首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Azam SS  Zarina S 《Bioinformation》2012,8(5):239-242
Databases are integral part of bioinformatics and need to be accessed most frequently, thus downloading and updating them on a regular basis is very critical. The establishment of bioinformatics research facility is a challenge for developing countries as they suffer from inherent low-bandwidth and unreliable internet connections. Therefore, the identification of techniques supporting download and automatic synchronization of large biological database at low bandwidth is of utmost importance. In current study, two protocols (FTP and Bit Torrent) were evaluated and the utility of a BitTorren based peer-to-peer (btP2P) file distribution model for automatic synchronization and distribution of large dataset at our facility in Pakistan have been discussed.  相似文献   

2.
Biological network comparison using graphlet degree distribution   总被引:1,自引:0,他引:1  
MOTIVATION: Analogous to biological sequence comparison, comparing cellular networks is an important problem that could provide insight into biological understanding and therapeutics. For technical reasons, comparing large networks is computationally infeasible, and thus heuristics, such as the degree distribution, clustering coefficient, diameter, and relative graphlet frequency distribution have been sought. It is easy to demonstrate that two networks are different by simply showing a short list of properties in which they differ. It is much harder to show that two networks are similar, as it requires demonstrating their similarity in all of their exponentially many properties. Clearly, it is computationally prohibitive to analyze all network properties, but the larger the number of constraints we impose in determining network similarity, the more likely it is that the networks will truly be similar. RESULTS: We introduce a new systematic measure of a network's local structure that imposes a large number of similarity constraints on networks being compared. In particular, we generalize the degree distribution, which measures the number of nodes 'touching' k edges, into distributions measuring the number of nodes 'touching' k graphlets, where graphlets are small connected non-isomorphic subgraphs of a large network. Our new measure of network local structure consists of 73 graphlet degree distributions of graphlets with 2-5 nodes, but it is easily extendible to a greater number of constraints (i.e. graphlets), if necessary, and the extensions are limited only by the available CPU. Furthermore, we show a way to combine the 73 graphlet degree distributions into a network 'agreement' measure which is a number between 0 and 1, where 1 means that networks have identical distributions and 0 means that they are far apart. Based on this new network agreement measure, we show that almost all of the 14 eukaryotic PPI networks, including human, resulting from various high-throughput experimental techniques, as well as from curated databases, are better modeled by geometric random graphs than by Erd?s-Rény, random scale-free, or Barabási-Albert scale-free networks. AVAILABILITY: Software executables are available upon request.  相似文献   

3.
Modern 'omics'-technologies result in huge amounts of data about life processes. For analysis and data mining purposes this data has to be considered in the context of the underlying biological networks. This work presents an approach for integrating data from biological experiments into metabolic networks by mapping the data onto network elements and visualising the data enriched networks automatically. This methodology is implemented in DBE, an information system that supports the analysis and visualisation of experimental data in the context of metabolic networks. It consists of five parts: (1) the DBE-Database for consistent data storage, (2) the Excel-Importer application for the data import, (3) the DBE-Website as the interface for the system, (4) the DBE-Pictures application for the up- and download of binary (e. g. image) files, and (5) DBE-Gravisto, a network analysis and graph visualisation system. The usability of this approach is demonstrated in two examples.  相似文献   

4.
The deployment of wireless sensor networks for healthcare applications have been motivated and driven by the increasing demand for real-time monitoring of patients in hospital and large disaster response environments. A major challenge in developing such sensor networks is the need for coordinating a large number of randomly deployed sensor nodes. In this study, we propose a multi-parametric clustering scheme designed to aid in the coordination of sensor nodes within cognitive wireless sensor networks. In the proposed scheme, sensor nodes are clustered together based on similar network behaviour across multiple network parameters, such as channel availability, interference characteristics, and topological characteristics, followed by mechanisms for forming, joining and switching clusters. Extensive performance evaluation is conducted to study the impact on important factors such as clustering overhead, cluster joining estimation error, interference probability, as well as probability of reclustering. Results show that the proposed clustering scheme can be an excellent candidate for use in large scale cognitive wireless sensor network deployments with high dynamics.  相似文献   

5.
6.
With the world's population now in excess of 7 billion, it is vital to ensure the chemical and microbiological safety of our food, while maintaining the sustainability of its production, distribution and trade. Using UN databases, here we show that the international agro-food trade network (IFTN), with nodes and edges representing countries and import-export fluxes, respectively, has evolved into a highly heterogeneous, complex supply-chain network. Seven countries form the core of the IFTN, with high values of betweenness centrality and each trading with over 77% of all the countries in the world. Graph theoretical analysis and a dynamic food flux model show that the IFTN provides a vehicle suitable for the fast distribution of potential contaminants but unsuitable for tracing their origin. In particular, we show that high values of node betweenness and vulnerability correlate well with recorded large food poisoning outbreaks.  相似文献   

7.
Bioinformatics is increasingly recognised as a crucial field for research and development in the biological sciences, and forms an integral part of genomics, proteomics and modern biotechnology. Worldwide participation is important, and scientists in developing countries can contribute to this field. Regional networks for bioinformatics are highly beneficial for capacity strengthening and cooperation, and for establishing productive interactions between scientists in the fields of biological and informatics sciences. Such a network (LACBioNet) is being organised for Latin America and the Caribbean. Its immediate goals include the organisation and extension of nodes and services, information and communication, research and development in different specialty fields of bioinformatics, and training and human resource development.  相似文献   

8.
Bioinformatics and computational biology, along with the related fields of genomics, proteomics, functional genomics and systems biology are new wave scientific disciplines that harness composite computational power across networks to advance biological knowledge at the most basic level and to direct traditional laboratory-based research efforts in the biomedical sciences. 'Fostering the growth of bioinformatics and allied disciplines in the Asia-Pacific region' is the motto of the first regional bioinformatics society, the Asia-Pacific Bioinformatics Network (APBioNet). APBioNet addresses the issues of hardware, software, databases and networks pertaining to bioinformatics, with the additional layer of pertinent education, training and research. Recent milestones achieved include hosting an international bioinformatics symposium in Asia and setting up large-scale regional grid-computing projects.  相似文献   

9.
Boolean networks have been widely used to model biological processes lacking detailed kinetic information. Despite their simplicity, Boolean network dynamics can still capture some important features of biological systems such as stable cell phenotypes represented by steady states. For small models, steady states can be determined through exhaustive enumeration of all state transitions. As the number of nodes increases, however, the state space grows exponentially thus making it difficult to find steady states. Over the last several decades, many studies have addressed how to handle such a state space explosion. Recently, increasing attention has been paid to a satisfiability solving algorithm due to its potential scalability to handle large networks. Meanwhile, there still lies a problem in the case of large models with high maximum node connectivity where the satisfiability solving algorithm is known to be computationally intractable. To address the problem, this paper presents a new partitioning-based method that breaks down a given network into smaller subnetworks. Steady states of each subnetworks are identified by independently applying the satisfiability solving algorithm. Then, they are combined to construct the steady states of the overall network. To efficiently apply the satisfiability solving algorithm to each subnetwork, it is crucial to find the best partition of the network. In this paper, we propose a method that divides each subnetwork to be smallest in size and lowest in maximum node connectivity. This minimizes the total cost of finding all steady states in entire subnetworks. The proposed algorithm is compared with others for steady states identification through a number of simulations on both published small models and randomly generated large models with differing maximum node connectivities. The simulation results show that our method can scale up to several hundreds of nodes even for Boolean networks with high maximum node connectivity. The algorithm is implemented and available at http://cps.kaist.ac.kr/∼ckhong/tools/download/PAD.tar.gz.  相似文献   

10.
The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs.  相似文献   

11.
12.
Chatterjee S  Kumar D 《PloS one》2011,6(12):e28606
Cellular signaling networks display complex architecture. Defining the design principle of this architecture is crucial for our understanding of various biological processes. Using a mathematical model for three-node feed-forward loops, we identify that the organization of motifs in specific manner within the network serves as an important regulator of signal processing. Further, incorporating a systemic stochastic perturbation to the model we could propose a possible design principle, for higher-order organization of motifs into larger networks in order to achieve specific biological output. The design principle was then verified in a large, complex human cancer signaling network. Further analysis permitted us to classify signaling nodes of the network into robust and vulnerable nodes as a result of higher order motif organization. We show that distribution of these nodes within the network at strategic locations then provides for the range of features displayed by the signaling network.  相似文献   

13.
Identification of important nodes in complex networks has attracted an increasing attention over the last decade. Various measures have been proposed to characterize the importance of nodes in complex networks, such as the degree, betweenness and PageRank. Different measures consider different aspects of complex networks. Although there are numerous results reported on undirected complex networks, few results have been reported on directed biological networks. Based on network motifs and principal component analysis (PCA), this paper aims at introducing a new measure to characterize node importance in directed biological networks. Investigations on five real-world biological networks indicate that the proposed method can robustly identify actually important nodes in different networks, such as finding command interneurons, global regulators and non-hub but evolutionary conserved actually important nodes in biological networks. Receiver Operating Characteristic (ROC) curves for the five networks indicate remarkable prediction accuracy of the proposed measure. The proposed index provides an alternative complex network metric. Potential implications of the related investigations include identifying network control and regulation targets, biological networks modeling and analysis, as well as networked medicine.  相似文献   

14.
Complex networks serve as generic models for many biological systems that have been shown to share a number of common structural properties such as power-law degree distribution and small-worldness. Real-world networks are composed of building blocks called motifs that are indeed specific subgraphs of (usually) small number of nodes. Network motifs are important in the functionality of complex networks, and the role of some motifs such as feed-forward loop in many biological networks has been heavily studied. On the other hand, many biological networks have shown some degrees of robustness in terms of their efficiency and connectedness against failures in their components. In this paper we investigated how random and systematic failures in the edges of biological networks influenced their motif structure. We considered two biological networks, namely, protein structure network and human brain functional network. Furthermore, we considered random failures as well as systematic failures based on different strategies for choosing candidate edges for removal. Failure in the edges tipping to high degree nodes had the most destructive role in the motif structure of the networks by decreasing their significance level, while removing edges that were connected to nodes with high values of betweenness centrality had the least effect on the significance profiles. In some cases, the latter caused increase in the significance levels of the motifs.  相似文献   

15.
The brain''s structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e.g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a “fingerprint”. Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the “uncertainty” of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to compare networks. We also introduce general methods for model selection and network model parameter estimation, as well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we demonstrate the usefulness of the proposed methods by applying them to (1) protein-protein interaction networks of different species and (2) on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions. Also, we show that our proposed measures succeeded in the identification of topological changes in the network while other commonly used measures (number of edges, clustering coefficient, average path length) failed.  相似文献   

16.
17.
18.
Biological networks, such as cellular metabolic pathways or networks of corticocortical connections in the brain, are intricately organized, yet remarkably robust toward structural damage. Whereas many studies have investigated specific aspects of robustness, such as molecular mechanisms of repair, this article focuses more generally on how local structural features in networks may give rise to their global stability. In many networks the failure of single connections may be more likely than the extinction of entire nodes, yet no analysis of edge importance (edge vulnerability) has been provided so far for biological networks. We tested several measures for identifying vulnerable edges and compared their prediction performance in biological and artificial networks. Among the tested measures, edge frequency in all shortest paths of a network yielded a particularly high correlation with vulnerability and identified intercluster connections in biological but not in random and scale-free benchmark networks. We discuss different local and global network patterns and the edge vulnerability resulting from them.  相似文献   

19.
Analysis of network dynamics became a focal point to understand and predict changes of complex systems. Here we introduce Turbine, a generic framework enabling fast simulation of any algorithmically definable dynamics on very large networks. Using a perturbation transmission model inspired by communicating vessels, we define a novel centrality measure: perturbation centrality. Hubs and inter-modular nodes proved to be highly efficient in perturbation propagation. High perturbation centrality nodes of the Met-tRNA synthetase protein structure network were identified as amino acids involved in intra-protein communication by earlier studies. Changes in perturbation centralities of yeast interactome nodes upon various stresses well recapitulated the functional changes of stressed yeast cells. The novelty and usefulness of perturbation centrality was validated in several other model, biological and social networks. The Turbine software and the perturbation centrality measure may provide a large variety of novel options to assess signaling, drug action, environmental and social interventions.  相似文献   

20.
《Ecological Complexity》2007,4(3):148-159
We studied the importance of weighting in ecological interaction networks. Fifty-three weighted interaction networks were analyzed and compared to their unweighted alternatives, based on data taken from two standard databases. We used five network indices, each with weighting and unweighting options, to characterize the positional importance of nodes in these networks. For every network, we ranked the nodes according to their importance values, based on direct and indirect indices and then we compared the rank order of coefficients to reveal potential differences between network types and between indices. We found that (1) weighting affects node ordering very seriously, (2) food webs fundamentally differ from other network types in this respect, (3) direct and indirect indices provide fairly different results but indirect effects are similar if longer than two steps, and (4) the effect of weighting depends on the number of network nodes in case of direct interactions only. We concluded that the importance of interaction weights may depend on the evolutionary stability of interaction types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号