首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Triton X-114 solutions separate above 22 degrees C into two immiscible aqueous phases. The more dense phase is enriched in detergent, and the less dense phase is depleted of detergent, relative to the original single phase. This phenomenon has been used to partition proteins according to hydrophobicity. The phase separation temperature is sensitive to the length of the polyoxyethylene headgroup. When Triton X-45, with a shorter headgroup, is mixed with Triton X-114 in various proportions, the phase transition temperature can be adjusted anywhere between 0 and 22 degrees C. Partitioning properties of the resulting mixtures are similar to those of Triton X-114 alone.  相似文献   

2.
Extraction systems for hydrophobically tagged proteins have been developed based on phase separation in aqueous solutions of non-ionic detergents and polymers. The systems have earlier only been applied for separation of membrane proteins. Here, we examine the partitioning and purification of the amphiphilic fusion protein endoglucanase I(core)-hydrophobin I (EGI(core)-HFBI) from culture filtrate originating from a Trichoderma reesei fermentation. The micelle extraction system was formed by mixing the non-ionic detergent Triton X-114 or Triton X-100 with the hydroxypropyl starch polymer, Reppal PES100. The detergent/polymer aqueous two-phase systems resulted in both better separation characteristics and increased robustness compared to cloud point extraction in a Triton X-114/water system. Separation and robustness were characterized for the parameters: temperature, protein and salt additions. In the Triton X-114/Reppal PES100 detergent/polymer system EGI(core)-HFBI strongly partitioned into the micelle-rich phase with a partition coefficient (K) of 15 and was separated from hydrophilic proteins, which preferably partitioned to the polymer phase. After the primary recovery step, EGI(core)-HFBI was quantitatively back-extracted (K(EGIcore-HFBI)=150, yield=99%) into a water phase. In this second step, ethylene oxide-propylene oxide (EOPO) copolymers were added to the micelle-rich phase and temperature-induced phase separation at 55 degrees C was performed. Total recovery of EGI(core)-HFBI after the two separation steps was 90% with a volume reduction of six times. For thermolabile proteins, the back-extraction temperature could be decreased to room temperature by using a hydrophobically modified EOPO copolymer, with slightly lower yield. The addition of thermoseparating co-polymer is a novel approach to remove detergent and effectively releases the fusion protein EGI(core)-HFBI into a water phase.  相似文献   

3.
Rat intestinal microvillus membrane contains at least 24 polypeptides, of which 18 can be solubilized using Triton X-114 at 4 degrees C. Upon phase separation at 32 degrees C, 11 proteins separated nearly completely into the detergent-rich phase, while 9 proteins were found exclusively in the aqueous phase. Enzymes which were uniquely included in the detergent phase were alkaline phosphatase, leucine aminopeptidase, gamma-glutamyl transpeptidase, and Ca2+-Mg2+ ATPase. The proteins which were excluded from the detergent phase and found exclusively in the aqueous phase included the disaccharidases (glucoamylase, sucrase-isomaltase, trehalase, lactase) and the ileal receptor for the intrinsic factor-cobalamin complex. Integral membrane proteins can thus be separated during solubilization into two groups prior to further purification or characterization.  相似文献   

4.
After solubilization with the detergent Triton X-114, membrane proteins may be separated into three groups: if the membrane is sufficiently lipid-rich, one family of hydrophobic constituents separates spontaneously at low temperature; warming at 30 degrees C leads to separation of a detergent-rich phase and an aqueous phase. Using the chromaffin-granule membrane as a model, we found that many intrinsic membrane glycoproteins are found in the latter phase, probably maintained in solution by adherent detergent. They precipitate, however, when this is removed by dialysis, leaving in solution those truly hydrophilic proteins that were originally adhering to the membranes. We have used this method with mitochondria, and with Golgi- and rough-endoplasmic-reticulum-enriched microsomal fractions: it has proved to be a rapid and convenient method for effecting a partial separation of proteins from a variety of different membranes.  相似文献   

5.
The effects of the nonionic detergent Triton X-114 on the ultrastructure of Treponema pallidum subsp. pallidum are presented in this study. Treatment of Percoll-purified motile T. pallidum with a 1% concentration of Triton X-114 resulted in cell surface blebbing followed by lysis of blebs and a decrease in diameter from 0.25-0.35 micron to 0.1-0.15 micron. Examination of thin sections of untreated Percoll-purified T. pallidum showed integrity of outer and cytoplasmic membranes. In contrast, thin sections of Triton X-114-treated treponemes showed integrity of the cytoplasmic membrane but loss of the outer membrane. The cytoplasmic cylinders generated by detergent treatment retained their periplasmic flagella, as judged by electron microscopy and immunoblotting. Recently identified T. pallidum penicillin-binding proteins also remained associated with the cytoplasmic cylinders. Proteins released by Triton X-114 at 4 degrees C were divided into aqueous and hydrophobic phases after incubation at 37 degrees C. The hydrophobic phase had major polypeptide constituents of 57, 47, 38, 33-35, 23, 16, and 14 kilodaltons (kDa) which were reactive with syphilitic serum. The 47-kDa polypeptide was reactive with a monoclonal antibody which has been previously shown to identify a surface-associated T. pallidum antigen. The aqueous phase contained the 190-kDa ordered ring molecule, 4D, which has been associated with the surface of the organisms. Full release of the 47- and 190-kDa molecules was dependent on the presence of a reducing agent. These results indicate that 1% Triton X-114 selectively solubilizes the T. pallidum outer membrane and associated proteins of likely outer membrane location.  相似文献   

6.
《The Journal of cell biology》1988,107(6):2679-2688
Cilia were isolated from Tetrahymena thermophila, extracted with Triton X-114, and the detergent-soluble membrane + matrix proteins separated into Triton X-114 aqueous and detergent phases. The aqueous phase polypeptides include a high molecular mass polypeptide previously identified as a membrane dynein, detergent-soluble alpha and beta tubulins, and numerous polypeptides distinct from those found in axonemes. Integral membrane proteins partition into the detergent phase and include two major polypeptides of 58 and 50 kD, a 49-kD polypeptide, and 5 polypeptides in relatively minor amounts. The major detergent phase polypeptides are PAS-positive and are phosphorylated in vivo. A membrane-associated ATPase, distinct from the dynein-like protein, partitions into the Triton X-114 detergent phase and contains nearly 20% of the total ciliary ATPase activity. The ATPase requires Mg++ or Ca++ and is not inhibited by ouabain or vanadate. This procedure provides a gentle and rapid technique to separate integral membrane proteins from those that may be peripherally associated with the matrix or membrane.  相似文献   

7.
Acetylcholinesterase has been isolated from bovine erythrocyte membranes by affinity chromatography using a m-trimethylammonium ligand. The purified enzyme had hydrophobic properties by the criterion of phase partitioning into Triton X-114. The activity of the hydrophobic enzyme was seen as a slow-moving band in nondenaturing polyacrylamide gels. After treatment with phosphatidylinositol-specific phospholipase C, another form of active enzyme was produced that migrated more rapidly toward the anode in these gels. This form of the enzyme partitioned into the aqueous phase in Triton X-114 phase separation experiments and was therefore hydrophilic. The hydrophobic form bound to concanavalin A in the absence of Triton X-100. As this binding was partially prevented by detergent, but not by alpha-methyl mannoside, D-glucose, or myo-inositol, it is in part hydrophobic. Erythrocyte cell membranes showed acetylcholinesterase activity present as a major form, which was hydrophobic by Triton X-114 phase separation and in nondenaturing gel electrophoresis moved at the same rate as the purified enzyme. In the membrane the enzyme was more thermostable than when purified in detergent. The hydrophobic enzyme isolated, therefore, represents a native form of the acetylcholinesterase present in the bovine erythrocyte cell membrane, but in isolation its stability becomes dependent on amphiphile concentration. Its hydrophobic properties and lectin binding are attributable to the association with the protein of a lipid with the characteristics of a phosphatidylinositol.  相似文献   

8.
Extraction systems for hydrophobically tagged proteins have been developed based on phase separation in aqueous solutions of non-ionic detergents and polymers. The systems have earlier only been applied for separation of membrane proteins. Here, we examine the partitioning and purification of the amphiphilic fusion protein endoglucanase Icore–hydrophobin I (EGIcore–HFBI) from culture filtrate originating from a Trichoderma reesei fermentation. The micelle extraction system was formed by mixing the non-ionic detergent Triton X-114 or Triton X-100 with the hydroxypropyl starch polymer, Reppal PES100. The detergent/polymer aqueous two-phase systems resulted in both better separation characteristics and increased robustness compared to cloud point extraction in a Triton X-114/water system. Separation and robustness were characterized for the parameters: temperature, protein and salt additions. In the Triton X-114/Reppal PES100 detergent/polymer system EGIcore–HFBI strongly partitioned into the micelle-rich phase with a partition coefficient (K) of 15 and was separated from hydrophilic proteins, which preferably partitioned to the polymer phase. After the primary recovery step, EGIcore–HFBI was quantitatively back-extracted (KEGIcore–HFBI=150, yield=99%) into a water phase. In this second step, ethylene oxide–propylene oxide (EOPO) copolymers were added to the micelle-rich phase and temperature-induced phase separation at 55°C was performed. Total recovery of EGIcore–HFBI after the two separation steps was 90% with a volume reduction of six times. For thermolabile proteins, the back-extraction temperature could be decreased to room temperature by using a hydrophobically modified EOPO copolymer, with slightly lower yield. The addition of thermoseparating co-polymer is a novel approach to remove detergent and effectively releases the fusion protein EGIcore–HFBI into a water phase.  相似文献   

9.
Peroxisomes from mouse liver were fractionated with Triton X-114, a procedure which yields a detergent phase consisting of proteins containing hydrophobic binding sites, and a nondetergent, or aqueous, phase containing hydrophilic proteins. When this method was applied to peroxisomes from control mice, catalase and fatty acyl-CoA oxidase distributed to the aqueous phase, whereas the integral membrane protein, PMP68, and the bifunctional protein were recovered exclusively in the detergent phase. Urate oxidase distributed intermediate between these two phases. With peroxisomes from mice treated with the peroxisome proliferator clofibrate, the bifunctional protein was recovered in both the detergent and the aqueous phases, and urate oxidase was shifted toward the aqueous phase. Other analyses of the subperoxisomal distribution of the bifunctional protein were consistent with a proportion of this protein being tightly associated with the peroxisomal membrane, or with some other uncharacterized, poorly soluble, component. Sucrose gradient centrifugation of the aqueous phase resulting from Triton X-114 fractionation of peroxisomes revealed that a major proportion of catalase, fatty acyl-CoA oxidase, the bifunctional protein, and other unidentified proteins behaved as if associated under these conditions. In this respect, use of a higher concentration of Triton X-114 for peroxisome fractionation led to the partitioning of some catalase and fatty acyl-CoA oxidase to the detergent phase, indicating the presence of some detergent-accessible hydrophobic binding sites even on these proteins. These data have been interpreted as indicating matrix protein associations in vivo, associations which may be responsive to proliferator treatment.  相似文献   

10.
35S-Labeled adenovirus type 2 (Ad2) (10 ng/ml) was incubated with 1% Triton X-114 at various pH values varying from 3.0 to 8.0. The detergent phase was separated from the aqueous phase by centrifugation, and the amounts of Ad2 were determined in the two phases. At pH 7.0-8.0, less than 5% of Ad2 was associated with the detergent phase; at pH 5.0 or below, about 60% of Ad2 was associated with the detergent phase. When a mixture of 35S-labeled capsid proteins was used at pH 7.0, 60-70% of the total proteins were associated with the detergent at pH 5.0, but less than 5% of the proteins interacted with detergent at pH 7.0. Among the three major external proteins (hexon, penton base, and fiber), penton base had the highest association with Triton X-114 at pH 5.0. Both intact virus and the capsid proteins that were associated with Triton X-114 at pH 5.0 were released into the aqueous phase on subsequent incubation at pH 7.0. On the basis of these results, it is suggested that mildly acidic pH induces amphiphilic properties in adenovirus capsid proteins and may help Ad2 escape from acidic endocytic vesicles.  相似文献   

11.
Tetrahymena thermophila cells were labeled with sulfosuccinimidyl 6-(biotinamido) hexanoate, a sensitive nonradioactive probe for cell surface proteins, and Western blots of axonemes and ciliary membrane vesicles were compared to cilia fractionated with Triton X-114 (TX-114) in order to study the orientation of ciliary membrane proteins. Greater than 40 ciliary surface polypeptides, from greater than 350 kDa to less than 20 kDa, were resolved. The major surface 50-60 kDa proteins are hydrophobic and partition into the TX-114 detergent phase. Two high molecular weight proteins, one of which is biotinylated, comigrate with the heavy chains of ciliary dynein, sediment at 14S in a sucrose gradient, and partition into the TX-114 aqueous phase. Fractions containing these high molecular weight proteins as well as fractions enriched in 88-kDa and 66-kDa polypeptides contain Mg(2+)-ATPase activities. Detergent-solubilized tubulins partition into the TX-114 aqueous phase, are not biotinylated, and must not be exposed to the ciliary surface. The detergent-insoluble axoneme and membrane fraction contains a 36-kDa polypeptide and a portion of the 50-kDa polypeptides that otherwise partition into the detergent phase. These polypeptides could not be solubilized by ATP or by NaCl extraction and appear to be associated with pieces of ciliary membrane tightly linked to the axoneme. The ciliary membrane polypeptides were also tested for Concanavalin A binding and at least sixteen Con A-binding polypeptides were resolved. Of the major Con A-binding polypeptides, three are hydrophobic and partition into the TX-114 detergent phase, three partition into the TX-114 aqueous phase, and four partition exclusively in the detergent-insoluble fraction, which contains axonemes and detergent-resistant membrane vesicles.  相似文献   

12.
The distribution of the surface proteins of Toxoplasma gondii radiodinated were studied using the phase separation technique and ability of binding in the phenyl-Sepharose column. Eight polypeptides with Mr 22 to 180 distributed exclusively in the detergent rich-phase, while six polypeptides with mol. wt. 15,000 to 76,000 distributed exclusively in the detergent poor-phase. Two polypeptides with 15,000 and 70,000 distributed in both phase. All the polypeptides present in the detergent rich-phase binding in the phenyl-Sepharose column, and can be isolated in two peak according with their relative hydrophobicities. Two polypeptides hydrophobic with Mr 60 and 66 recognized by human serum were isolated by the association of the two technique. Our result showed that the surface proteins of T. gondii present different degrees of hydrophobicity and that the use of hydrophobic interaction chromatography after Triton X-114 extraction may be an important isolation method of membrane proteins.  相似文献   

13.
A procedure is described for fractionating detergent lysates of cells based on the ability of (NH4)2SO4 to induce phase separation of detergents such as Triton X-100, sodium deoxycholate, and sodium cholate, into detergent-rich and detergent-depleted phases. An analysis of six murine lymphocyte cell surface molecules revealed that the partitioning in Triton X-100 of each molecule was highly dependent upon the (NH4)2SO4 concentration, each antigen partitioning into the detergent-rich phase at a defined salt concentration. In contrast, none of the six molecules appeared in the detergent-rich phase of a Triton X-114 phase separation, even though two of the molecules, namely Ly-2/3 and L3T4, are well-characterized integral membrane proteins. It was also observed that (NH4)2SO4 resulted in the partitioning of many nonmembrane proteins into the detergent-rich phase, indicating that the procedure can be used to fractionate all cellular proteins. By judicious choice of (NH4)2SO4 concentrations, precipitation of cellular proteins at two different (NH4)2SO4 concentrations, and combining the method with subcellular fractionation prior to detergent solubilization, substantial enrichment and concentration of particular cellular proteins could be achieved.  相似文献   

14.
The characteristics of endogenous Ca2+/calmodulin (CaM)- and Ca2+/phosphatidylserine (PS)-stimulated phosphorylated proteins in the striatum of rat were partially determined and compared in this study. The Ca2+/CaM-dependent phosphoproteins were associated with serine and threonine residues. The sensitivity of these proteins for phosphorylation by Ca2+/CaM was not affected by pretreatment of tissue with Ca2+ chelating agent, EGTA or with non-ionic detergent, Triton X-114. Triton X-114 phase separation experiments revealed that these Ca2+/CaM-dependent phosphoproteins were partitioned in the detergent rich phase suggesting that they are integral proteins of the striatal membrane. On the other hand, the Ca2+/PS-dependent phosphorylated proteins were primarily associated with the serine residue. Phosphorylation of these proteins by Ca2+/PS were abolished after the treatment with EGTA or Triton X-114. These results suggest that Ca2+/PS-dependent striatal phosphoproteins are biochemically unstable in maintaining their state of phosphorylation.  相似文献   

15.
The detergent Triton X-114, because of its convenient cloud point temperature (22 °C), has been used extensively to extract membrane proteins and to separate them in two phases according to their hydropathy. The upper detergent-poor phase contains mostly hydrophilic proteins, whereas hydrophobic ones are found mainly in the lower detergent-rich phase. In this work, we developed a method to fractionate membrane proteins and estimate their hydropathy based on a series of cloud point partitions with Triton X-114. With this method, beetroot plasma membrane proteins were separated in different fractions according to their hydropathy, following the binomial distribution law as expected. This method revealed the presence of both hydrophilic and hydrophobic Ca2+-dependent protein kinases in those membranes. At least five distinct Ca2+-dependent kinases were observed in in-gel kinase activity assays. This separation procedure was also used as the first step in the purification of a hydrophobic 60-kDa kinase.  相似文献   

16.
ABSTRACT. Tetrahymena thermophila cells were labeled with sulfosuccinimidyl 6-(biotinamido) hexanoate, a sensitive nonradioactive probe for cell surface proteins, and Western blots of axonemes and ciliary membrane vesicles were compared to cilia fractionated with Triton X-114 (TX-114) in order to study the orientation of ciliary membrane proteins. Greater than 40 ciliary surface polypeptides, from >350 kDa to <20 kDa, were resolved. The major surface 50–60 kDa proteins are hydrophobic and partition into the TX-114 detergent phase. Two high molecular weight proteins, one of which is biotinylated, comigrate with the heavy chains of ciliary dynein, sediment at 14S in a sucrose gradient, and partition into the TX-114 aqueous phase. Fractions containing these high molecular weight proteins as well as fractions enriched in 88-kDa and 66-kDa polypeptides contain Mg2+-ATPase activities. Detergent-solubilized tubulins partition into the TX-114 aqueous phase, are not biotinylated, and must not be exposed to the ciliary surface. The detergent-insoluble axoneme and membrane fraction contains a 36-kDa polypeptide and a portion of the 50-kDa polypeptides that otherwise partition into the detergent phase. These polypeptides could not be solubilized by ATP or by NaCl extraction and appear to be associated with pieces of ciliary membrane tightly linked to the axoneme. The ciliary membrane polypeptides were also tested for Concanavalin A binding and at least sixteen Con A-binding polypeptides were resolved. Of the major Con A-binding polypeptides, three are hydrophobic and partition into the TX-114 detergent phase, three partition into the TX-114 aqueous phase, and four partition exclusively in the detergent-insoluble fraction, which contains axonemes and detergent-resistant membrane vesicles.  相似文献   

17.
Polyclonal rabbit antiserum to the Triton X-114 phase material of Leishmania major, which comprises the surface and internal integral membrane proteins of the parasite, was used to screen a lambda gt11 genomic expression library. A recombinant clone producing a Mr 123,000 beta-galactosidase fusion protein was isolated. Antibodies affinity-purified on this fusion protein recognized a complex of three surface-oriented proteins of promastigotes of L. major of Mr 94,000, 90,000, and 80,000 that we have termed the promastigote surface Ag 2 (PSA-2) complex. The DNA sequence of the insert in this clone predicted the 3' end of an open reading frame encoding a hydrophobic C-terminus. The inferred C-terminal sequence was suggestive of a glycosylphosphatidyl-inositol membrane anchoring mechanism. Phosphatidylinositol-specific phospholipase C treatment of the native PSA-2 proteins caused a shift in their electrophoretic mobility with an apparent reduction in the molecular weight of the PSA-2 complex. After phospholipase C treatment these proteins also displayed the cryptic cross-reacting determinant recognized by antibodies to the Trypanosoma brucei variant surface Ag. Moreover, PSA-2, which previously partitioned in the detergent phase after Triton X-114 phase separation, became water-soluble after phospholipase C treatment. Immunoprecipitation of the PSA-2 proteins with sera directed to lectin-binding proteins indicated that these polypeptides may be differentially glycosylated. Finally, these PSA-2 proteins were recognized by sera from some patients with cutaneous leishmaniasis.  相似文献   

18.
The polymorphism of bee acetylcholinesterase was studied by sucrose-gradient-sedimentation analysis and non-denaturing electrophoretic analysis of fresh extracts. Lubrol-containing extracts exhibited only one form, which sedimented at 5 S when analysed on high-salt Lubrol-containing gradients and 6 S when analysed on low-salt Lubrol-containing gradients. The 5 S/6 S form aggregated upon removal of the detergent when sedimented on detergent-free gradients and was recovered in the detergent phase after Triton X-114 phase separation. Thus the 5 S/6 S enzyme corresponds to an amphiphilic acetylcholinesterase form. In detergent-free extracts three forms, whose apparent sedimentation coefficients are 14 S, 11 S and 7 S, were observed when sedimentations were performed on detergent-free gradients. Sedimentation analyses on detergent-containing gradients showed only a 5 S peak in high-salt detergent-free extracts and a 6 S peak, with a shoulder at about 7 S, in low-salt detergent-free extracts. Electrophoretic analysis in the presence of detergent demonstrated that the 14 S and 11 S peaks corresponded to aggregates of the 5 S/6 S form, whereas the 7 S peak corresponded to a hydrophilic acetylcholinesterase form which was recovered in the aqueous phase following Triton X-114 phase separation. The 5 S/6 S amphiphilic form could be converted into a 7.1 S hydrophilic form by phosphatidylinositol-specific phospholipase C digestion.  相似文献   

19.
When either membranes from scallop gill cilia or reconstituted membranes from the same source are solubilized with Triton X-114 and the detergent is condensed by warming, no significant fraction of any major membrane protein partitions into the micellar detergent. Rather, most of the membrane lipids condense with the detergent phase, forming mixed micelles from which nearly pure lipid vesicles may be produced by adsorption of detergent with polystyrene beads. One minor membrane protein, with a molecular weight of about 20 000, is associated consistently with these vesicles. The aqueous phase contains a fairly homogeneous protein-Triton X-114 micelle sedimenting at 2.6 S in the analytical ultracentrifuge. Sucrose gradient velocity analysis in a detergent-free gradient indicates moderate size polydispersity but constant polypeptide composition throughout the sedimenting protein zone. Sucrose gradient equilibrium analysis (also in a detergent-free gradient) results in a protein-detergent complex banding at a density of 1.245 g/cm3. Sedimentation of the protein-detergent complex in the ultracentrifuge, followed by fixation and normal processing for electron microscopy, reveals a fine, reticular material consisting of 5-10-nm granules. These data are consistent with previous evidence that membrane tubulin and most other membrane proteins exist together as a discrete lipid-protein complex in molluscan gill ciliary membranes.  相似文献   

20.
Subcellular fractionation of pig kidney cortex revealed that aminoacylase I (EC 3.5.1.14, N-acyl-L-amino-acid aminohydrolase) is predominantly a soluble enzyme with only 0.5% of the total activity being recovered in the membrane fraction. The aminoacylase I activity associated with the membrane preparations displayed neither rapid release following incubation with phosphatidylinositol-specific phospholipase C from Bacillus thuringiensis nor the distinctive differential pattern of detergent solubilization which was seen with glycosyl-phosphatidylinositol-anchored proteins (renal dipeptidase, alkaline phosphatase). When fractionated by phase separation in Triton X-114, integral membrane proteins of kidney microvillar membranes partitioned predominantly (greater than 90%) into the detergent-rich phase. In contrast, only 3.7% of aminoacylase I activity associated with microvillar membranes partitioned into the detergent-rich phase. Aminoacylase I activity of pig kidney would therefore appear to be a hydrophilic protein in nature and is not, as suggested previously, a G-PI-anchored integral membrane protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号