首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
目的探讨成肌调节因子MyoD和myogenin在不同月龄DMD模型鼠mdx鼠的表达情况。方法取不同月龄DMD模型鼠mdx鼠以及相应的同龄正常C57鼠的腓肠肌,冰冻切片后用HE染色显示肌肉病理,SABC-DAB染色检测成肌调节因子MyoD和myogenin的表达。结果不同月龄mdx鼠肌肉坏死和再生程度不同,MyoD和myogenin在1月龄mdx鼠表达最强,在13月龄mdx鼠仍有表达,在正常同龄C57鼠不表达。结论MyoD与Myogenin在肌肉损伤后的再生修复过程中起作用,可作为鉴定肌肉前体细胞和反映肌肉再生的指标。  相似文献   

2.
3.
Skeletal muscles are characterized as fast and slow muscles, according to the expression pattern of myosin heavy chain (MyHC) isoforms in the muscle fibers. To investigate the relationships between MyHC isoforms and myogenic regulatory factors (MRFs) including MyoD, Myf5, myogenin, and MRF4 in adult skeletal muscles, expressions of these MRFs in the ten muscles of three cows were analyzed by a semi-quantitative RT-PCR. The results showed that MyoD expression was significantly lower in the lingual muscles (TN), masseter (MS) and diaphragm (DP), which lack MyHC-2x (fast glycolytic) expression and abound with MyHC-slow (slow oxidative) and/or MyHC-2a (fast oxidative), than it was in the pectoralis (PP), psoas major (PM), longissimus thoracis (LT), spinnalis (SP), semitendinosus (ST), semimembranosus (SM), and biceps femoris (BF). In contrast, the Myf5 expression in TN, MS, and DP was significantly higher than in PM, LT, ST, SM, and BF. No significant difference was observed in myogenin and MRF4 expression among the muscles tested. The results suggest that MyoD and Myf5 influence the MyHC isoform expression, although the effects are not decisive in specifying the phenotypes of adult muscles.  相似文献   

4.
5.
Stimuli during pregnancy, such as protein restriction, can affect morphophysiological parameters in the offspring with consequences in adulthood. The phenomenon known as fetal programming can cause short- and long-term changes in the skeletal muscle phenotype. We investigated the morphology and the myogenic regulatory factors (MRFs) MyoD and myogenin expression in soleus, SOL; oxidative and slow twitching and in extensor digitorum longus, EDL; glycolytic and fast twitching muscles in the offspring of dams subjected to protein restriction during pregnancy. Four groups of male Wistar offspring rats were studied. Offspring from dams fed a low-protein diet (6?% protein, LP) and normal protein diet (17?% protein, NP) were euthanized at 30 and 112?days old, and their muscles were removed and kept at ?80?°C. Muscles histological sections (8?μm) were submitted to a myofibrillar adenosine triphosphatase histochemistry reaction for morphometric analysis. Gene and protein expression levels of MyoD and myogenin were determined by RT-qPCR and western blotting. The major findings observed were distinct patterns of morphological changes in SOL and EDL muscles in LP offspring at 30 and 112?days old without changes in MRFs MyoD and myogenin expression. Our results indicate that maternal protein restriction followed by normal diet after birth induced morphological changes in muscles with distinct morphofunctional characteristics over the long term, but did not alter the MRFs MyoD and myogenin expression. Further studies are necessary to better understand the mechanisms underlying the maternal protein restriction response on skeletal muscle.  相似文献   

6.
The purposes of the present study were to elucidate the influences of the deficiency of teeth on masticatory muscles, such as the masseter, temporalis and digastric muscles and compare the influence among masticatory muscles. We analysed the expressions of myosin heavy chain (MyHC) isoform messenger RNA (mRNA) and protein in these muscles in the microphthalmic (mi/mi) mouse, whose teeth cannot erupt because of a mutation in the mitf gene locus. The expression levels of MyHC mRNA and protein in the masseter, temporalis, digastric, tibialis anterior and gastrocnemius muscles of +/+ and mi/mi mice were analysed with real‐time polymerase chain reaction and sodium dodecyl sulfate‐polyacrylamide gel electrophoresis, respectively. The mi/mi masseter muscle at 8 weeks of age expressed 4·1‐fold (p < 0·05) and 3.3‐fold (p < 0·01) more MyHC neonatal mRNA and protein than that in the +/+, respectively; the expression level of MyHC neonatal protein was 19% of the total MyHC protein in the masseter muscle of mi/mi mice. In the digastric muscle, the expression levels of MyHC I mRNA and protein in the mi/mi mice were 4·7‐fold (p < 0·05) and 5‐fold (p < 0·01) higher than those in the +/+ mice. In the temporalis, tibialis anterior and gastrocnemius muscles, there was no significant difference in the expression levels of any MyHC isoform mRNA and protein between +/+ and mi/mi mice. These results indicate associations between the lack of teeth and the expression of MyHC in the masseter and digastric muscles but not such associations in the temporalis muscle, suggesting that the influence of tooth deficiency varies among the masticatory muscles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
8.
9.
10.
Insulin-like growth factor-1 (IGF-1) is a positive regulator in proliferation and differentiation of skeletal muscle cells, while myostatin (MSTN) is a member of transforming growth factor beta superfamily that acts as a negative regulator of skeletal muscle mass. The present study was performed to detail whether a correlation exists between MSTN and IGF-1 in skeletal muscle of IGF-1 knockout mice (IGF-1(-/-)) and their wild type (WT; i.e., IGF-1(+/+)) littermates. The body weight of IGF-1(-/-) animals was 32% that of WT littermates. The fiber cross-sectional areas (CSA) and number of fibers in M. rectus femoris of IGF-1(-/-) animals were 49 and 59% those of WT animals, respectively. Thus, muscle hypoplasia of IGF-1(-/-) undoubtedly was confirmed. Myostatin mRNA levels and protein levels were similar between M. gastrocnemius of IGF-1(-/-) and WT animals. Myostatin immunoreactivity was similarly localized in muscle fibers of both IGF-1(-/-) and WT M. rectus femoris. The mRNA levels of MyoD family (Myf5, MyoD, MRF4, myogenin) were differentially expressed in IGF-1(-/-)M. gastrocnemius, in which the mRNA expression of MRF4 and myogenin was significantly lower, whereas there were no changes in the mRNA expression of Myf5 and MyoD. These findings first describe that myostatin expression is not influenced by intrinsic failure of IGF-1, although MRF4 and myogenin are downregulated.  相似文献   

11.
12.
Marsh, Daniel R., David S. Criswell, James A. Carson, andFrank W. Booth. Myogenic regulatory factors during regeneration ofskeletal muscle in young, adult, and old rats. J. Appl. Physiol. 83(4): 1270-1275, 1997.Myogenicfactor mRNA expression was examined during muscle regeneration afterbupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of thetibialis anterior muscle in the young rats had recovered to controlvalues by 21 days postbupivacaine injection but in adult and old ratsremained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA wassignificantly increased in muscles of young, adult, and old rats 5 daysafter bupivacaine injection. Subsequently, myogenin mRNA levels inyoung rat muscle decreased to postinjection control values byday 21 but did not return to controlvalues in 28-day regenerating muscles of adult and old rats. Theexpression of MyoD mRNA was also increased in muscles atday 5 of regeneration in young, adult,and old rats, decreased to control levels by day14 in young and adult rats, and remained elevated inthe old rats for 28 days. In summary, either a diminished ability todownregulate myogenin and MyoD mRNAs in regenerating muscle occurs inold rat muscles, or the continuing myogenic effort includes elevatedexpression of these mRNAs.

  相似文献   

13.
14.
Muscle formation and postnatal growth is under the control of the muscle regulatory factors (MRF) gene family, consisting of four genes: MyoD1, myogenin, myf-5, and myf-6. Muscle mass is also known to be affected by specific drugs, like glucocorticoids. Glucocorticoids have also been characterized as muscle atrophying agents. However, glucocorticoids are also the only drugs reported to have a beneficial effect on the treatment of muscle degenerative disorders. Since muscle mass relates to gender, this may be partially caused by gender. The aim of this study is to investigate gender-related basal and dexamethasone-induced expression of the MRF genes. Gender-specific MRF mRNA levels were investigated in anterior tibial muscles of the rat. Myogenin, myf-5, and myf-6 mRNA level was significantly higher in female rats than in male rats. Since muscle mass is usually higher in males, we conclude that the development of gender-related differences in muscle mass is not primarily under the control of the mRNA levels of the MRF genes. Male rats treated with dexamethasone for 14 days (1 mg per kg body weight) showed increased levels of MyoD1, myogenin and myf-5 compared to control male rats. Female rats treated with dexamethasone showed decreased expression of myf-6 compared to control female rats. These results suggest that dexamethasone increase satellite cell-specific MRF activity in male muscle tissue, which is suggested to be associated with muscle hypertrophy, while maintenance of muscle tissue is affected in female muscle tissue. Therefore, we conclude that both basal and dexamethasone-induced MRF gene mRNA levels are regulated gender-specific.  相似文献   

15.
16.
17.
Excessive muscling in double-muscled cattle arises from mutations in the myostatin gene, but the role of myostatin in normal muscle development is unclear. The aim of this study was to measure the temporal relationship of myostatin and myogenic regulatory factors during muscle development in normal (NM)- and double-muscled (DM) cattle to determine the timing and possible targets of myostatin action in vivo. Myostatin mRNA peaked at the onset of secondary fiber formation (P < 0.001) and was greater in DM (P < 0.001) than in NM. MyoD expression was also elevated throughout primary and secondary fiber formation (P < 0.001) and greater in DM (P < 0.05). Expression of myogenin peaked later than MyoD (P < 0.05); however, it did not differ between NM and DM. These data show that myostatin and MyoD increase coincidentally during formation of muscle fibers, indicating a coordinated role in the terminal differentiation and/or fusion of myoblasts. Myostatin mRNA is also consistently higher in DM than NM, suggesting that a feedback loop of regulation is also disrupted in the myostatin-deficient condition.  相似文献   

18.
19.
MyoD-deficient mice are without obvious deleterious muscle phenotype during embryogenesis and fetal development, and adults in the laboratory have grossly normal skeletal muscle and life span. However, a previous study showed that in the context of muscle degeneration on a mdx (dystrophin null) genetic background, animals lacking MyoD have a greatly intensified disease phenotype leading to lethality not otherwise seen in mdx mice. Here we have examined MyoD(-/-) adult muscle fibers and their associated satellite cells in single myofiber cultures and describe major phenotypic differences found at the tissue, cellular, and molecular levels. The steady-state number of satellite cells on freshly isolated MyoD(-/-) fibers was elevated and abnormal branched fiber morphologies were observed, the latter suggesting chronic muscle regeneration in vivo. Single-cell RNA coexpression analyses were performed for c-met, m-cadherin, and the four myogenic regulatory factors (MRFs.) Most mutant satellite cells entered the cell cycle and upregulated expression of myf5, both characteristic early steps in satellite cell maturation. However, they later failed to normally upregulate MRF4, displayed a major deficit in m-cadherin expression, and showed a significant diminution in myogenin-positive status compared with wildtype. MyoD(-/-) satellite cells formed unusual aggregate structures, failed to fuse efficiently, and showed greater than 90% reduction in differentiation efficiency relative to wildtype. A further survey of RNAs encoding regulators of growth and differentiation, cell cycle progression, and cell signaling revealed similar or identical expression profiles for most genes as well as several noteworthy differences. Among these, GDF8 and Msx1 were identified as potentially important regulators of the quiescent state whose expression profile differs between mutant and wildtype. Considered together, these data suggest that activated MyoD(-/-) satellite cells assume a phenotype that resembles in some ways a developmentally "stalled" cell compared to wildtype. However, the MyoD(-/-) cells are not merely developmentally immature, as they also display novel molecular and cellular characteristics that differ from any observed in wild-type muscle precursor counterparts of any stage.  相似文献   

20.
The myogenic regulatory factors MyoD and myogenin are crucial for skeletal muscle development. Despite their importance, the mechanisms by which these factors selectively regulate different target genes are unclear. The purpose of the present investigation was to compare embryonic skeletal muscle from myogenin+/+ and myogenin−/− mice to identify genes whose expression was dependent on the presence of myogenin but not MyoD and to determine whether myogenin-binding sites could be found within regulatory regions of myogenin-dependent genes independent of MyoD. We identified a set of 140 muscle-expressed genes whose expression in embryonic tongue muscle of myogenin−/− mice was downregulated in the absence of myogenin, but in the presence of MyoD. Myogenin bound within conserved regulatory regions of several of the downregulated genes, but MyoD bound only to a subset of these same regions, suggesting that many downregulated genes were selective targets of myogenin. The regulatory regions activated gene expression in cultured myoblasts and fibroblasts overexpressing myogenin or MyoD, indicating that expression from exogenously introduced DNA could not recapitulate the selectivity for myogenin observed in vivo. The results identify new target genes for myogenin and show that myogenin's target gene selectivity is not based solely on binding site sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号