding rats fed the beef tallow diet showed significantly higher activities of glucose-6-phosphate dehydrogenase and fatty acid synthase than rats fed the other three diets. Heparin-releasable lipoprotein lipase activity in perirenal and subcutaneous adipose tissues was not different among rats fed olive oil, safflower oil, palm oil or beef tallow. When comparing both adipose tissue anatomical locations, significantly higher activities were found in subcutaneous than in perirenal fat pad independently of dietary fat. In conclusion, under our experimental protocol, lipogenesis in rat adipose tissue does not seem to be affected by dietary fat type.  相似文献   

12.
Conjugated linoleic acid (CLA) is able to reduce adiposity by affecting lipid metabolism. In particular, CLA administration to mice reduces body fat mass with a concomitant lipid accumulation in the liver. We investigated the effects of CLA on the activity of the mitochondrial citrate carrier (CIC), which is implicated in hepatic lipogenesis. The transport activity of the CIC, measured both in intact mitochondria and in the proteoliposomes, progressively increased with the duration of CLA feeding. An increase in the CIC activity of approximately 1.7-fold was found in 16 week CLA-treated mice with respect to control animals. A kinetic analysis showed a 1.6-fold increase in the V(max) of citrate transport but no change in the K(m) value. Western blot experiments revealed an increase of approximately 1.7-fold in the expression of CIC after CLA treatment. A strict correlation between the increase in CIC activity and the stimulation of the cytosolic lipogenic enzymes was also found. These data indicate that the CIC may play a role in the onset of hepatic steatosis in CLA-fed mice by supplying the carbon source for de novo fatty acid synthesis.  相似文献   

13.
Transport of mitochondrial acetyl units to the cytoplasm for fatty acid synthesis via the citrate cleavage pathway requires replenishment of mitochondrial oxaloacetate. Pyruvate carboxylase is though to fulfill this role although compelling evidence has been lacking. During lipogenic differentiation of 3T3-L1 preadipocytes, pyruvate carboxylase activity rises 18-fold in close coordination with fat accumulation and the activity of ATP-citrate lyase, an established lipogenic enzyme. The activities of enzymes less directly related to lipogenesis rise only 3–5-fold while other unrelated enzymes do not increase significantly. These results indicate that pyruvate carboxylase is in fact a lipogenic enzyme.  相似文献   

14.
The activities of two enzymes involved in the lipogenic process, ATP citrate lyase and NADP-linked malic enzyme were evaluated as a function of cell density in isolated rat hepatocytes. The activity of ATP citrate lyase was profoundly affected by cell density with the activity/cell being higher at low cell densities than at high cell densities. Malic enzyme was not similarly affected, nor was cellular ATP content. The effect was observed regardless of dietary state but was most dramatic with hepatocytes from fasted-refed rats. Both an activator and an inhibitor of ATP citrate lyase have been isolated from conditioned medium from cells at low density and at high density, respectively. The activator fraction was heat stable while the inhibitor fraction was heat labile, and both factors had molecular weights in excess of 10,000 daltons.  相似文献   

15.
The feeding of 2% di(2-ethylhexyl)phthalate (DEHP) to rats increased the hepatic microsomal elongation of palmitoyl-CoA by about twofold, while those of palmitoleoyl-CoA and gamma-linolenoyl-CoA decreased to 83 and 63%, respectively, of the control values. When component reactions of the elongation pathway were measured, it was observed that only the activity of condensing enzyme was increased by twofold, while those of beta-ketostearoyl-CoA reductase, beta-hydroxypalmitoyl-CoA dehydrase, and trans-2-hexadecenoyl-CoA reductases were not affected. Furthermore, the time course for induction of both condensation and elongation of palmitoyl-CoA was similar. In vitro addition of DEHP had no effect on either condensation or elongation. Thus, these results indicate that the peroxisomal proliferator induces only the condensing enzyme which is the regulatory and rate-limiting step of elongation sequence. The DEHP treatment also markedly enhanced the cytosolic NADPH-generating activities of glucose-6-PO4 dehydrogenase (2.2-fold) and malic enzyme (7.3-fold). Unexpectedly, the activities of fatty acid synthetase and citrate cleavage enzyme were unaffected. These results are discussed in light of the fact that these lipogenic enzymes are coordinately induced by diet or hormones.  相似文献   

16.
1. The effect of starvation-refeeding transition and cold exposure on the activity of lipogenic enzymes in brown adipose tissue (BAT) and liver from rats was compared. 2. Starvation caused a decrease of lipogenic enzyme activities in BAT and liver. 3. Refeeding of the animals with a high carbohydrate diet caused an increase of lipogenic enzymes in these tissues. 4. Cold exposure (4 degrees C for 30 days) led to the increase of BAT enzyme activities to the values observed in rats fed a high carbohydrate diet. 5. Under the same conditions the activity of hepatic lipogenic enzymes also increased but never reached the values observed in the liver of rats fed with a high carbohydrate diet. 6. Therefore BAT and liver lipogenic enzymes showed, in general, a similar pattern of variation under identical nutritional conditions, but substantial differences between these two organs occurred as far as the response to cold exposure was concerned. 7. The experiments also revealed that in the control animals BAT displayed a higher lipogenic potential than the liver.  相似文献   

17.
This study was performed to determine the effects of dietary perilla oil, a n-3 alpha-linolenic acid (ALA) source, on hepatic lipogenesis as a possible mechanism of lowering triacylglycerol (TG) levels. Male Sprague-Dawley rats were trained for a 3-hour feeding protocol and fed one of five semipurified diets as follows: 1% (w/w) corn oil control diet, or one of four diets supplemented with 10% each of beef tallow, corn oil, perilla oil, and fish oil. Two separate experiments were performed to compare the effects of feeding periods, 4 weeks and 4 days. Hepatic and plasma TG levels were decreased in rats fed perilla oil and fish oil diets, compared with corn oil and beef tallow diets. The activities of hepatic lipogenic enzymes such as fatty acid synthase (FAS), glucose-6-phosphate dehydrogenase, and malic enzyme were suppressed in the fish oil, perilla oil, and corn oil-fed groups, and the effect was the most significant in the fish oil-fed group. Also, the activities of glycolytic enzymes, glucokinase, and L-pyruvate kinase showed the similar trend as that of lipogenic enzymes. The activity of FAS, the key regulatory enzyme in lipogenesis, was positively correlated with hepatic and plasma TG levels and reduced significantly in the perilla oil-fed group compared with corn oil-fed group. In addition, the FAS activity was negatively correlated with the hepatic microsomal content of EPA and DHA. In conclusion, suppression of FAS plays a significant role in the hypolipidemic effects observed in rats fed ALA rich perilla oil and these effects were associated with the increase of hepatic microsomal EPA and DHA contents.  相似文献   

18.
Administration of clofibrate for 21 days to rats increased the malic enzyme activity in the kidney cortex by about 80 per cent. This effect seems to be specific since the drug did not alter significantly the activity either of lactate dehydrogenase, citrate synthase or total mitochondrial protein content in this organ. The increase in activity of malic enzyme in the 13,000 g supernatant (extramitochondrial) fraction in rats treated with the drug was about 80 per cent, whereas in the pellet (mitochondrial fraction) it was about 40 per cent. The specific activity of malic enzyme in the kidney cortex cytosol from clofibrate-treated rats was about twice that in controls. In contrast clofibrate treatment did not affect its specific activity in isolated mitochondria. Calculations showed that 0.57 and 0.53 mumoles min-1 g-1 wet tissue of mitochondrial malic enzyme was obtained in control and clofibrate-treated rats respectively. Thus, clofibrate feeding increases the amount of cytoplasmic but not mitochondrial malic enzyme activity.  相似文献   

19.
20.
The effect of hyperthyroidism on the activity of the mitochondrial tricarboxylate carrier has been studied. The activity of this transporting system in liver mitochondria was quantitatively determined by the rate of malate-[14C]citrate exchange using the 1,2,3-benzene-tricarboxylate inhibitor stop technique. It has been found that the rate of citrate uptake is significantly enhanced in liver mitochondria from hyperthyroid rats as compared to that obtained in mitochondria from control rats. Kinetic analysis of the malate-citrate exchange reaction indicates that only the Vmax of this transporting process is enhanced, while there is practically no change in the Km values. Inhibitor titrations with the inhibitor palmitoyl-CoA show that mitochondria from hyperthyroid rats require the same concentrations of inhibitor to produce 100% inhibition of citrate uptake as control mitochondria, suggesting that the amount of functional translocase enzyme present is unaffected. The Arrhenius plot characteristics differ for tricarboxylate carrier activity in mitochondria from hyperthyroid rats as compared with control rats in that the break point of the biphasic plot decreases from 18.1 +/- 1.4 degrees C in controls to 12.9 +/- 1.2 degrees C in hyperthyroid animals. The hepatic mitochondrial lipid composition is altered significantly in hyperthyroid rats; the total cholesterol decreases and the phospholipids increase. The liver mitochondrial phospholipid composition is altered significantly in hyperthyroid rats. In particular negatively charged phospholipid cardiolipin increases by more than 50%. Minor alterations were found in the pattern of fatty acids. The thyroid hormone induced change in the activity of the tricarboxylate carrier can be ascribed either to a general modification of membrane lipid composition which increases the membrane fluidity and in turn the mobility of the carrier or to a more localized change of lipid domain (cardiolipin content) surrounding the carrier molecule in the mitochondrial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号