首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the effects of IL-18 on the development of CD8+ effector T cells in DBA/2 anti-BDF1 whole spleen cell MLC and compared the results with those of IL-12. Addition of IL-18 to the MLC resulted in a twofold increase in CD8/CD4 ratios compared with the control cultures when cells were expanded in IL-2-containing medium following MLC. Purified CD8+ T cells recovered from the IL-18-stimulated MLC produced 20- to 30-fold more IFN-gamma after secondary stimulation with C57BL/6 spleen cells or anti-CD3 mAb, and exhibited strong allospecific CTL activity. Neither IL-18 nor IL-18-supplemented culture supernatants from DBA/2 anti-BDF1 MLC induced type I CD8+ effector T cells when purified CD8+ T cells were used as responder cells in primary MLC. Furthermore, CD4+ T cell depletion from the responder cells abrogated the IL-18-induced increase in secondary IFN-gamma production by CD8+ T cells, suggesting that IL-18-induced type I effector CD8+ T cell development was CD4+ T cell dependent. In marked contrast, adding IL-12 to primary MLC decreased CD8/CD4 ratios by 50% and suppressed secondary IFN-gamma production and CTL activity by CD8+ T cells regardless of concentration, whereas Th1 development was promoted by IL-12. Moreover, both IL-12 and IL-18 efficiently induced type I CD8+ effector T cells in C57BL/6 anti-BDF1 MLC. These findings show that IL-18 plays an important role in the generation of type I CD8+ effector T cells, and further suggest that functional maturation of CD8+ T cells is differentially regulated by IL-18 and IL-12.  相似文献   

2.
3.
Generation of CD8 T cell memory is regulated by IL-12   总被引:2,自引:0,他引:2  
Various signals during infection influence CD8 T cell memory generation, but these factors have yet to be fully defined. IL-12 is a proinflammatory cytokine that has been shown to enhance IFN-gamma-producing T cell responses and has been widely tested as a vaccine adjuvant. In this study, we show that IL-12-deficient mice generate a weaker primary CD8 T cell response and are more susceptible to Listeria monocytogenes infection, but have substantially more memory CD8 T cells and greater protective immunity against reinfection. Kinetic analyses show that in the absence of IL-12 there is a reduced contraction of Ag-specific CD8 T cells and a gradual increase in memory CD8 T cells as a result of increased homeostatic renewal. By signaling directly through its receptor on CD8 T cells, IL-12 influences their differentiation to favor the generation of fully activated effectors, but hinders the formation of CD8 T cell memory precursors and differentiation of long-term CD8 T cell memory(.) These results have implications for understanding memory T cell development and enhancing vaccine efficacy, and offer new insight into the role of IL-12 in coordinating the innate and adaptive immune response.  相似文献   

4.
IL-17 is a cytokine produced by T cells in response to IL-23. Recent data support a new subset of CD4 Th cells distinct from Th1 or Th2 cells that produce IL-17 and may contribute to inflammation. In this study, we demonstrate that, in naive mice, as well as during Mycobacterium tuberculosis infection, IL-17 production is primarily from gammadelta T cells and other non-CD4(+)CD8(+) cells, rather than CD4 T cells. The production of IL-17 by these cells is stimulated by IL-23 alone, and strongly induced by the cytokines, including IL-23, produced by M. tuberculosis-infected dendritic cells. IL-23 is present in the lungs early in infection and the IL-17-producing cells, such as gammadelta T cells, may represent a central innate protective response to pulmonary infection.  相似文献   

5.
IL-27, a regulatory cytokine, plays critical roles in the prevention of immunopathology during Plasmodium infection. We examined these roles in the immune responses against Plasmodium chabaudi infection using the Il-27ra−/− mice. While IL-27 was expressed at high levels during the early phase of the infection, enhanced CD4+ T cell function and reduction in parasitemia were observed mainly during the chronic phase in the mutant mice. In mice infected with P. chabaudi and cured with drug, CD4+ T cells in the Il-27ra−/− mice exhibited enhanced CD4+ T-cell responses, indicating the inhibitory role of IL-27 on the protective immune responses. To determine the role of IL-27 in detail, we performed CD4+ T-cell transfer experiments. The Il-27ra−/− and Il27p28−/− mice were first infected with P. chabaudi and then cured using drug treatment. Plasmodium-antigen primed CD4+ T cells were prepared from these mice and transferred into the recipient mice, followed by infection with the heterologous parasite P. berghei ANKA. Il-27ra−/− CD4+ T cells in the infected recipient mice did not produce IL-10, indicating that IL-10 production by primed CD4+ T cells is IL-27 dependent. Il27p28−/− CD4+ T cells that were primed in the absence of IL-27 exhibited enhanced recall responses during the challenge infection with P. berghei ANKA, implying that IL-27 receptor signaling during the primary infection affects recall responses in the long-term via the regulation of the memory CD4+ T cell generation. These features highlighted direct and time-transcending roles of IL-27 in the regulation of immune responses against chronic infection with Plasmodium parasites.  相似文献   

6.
IL-10 producing T cells inhibit Ag-specific CD8+ T cell responses and may play a role in the immune dysregulation observed in HIV infection. We have previously observed the presence of HIV-specific IL-10-positive CD8+ T cells in advanced HIV disease. In this study, we examined the suppressive function of the Gag-specific IL-10-positive CD8+ T cells. Removal of these IL-10-positive CD8+ T cells resulted in increased cytolysis and IL-2, but not IFN-gamma, production by both HIV- and human CMV-specific CD8+ T cells. In addition, these IL-10-positive CD8+ T cells mediated suppression through direct cell-cell contact, and had a distinct immunophenotypic profile compared with other regulatory T cells. We describe a new suppressor CD8+ T cell population in advanced HIV infection that may contribute to the immune dysfunction observed in HIV infection.  相似文献   

7.
Memory T cells (T(M)) are able to rapidly exert effector functions, including immediate effector cytokine production upon re-encounter with Ag, which is critical for protective immunity. Furthermore, this poised state is maintained as T(M) undergo homeostatic proliferation over time. We examined the molecular basis underlying this enhanced functional capacity in CD8 T(M) by comparing them to defective CD8 T(M) generated in the absence of CD4 T cells. Unhelped CD8 T(M) are defective in many functions, including the immediate expression of cytokines, such as IL-2 and IFN-gamma. Our data show that this defect in IL-2 and IFN-gamma production is independent of clonal selection, functional avidity maturation, and the integrity of proximal TCR signaling, but rather involves epigenetic modification of these cytokine genes. Activated Ag-specific CD8 T cells exhibit rapid DNA demethylation at the IL-2 and IFN-gamma loci and substantial histone acetylation at the IFN-gamma promoter and enhancer regions. These epigenetic modifications occur early after infection at the effector stage and are maintained through memory development. However, activated unhelped CD8 T cells, which fail to develop into functional memory and are incapable of rapid cytokine production, exhibit increased DNA methylation at the IL-2 promoter and fail to acetylate histones at the IFN-gamma locus. Thus, CD4 T cell help influences epigenetic modification during CD8 T(M) differentiation and these epigenetic changes provide a molecular basis for the enhanced responsiveness and the maintenance of a "ready-to-respond" state in CD8 T(M).  相似文献   

8.
IL-15 regulates CD8+ T cell contraction during primary infection   总被引:3,自引:0,他引:3  
During the course of acute infection with an intracellular pathogen, Ag-specific T cells proliferate in the expansion phase, and then most of the T cells die by apoptosis in the following contraction phase, but the few that survive become memory cells and persist for a long period of time. Although IL-15 is known to play an important role in long-term maintenance of memory CD8+ T cells, the potential roles of IL-15 in CD8+ T cell contraction are not known. Using an adoptive transfer system of OT-I cells expressing OVA257-264/Kb-specific TCR into control, IL-15 knockout (KO) and IL-15 transgenic (Tg) mice followed by challenge with recombinant Listeria monocytogenes expressing OVA, we found that the survival of CD44+CD62L-CD127- effector OT-I cells during the contraction phase is critically dependent on IL-15. In correlation with the expression level of Bcl-2 in OT-I cells, the number of OT-I cells was markedly reduced in IL-15 KO mice but remained at a high level in IL-15 Tg mice during the contraction phase, compared with control mice. In vivo administration of rIL-15 during the contraction phase in IL-15 KO mice inhibited the contraction of effector OT-I cells accompanied by up-regulation of Bcl-2 expression. Furthermore, enforced expression of Bcl-2 protected the majority of effector OT-I cells from death in IL-15 KO mice after infection. These results suggest that IL-15 plays a critical role in protecting effector CD8+ T cells from apoptosis during the contraction phase following a microbial infection via inducing antiapoptotic molecules.  相似文献   

9.
An immunoinhibitory role of B7 homologue 1 (B7-H1) expressed by non-T cells has been established; however, the function of B7-H1 expressed by T cells is not clear. Peak expression of B7-H1 on Ag-primed CD8 T cells was observed during the contraction phase of an immune response. Unexpectedly, B7-H1 blockade at this stage reduced the numbers of effector CD8 T cells, suggesting B7-H1 blocking Ab may disturb an unknown function of B7-H1 expressed by CD8 T cells. To exclusively examine the role of B7-H1 expressed by T cells, we introduced B7-H1 deficiency into TCR transgenic (OT-1) mice. Naive B7-H1-deficient CD8 T cells proliferated normally following Ag stimulation; however, once activated, they underwent more robust contraction in vivo and more apoptosis in vitro. In addition, B7-H1-deficient CD8 T cells were more sensitive to Ca-dependent and Fas ligand-dependent killing by cytotoxic T lymphocytes. Activation-induced Bcl-x(L) expression was lower in activated B7-H1-deficient CD8 T cells, whereas Bcl-2 and Bim expression were comparable to the wild type. Transfer of effector B7-H1-deficient CD8 T cells failed to suppress tumor growth in vivo. Thus, upregulation of B7-H1 on primed T cells helps effector T cells survive the contraction phase and consequently generate optimal protective immunity.  相似文献   

10.
Virus-specific T cells represent a hallmark of Ag-specific, adaptive immunity. However, some T cells also demonstrate innate functions, including non-Ag-specific IFN-gamma production in response to microbial products such as LPS or exposure to IL-12 and/or IL-18. In these studies we examined LPS-induced cytokine responses of CD8(+) T cells directly ex vivo. Following acute viral infection, 70-80% of virus-specific T cells will produce IFN-gamma after exposure to LPS-induced cytokines, and neutralization experiments indicate that this is mediated almost entirely through production of IL-12 and IL-18. Different combinations of these cytokines revealed that IL-12 decreases the threshold of T cell activation by IL-18, presenting a new perspective on IL-12/IL-18 synergy. Moreover, memory T cells demonstrate high IL-18R expression and respond effectively to the combination of IL-12 and IL-18, but cannot respond to IL-18 alone, even at high cytokine concentrations. This demonstrates that the synergy between IL-12 and IL-18 in triggering IFN-gamma production by memory T cells is not simply due to up-regulation of the surface receptor for IL-18, as shown previously with naive T cells. Together, these studies indicate how virus-specific T cells are able to bridge the gap between innate and adaptive immunity during unrelated microbial infections, while attempting to protect the host from cytokine-induced immunopathology and endotoxic shock.  相似文献   

11.
Although the adaptive immune system has a remarkable ability to mount rapid recall responses to previously encountered pathogens, the cellular and molecular signals necessary for memory CD8(+) T cell reactivation are poorly defined. IL-15 plays a critical role in memory CD8(+) T cell survival; however, whether IL-15 is also involved in memory CD8(+) T cell reactivation is presently unclear. Using artificial Ag-presenting surfaces prepared on cell-sized microspheres, we specifically addressed the role of IL-15 transpresentation on mouse CD8(+) T cell activation in the complete absence of additional stimulatory signals. In this study we demonstrate that transpresented IL-15 is significantly more effective than soluble IL-15 in augmenting anti-CD3epsilon-induced proliferation and effector molecule expression by CD8(+) T cells. Importantly, IL-15 transpresentation and TCR ligation by anti-CD3epsilon or peptide MHC complexes exhibited synergism in stimulating CD8(+) T cell responses. In agreement with previous studies, we found that transpresented IL-15 preferentially stimulated memory phenotype CD8(+) T cells; however, in pursuing this further, we found that central memory (T(CM)) and effector memory (T(EM)) CD8(+) T cells responded differentially to transpresented IL-15. T(CM) CD8(+) T cells undergo Ag-independent proliferation in response to transpresented IL-15 alone, whereas T(EM) CD8(+) T cells are relatively unresponsive to transpresented IL-15. Furthermore, upon Ag-specific stimulation, T(CM) CD8(+) T cell responses are enhanced by IL-15 transpresentation, whereas T(EM) CD8(+) T cell responses are only slightly affected, both in vitro and in vivo. Thus, our findings distinguish the role of IL-15 transpresentation in the stimulation of distinct memory CD8(+) T cell subsets, and they also have implications for ex vivo reactivation and expansion of Ag-experienced CD8(+) T cells for immunotherapeutic approaches.  相似文献   

12.
Anergy is an important mechanism of maintaining peripheral immune tolerance. T cells rendered anergic are refractory to further stimulation and are characterized by defective proliferation and IL-2 production. We used a model of in vivo anergy induction in murine CD8+ T cells to analyze the initial signaling events in anergic T cells. Tolerant T cells displayed reduced phospholipase Cgamma activation and calcium mobilization, indicating a defect in calcium signaling. This correlated with a block in nuclear localization of NFAT1 in anergic cells. However, we found that stimulation of anergic, but not naive T cells induced nuclear translocation of NFAT2. This suggested that NFAT2 is activated preferentially by reduced calcium signaling, and we confirmed this hypothesis by stimulating naive T cells under conditions of calcium limitation or partial calcineurin inhibition. Thus, our work provides new insight into how T cell stimulation conditions might dictate specific NFAT isoform activation and implicates NFAT2 involvement in the expression of anergy-related genes.  相似文献   

13.
The roles(s) of CD8 T cells during infections by intracellular bacteria that reside in host cell endocytic compartments are not well understood. Our previous studies in a mouse model of human monocytotropic ehrlichiosis indicated that CD8 T cells are not essential for immunity. However, we have observed an unexpected role for these cells during challenge infection. Although immunocompetent mice cleared a primary low-dose (nonfatal) Ixodes ovatus ehrlichia infection, a secondary low-dose challenge infection resulted in fatal disease and loss of control of infection. The outcome was CD8-dependent, because CD8-deficient mice survived secondary low-dose challenge infection. Moreover, effector and/or memory phenotype CD8 T cells were responsible, because adoptive transfer of purified CD44(high) CD8 T cells to naive mice induced fatal responses following a primary low-dose infection. The fatal responses were perforin- and Fas ligand-independent, and were associated with high serum concentrations of TNF-alpha and CCL2, and low levels of IL-10. Accordingly, blockade of either TNF-alpha or CCL2 ameliorated fatal recall responses, and in vitro coculture of memory CD8 T cells and Ixodes ovatus ehrlichia-infected peritoneal exudate cells resulted in substantial increases in TNF-alpha and CCL2. Thus, during monocytotropic ehrlichiosis, inflammatory cytokine production, by CD8 T cells and/or other host cells, can trigger chemokine-dependent disease. These findings highlight a novel role for CD8 T cells, and reveal that live vaccines for intracellular bacteria can, under some conditions, induce undesirable consequences.  相似文献   

14.
Memory CD8 T cells mediate rapid and effective immune responses against previously encountered Ags. However, these cells display considerable phenotypic and functional heterogeneity. In an effort to identify parameters that correlate with immune protection, we compared cell surface markers, proliferation, and cytokine production of distinct virus- and tumor-specific human CD8 populations. Phenotypic analysis of epitope-specific CD8 T cells showed that Ag specificity is associated with distinct CCR7/CD45RA expression profiles, suggesting that Ag recognition drives the expression of these molecules on effector/memory T cells. Moreover, the majority of central memory T cells (CD45RAlowCCR7dull) secreting cytokines in response to an EBV epitope produces both IL-2 and IFN-gamma, whereas effector memory CD8 cells (CD45RAdullCCR7-) found in EBV, CMV, or Melan-A memory pools are mostly composed of cells secreting exclusively IFN-gamma. However, these various subsets, including Melan-A-specific effector memory cells differentiated in cancer patients, display similar Ag-driven proliferation in vitro. Our findings show for the first time that human epitope-specific CD8 memory pools differ in IL-2 production after antigenic stimulation, although they display similar intrinsic proliferation capacity. These results provide new insights in the characterization of human virus- and tumor-specific CD8 lymphocytes.  相似文献   

15.
Cytokines are increasingly recognized as important components of the cellular immune responses to intracellular pathogens. In this study, we analyzed the production of TGF-β, IL-10 and IFN-γ by PBMC of unexposed naïve subjects and LCL patients after stimulation with live Leishmania guyanensis (L.g.). We demonstrated that IFN-γ is produced in controls and LCL patients, IL-10 only in LCL patients and TGF-β only in naïve subjects. Furthermore, in naive subjects, neutralization of TGF-β induced IL-10 production. IL-10 produced in naïve subjects when TGF-β is neutralized or in LCL patients did not modify the IFN-γ production but inhibit reactive nitrogen species production. Analysis of the phenotype of IL-10 producing cells in naive subjects when TGF-β is neutralized clearly showed that they are memory CD45RA CD8+ T cells. In LCL patients, IL-10 producing cells are both CD45RA CD4 and CD8+ T cells. The role of these IL-10 producing CD8+ T cells in the development of the diseases should be carefully evaluated.  相似文献   

16.
Progressive disease caused by pathogenic SIV/HIV infections is marked by systemic hyperimmune activation, immune dysregulation, and profound depletion of CD4(+) T cells in lymphoid and gastrointestinal mucosal tissues. IL-17 is important for protective immunity against extracellular bacterial infections at mucosa and for maintenance of mucosal barrier. Although IL-17-secreting CD4 (Th17) and CD8 (Tc17) T cells have been reported, very little is known about the latter subset for any infectious disease. In this study, we characterized the anatomical distribution, phenotype, and functional quality of Tc17 and Th17 cells in healthy (SIV-) and SIV+ rhesus macaques. In healthy macaques, Tc17 and Th17 cells were present in all lymphoid and gastrointestinal tissues studied with predominance in small intestine. About 50% of these cells coexpressed TNF-α and IL-2. Notably, ~50% of Tc17 cells also expressed the co-inhibitory molecule CTLA-4, and only a minority (<20%) expressed granzyme B suggesting that these cells possess more of a regulatory than cytotoxic phenotype. After SIV infection, unlike Th17 cells, Tc17 cells were not depleted during the acute phase of infection. However, the frequency of Tc17 cells in SIV-infected macaques with AIDS was lower compared with that in healthy macaques demonstrating the loss of these cells during end-stage disease. Antiretroviral therapy partially restored the frequency of Tc17 and Th17 cells in the colorectal mucosa. Depletion of Tc17 cells was not observed in colorectal mucosa of chronically infected SIV+ sooty mangabeys. In conclusion, our results suggest a role for Tc17 cells in regulating disease progression during pathogenic SIV infection.  相似文献   

17.
Naive T cells undergo slow homeostatic proliferation in response to T cell lymphopenia, which is also called lymphopenia-induced proliferation (LIP). IL-7 is critically required for this process, but previous studies suggested IL-15 was expendable for LIP of naive CD8 T cells. In contrast, we show that IL-15 is important for sustained CD8 T cell proliferation and accumulation in a lymphopenic setting, as revealed by truncated LIP in IL-15(-/-) hosts. At the same time, we find that IL-12 enhances LIP by acting directly on the CD8 T cells and independently of IL-15, suggesting distinct pathways by which cytokines can regulate homeostatic proliferation. Interestingly, the memory-phenotype CD8 T cell generated by LIP in IL-15(-/-) hosts are phenotypically distinct from the rare endogenous memory-phenotype cells found in IL-15(-/-) animals, suggesting these cells are generated by different means. These findings demonstrate that cytokine requirements for LIP change during the process itself, illustrating the need to identify factors that regulate successive stages of lymphopenia-driven proliferation.  相似文献   

18.
19.
Upon encounter of viral Ags in an inflammatory environment, dendritic cells up-regulate costimulatory molecules and the chemokine receptor CCR7, with the latter being pivotal for their migration to the lymph node. By utilizing mice deficient in CCR7, we have examined the requirement of dendritic cell-mediated Ag transport from the lung to the draining lymph node for the induction of anti-influenza immune responses in vivo. We found that CCR7-mediated migration of dendritic cells was more crucial for CD8(+) T cell than CD4(+) T cell responses. While no specific CD8(+) T cell response could be detected in the airways or lymphoid tissues during the primary infection, prolonged infection in CCR7-deficient mice did result in a sustained inflammatory chemokine profile, which led to nonspecific CD8(+) T cell recruitment to the airways. The recruitment of influenza-specific CD4(+) T cells to the airways was also below levels of detection in the absence of CCR7 signaling, although a small influenza-specific CD4(+) T cell population was detectable in the draining lymph node, which was sufficient for the generation of class-switched anti-influenza Abs and a normal CD4(+) T cell memory population. Overall, our data show that CCR7-mediated active Ag transport is differentially required for CD4(+) and CD8(+) T cell expansion during influenza infection.  相似文献   

20.
Gene expression in antigen-specific CD8+ T cells during viral infection   总被引:3,自引:0,他引:3  
Following infection with intracellular pathogens, Ag-specific CD8(+) T cells become activated and begin to proliferate. As these cells become activated, they elaborate effector functions including cytokine production and cytolysis. After the infection has been cleared, the immune system returns to homeostasis through apoptosis of the majority of the Ag-specific effector cells. The surviving memory cells can persist for extended periods and provide protection against reinfection. Little is known about the changes in gene expression as Ag-specific cells progress through these stages of development, i.e., naive to effector to memory. Using recombinant MHC class I tetramers, we isolated Ag-specific CD8(+) T cells from mice infected with lymphocytic choriomeningitis virus at various time points and performed semiquantitative RT-PCR. We examined expression of: 1) genes involved in cell cycle control, 2) effector and regulatory functions, and 3) susceptibility to apoptosis. We found that Ag-specific CD8(+) memory T cells contain high steady-state levels of Bcl-2, BAX:, IFN-gamma, and lung Kruppel-like factor (LKLF), and decreased levels of p21 and p27 mRNA. Moreover, the pattern of gene expression between naive and memory cells is distinct and suggests that these two cell types control susceptibility to apoptosis through different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号