首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 585 毫秒
1.
The distinctive lateral organization of the protein complexes in the thylakoid membrane investigated by Jan Anderson and co-workers is dependent on the balance of various attractive and repulsive forces. Modulation of these forces allows critical physiological regulation of photosynthesis that provides efficient light-harvesting in limiting light but dissipation of excess potentially damaging radiation in saturating light. The light-harvesting complexes (LHCII) are central to this regulation, which is achieved by phosphorylation of stromal residues, protonation on the lumen surface and de-epoxidation of bound violaxanthin. The functional flexibility of LHCII derives from a remarkable pigment composition and configuration that not only allow efficient absorption of light and efficient energy transfer either to photosystem II or photosystem I core complexes, but through subtle configurational changes can also exhibit highly efficient dissipative reactions involving chlorophyll–xanthophyll and/or chlorophyll–chlorophyll interactions. These changes in function are determined at a macroscopic level by alterations in protein–protein interactions in the thylakoid membrane. The capacity and dynamics of this regulation are tuned to different physiological scenarios by the exact protein and pigment content of the light-harvesting system. Here, the molecular mechanisms involved will be reviewed, and the optimization of the light-harvesting system in different environmental conditions described.  相似文献   

2.
In photosynthesis in chloroplasts and cyanobacteria, redox control of thylakoid protein phosphorylation regulates distribution of absorbed excitation energy between the two photosystems. When electron transfer through chloroplast photosystem II (PSII) proceeds at a rate higher than that through photosystem I (PSI), chemical reduction of a redox sensor activates a thylakoid protein kinase that catalyses phosphorylation of light-harvesting complex II (LHCII). Phosphorylation of LHCII increases its affinity for PSI and thus redistributes light-harvesting chlorophyll to PSI at the expense of PSII. This short-term redox signalling pathway acts by means of reversible, post-translational modification of pre-existing proteins. A long-term equalisation of the rates of light utilisation by PSI and PSII also occurs: by means of adjustment of the stoichiometry of PSI and PSII. It is likely that the same redox sensor controls both state transitions and photosystem stoichiometry. A specific mechanism for integration of these short- and long-term adaptations is proposed. Recent evidence shows that phosphorylation of LHCII causes a change in its 3-D structure, which implies that the mechanism of state transitions in chloroplasts involves control of recognition of PSI and PSII by LHCII. The distribution of LHCII between PSII and PSI is therefore determined by the higher relative affinity of phospho-LHCII for PSI, with lateral movement of the two forms of the LHCII being simply a result of their diffusion within the membrane plane. Phosphorylation-induced dissociation of LHCII trimers may induce lateral movement of monomeric phospho-LHCII, which binds preferentially to PSI. After dephosphorylation, monomeric, unphosphorylated LHCII may trimerize at the periphery of PSII.  相似文献   

3.
The concept that the two photosystems of photosynthesis cooperate in series, immortalized in Hill and Bendall''s Z scheme, was still a black box that defined neither the structural nor the molecular organization of the thylakoid membrane network into grana and stroma thylakoids. The differentiation of the continuous thylakoid membrane into stacked grana thylakoids interconnected by single stroma thylakoids is a morphological reflection of the non-random distribution of photosystem II/light-harvesting complex of photosystem II, photosystem I and ATP synthase, which became known as lateral heterogeneity.  相似文献   

4.

Protein phosphorylation is a fundamental post-translational modification in all organisms. In photoautotrophic organisms, protein phosphorylation is essential for the fine-tuning of photosynthesis. The reversible phosphorylation of the photosystem II (PSII) core and the light-harvesting complex of PSII (LHCII) contribute to the regulation of photosynthetic activities. Besides the phosphorylation of these major proteins, recent phosphoproteomic analyses have revealed that several proteins are phosphorylated in the thylakoid membrane. In this study, we utilized the Phos-tag technology for a comprehensive assessment of protein phosphorylation in the thylakoid membrane of Arabidopsis. Phos-tag SDS-PAGE enables the mobility shift of phosphorylated proteins compared with their non-phosphorylated isoform, thus differentiating phosphorylated proteins from their non-phosphorylated isoforms. We extrapolated this technique to two-dimensional (2D) SDS-PAGE for detecting protein phosphorylation in the thylakoid membrane. Thylakoid proteins were separated in the first dimension by conventional SDS-PAGE and in the second dimension by Phos-tag SDS-PAGE. In addition to the isolation of major phosphorylated photosynthesis-related proteins, 2D Phos-tag SDS-PAGE enabled the detection of several minor phosphorylated proteins in the thylakoid membrane. The analysis of the thylakoid kinase mutants demonstrated that light-dependent protein phosphorylation was mainly restricted to the phosphorylation of the PSII core and LHCII proteins. Furthermore, we assessed the phosphorylation states of the structural domains of the thylakoid membrane, grana core, grana margin, and stroma lamella. Overall, these results demonstrated that Phos-tag SDS-PAGE is a useful biochemical tool for studying in vivo protein phosphorylation in the thylakoid membrane protein.

  相似文献   

5.
The chloroplast Albino3 (Alb3) protein is a chloroplast homolog of the mitochondrial Oxa1p and YidC proteins of Escherichia coli, which are essential components for integrating membrane proteins. In vitro studies in vascular plants have revealed that Alb3 is required for the integration of the light-harvesting complex protein into the thylakoid membrane. Here, we show that the gene affected in the ac29 mutant of Chlamydomonas reinhardtii is Alb3.1. The availability of the ac29 mutant has allowed us to examine the function of Alb3.1 in vivo. The loss of Alb3.1 has two major effects. First, the amount of light-harvesting complex from photosystem II (LHCII) and photosystem I (LHCI) is reduced >10-fold, and total chlorophyll represents only 30% of wild-type levels. Second, the amount of photosystem II is diminished 2-fold in light-grown cells and nearly 10-fold in dark-grown cells. The accumulation of photosystem I, the cytochrome b(6)f complex, and ATP synthase is not affected in the ac29 mutant. Mild solubilization of thylakoid membranes reveals that Alb3 forms two distinct complexes, a lower molecular mass complex of a size similar to LHC and a high molecular mass complex. A homolog of Alb3.1, Alb3.2, is present in Chlamydomonas, with 37% sequence identity and 57% sequence similarity. Based on the phenotype of ac29, these two genes appear to have mostly nonredundant functions.  相似文献   

6.
7.
The photosystem II (PSII) light-harvesting system carries out two essential functions, the efficient collection of light energy for photosynthesis, and the regulated dissipation of excitation energy in excess of that which can be used. This dual function requires structural and functional flexibility, in which light-harvesting proteins respond to an external signal, the thylakoid DeltapH, to induce feedback control. This process, referred to as non-photochemical quenching (NPQ) depends upon the xanthophyll cycle and the PsbS protein. In nature, NPQ is heterogeneous in terms of kinetics and capacity, and this adapts photosynthetic systems to the specific dynamic features of the light environment. The molecular features of the thylakoid membrane which may enable this flexibility and plasticity are discussed.  相似文献   

8.
The proteins in plant photosynthetic thylakoid membranes undergo light-induced phosphorylation, but only a few phosphoproteins have been characterized. To access the unknown sites of in vivo protein phosphorylation the thylakoid membranes were isolated from Arabidopsis thaliana grown in normal light, and the surface-exposed peptides were cleaved from the membranes by trypsin. The peptides were methylated and subjected to immobilized metal affinity chromatography, and the enriched phosphopeptides were sequenced using tandem nanospray quadrupole time-of-flight mass spectrometry. Three new phosphopeptides were revealed in addition to the five known phosphorylation sites in photosystem II proteins. All phosphopeptides are found phosphorylated at threonine residues implementing a strict threonine specificity of the thylakoid kinases. For the first time protein phosphorylation is found in photosystem I. The phosphorylation site is localized to the first threonine in the N terminus of PsaD protein that assists in the electron transfer from photosystem I to ferredoxin. A new phosphorylation site is also revealed in the acetylated N terminus of the minor chlorophyll a-binding protein CP29. The third novel phosphopeptide, composed of 25 amino acids, belongs to a nuclear encoded protein annotated as "expressed protein" in the Arabidopsis database. The protein precursor has a chloroplast-targeting peptide followed by the mature protein with two transmembrane helices and a molecular mass of 14 kDa. This previously uncharacterized protein is named thylakoid membrane phosphoprotein of 14 kDa (TMP14). The finding of the novel phosphoproteins extends involvement of the redox-regulated protein phosphorylation in photosynthetic membranes beyond the photosystem II and its light-harvesting antennae.  相似文献   

9.
Kargul J  Barber J 《The FEBS journal》2008,275(6):1056-1068
In order to carry out photosynthesis, plants and algae rely on the co-operative interaction of two photosystems: photosystem I and photosystem II. For maximum efficiency, each photosystem should absorb the same amount of light. To achieve this, plants and green algae have a mobile pool of chlorophyll a/b-binding proteins that can switch between being light-harvesting antenna for photosystem I or photosystem II, in order to maintain an optimal excitation balance. This switch, termed state transitions, involves the reversible phosphorylation of the mobile chlorophyll a/b-binding proteins, which is regulated by the redox state of the plastoquinone-mediating electron transfer between photosystem I and photosystem II. In this review, we will present the data supporting the function of redox-dependent phosphorylation of the major and minor chlorophyll a/b-binding proteins by the specific thylakoid-bound kinases (Stt7, STN7, TAKs) providing a molecular switch for the structural remodelling of the light-harvesting complexes during state transitions. We will also overview the latest X-ray crystallographic and electron microscopy-derived models for structural re-arrangement of the light-harvesting antenna during State 1-to-State 2 transition, in which the minor chlorophyll a/b-binding protein, CP29, and the mobile light-harvesting complex II trimer detach from the light-harvesting complex II-photosystem II supercomplex and associate with the photosystem I core in the vicinity of the PsaH/L/O/P domain.  相似文献   

10.
11.
Long-term acclimation of shade versus sun plants modulates the composition, function and structural organization of the architecture of the thylakoid membrane network. Significantly, these changes in the macroscopic structural organization of shade and sun plant chloroplasts during long-term acclimation are also mimicked following rapid transitions in irradiance: reversible ultrastructural changes in the entire thylakoid membrane network increase the number of grana per chloroplast, but decrease the number of stacked thylakoids per granum in seconds to minutes in leaves. It is proposed that these dynamic changes depend on reversible macro-reorganization of some light-harvesting complex IIb and photosystem II supracomplexes within the plant thylakoid network owing to differential phosphorylation cycles and other biochemical changes known to ensure flexibility in photosynthetic function in vivo. Some lingering grana enigmas remain: elucidation of the mechanisms involved in the dynamic architecture of the thylakoid membrane network under fluctuating irradiance and its implications for function merit extensive further studies.  相似文献   

12.
Summary The photosynthetic pigments of chloroplast thylakoid membranes are complexed with specific intrinsic polypeptides which are included in three supramolecular complexes, photosystem I complex, photosystem II complex and the light-harvesting complex. There is a marked lateral heterogeneity in the distribution of these complexes along the membrane with photosystem II complex and its associated light-harvesting complex being located mainly in the stacked membranes of the grana partitions, while photosystem I complex is found mainly in unstacked thylakoids together with ATP synthetase. In contrast, the intermediate electron transport complex, the cylochrome b-f complex, is rather uniformly distributed in these two membrane regions. The consequences of this lateral heterogeneity in the location of the thylakoid complexes are considered in relation to the function and structure of chloroplasts of higher plants.  相似文献   

13.
Freeze-fracture electron microscopy has revealed that different size classes of intramembrane particles of chloroplast membranes are nonrandomly distributed between appressed grana and nonappressed stroma membrane regions. It is now generally assumed that thylakoid membranes contain five major functional complexes, each of which can give rise to an intramembrane particle of a defined size. These are the photosystem II complex, the photosystem I complex, the cytochrome f/b6 complex, the chlorophyll a/b light-harvesting complex, and the CF0 -CF1 ATP synthetase complex. By mapping the distribution of the different categories of intramembrane particles, information on the lateral organization of functional membrane units of thylakoid membranes can be determined. In this review, we present a brief summary of the evidence supporting the correlation of specific categories of intramembrane particles with known biochemical entities. In addition, we discuss studies showing that ions and phosphorylation of the membrane adhesion factor, the chlorophyll a/b light-harvesting complex, can affect the lateral organization of chloroplast membrane components and thereby regulate membrane function.  相似文献   

14.
J F Allen  M A Harrison  N G Holmes 《Biochimie》1989,71(9-10):1021-1028
The function of phosphorylation of light-harvesting polypeptides is well characterised in chloroplasts of green plants, but the prokaryotic cyanobacteria and purple photosynthetic bacteria have quite different light-harvesting polypeptides whose structure and function cannot be controlled in precisely the same way. Nevertheless, cyanobacteria show light-dependent phosphorylation of membrane polypeptides associated with photosystem II and with the light-harvesting phycobilisome, and purple bacteria show light-dependent phosphorylation of low molecular-weight chromatophore membrane polypeptides. In both cases membrane protein phosphorylation is associated with functional changes observed by chlorophyll fluorescence spectroscopy or chlorophyll fluorescence induction kinetics. Here we report on our recent protein sequence and other data concerning the identities of these phosphoproteins. We also discuss the significance of these findings for regulation by protein phosphorylation of photosynthesis in prokaryotes.  相似文献   

15.
Chloroplast thylakoid contains several membrane-bound protein kinases that phosphorylate thylakoid polypeptides for the regulation of photosynthesis. Thylakoid protein phosphorylation is activated when the plastoquinone pool is reduced either by light-dependent electron flow through photosystem 2 (PS2) or by adding exogenous reductants such as durohydroquinone in the dark. The major phosphorylated proteins on thylakoid are components of light-harvesting complex 2 (LHC2) and a PS2 associated 9 kDa phosphoprotein. Radiation inactivation technique was employed to determine the functional masses of various kinases for protein phosphorylation in thylakoids. Under the photosynthetically active radiation (PAR), the apparent functional masses of thylakoid protein kinase systems (TPKXs) for catalyzing phosphorylation of LHC2 27 and 25 kDa polypeptides were 540±50 and 454±35 kDa as well as it was 448±23 kDa for PS2 9 kDa protein phosphorylation. Furthermore, the functional sizes of dark-regulated TPKXs for 25 and 9 kDa proteins were 318±25 and 160±8 kDa. The 9 kDa protein phosphorylation was independent of LHC2 polypeptides phosphorylation with regard to its TPKX functional mass. Target size analysis of protein phosphorylation mentioned above indicates that thylakoid contains a group of distinct protein kinase systems. A working model is accordingly proposed to interpret the interaction between these protein kinase systems.  相似文献   

16.
In photosynthesis in chloroplasts, control of thylakoid protein phosphorylation by redox state of inter-photosystem electron carriers makes distribution of absorbed excitation energy between the two photosystems self-regulating. During operation of this regulatory mechanism, reduction of plastoquinone activates a thylakoid protein kinase which phosphorylates the light-harvesting complex LHC II, causing a change in protein recognition that results in redistribution of energy to photosystem I at the expense of photosystem II, thus tending to oxidise the reduced plastoquinone pool. These events correspond to the transition from light-state 1 to light-state 2. The reverse transition (to light-state 1) is initiated by transient oxidation of plastoquinone, inactivation of the LHC II kinase, and return of dephosphorylated LHC II from photosystem I to photosystem II, supplying excitation energy to photosystem II and thereby reducing plastoquinone. State 1-state 2 transitions therefore operate by means of redox control of reversible, post-translational modification of pre-existing proteins. A balance in the rates of light utilization by photosystem I and photosystem II can also be achieved, on longer time-scales and between wider limits, by adjustment of the relative quantities, or stoichiometry, of photosystem I and photosystem II. Recent evidence suggests that adjustment of photosystem stoichiometry is also a response to perturbation of the redox state of inter-photosystem electron carriers, and involves specific redox control of de novo protein synthesis, assembly, and breakdown. It is therefore suggested that the same redox sensor initiates these different adaptations by control of gene expression at different levels, according to the time-scale and amplitude of the response. This integrated feedback control may serve to maintain redox homeostasis, and, as a result, quantum yield. Evidence for the components required by such systems is discussed.  相似文献   

17.
Winter rye plants grown under contrasting environmental conditions or just transiently shifted to varying light and temperature conditions, were studied to elucidate the chloroplast signal involved in regulation of photosynthesis genes in the nucleus. Photosystem II excitation pressure, reflecting the plastoquinone redox state, and the phosphorylation level of thylakoid light-harvesting proteins (LHCII and CP29) were monitored together with changes occurring in the accumulation of lhcb, rbcS and psbA mRNAs. Short-term shifts of plants to changed conditions, from 1 h to 2 d, were postulated to reveal signals crucial for the initiation of the acclimation process. Comparison of these results with those obtained from plants acclimated during several weeks' growth at contrasting temperature and in different light regimes, allow us to make the following conclusions: (1) LHCII protein phosphoylation is a sensitive tool to monitor redox changes in chloroplasts; (2) LHCII protein phosphorylation and lhcb mRNA accumulation occur under similar conditions and are possibly coregulated via an activation state of the same kinase (the LHCII kinase); (3) Maximal accumulation of lhcb mRNA during the diurnal light phase seems to require an active LHCII kinase whereas inactivation of the kinase is accompanied by dampening of the circadian oscillation in the amount of lhcb mRNA; (4) Excitation pressure of photosystem II (reduction state of the plastoquinone pool) is not directly involved in the regulation of lhcb mRNA accumulation. Instead (5) the redox status of the electron acceptors of photosystem I in the stromal compartment seems to be highly regulated and crucial for the regulation of lhcb gene expression in the nucleus.  相似文献   

18.
Allen JF 《Current biology : CB》2005,15(22):R929-R932
Recent work identifies two kinases required for phosphorylation of proteins of chloroplast thylakoid membranes. One kinase, STN7, is required for phosphorylation of light-harvesting complex II; another, STN8, is required for phosphorylation of photosystem II. How do these kinases interact, what do they do, and what are they for?  相似文献   

19.
Thylakoid protein phosphorylation and the thiol redox state   总被引:8,自引:0,他引:8  
Illumination of thylakoid membranes leads to the phosphorylation of a number of photosystem II-related proteins, including the reaction center proteins D1 and D2 as well as the light-harvesting complex (LHCII). Regulation of light-activated thylakoid protein phosphorylation has mainly been ascribed to the redox state of the electron carrier plastoquinone. In this work, we show that this phosphorylation in vitro is also strongly influenced by the thiol disulfide redox state. Phosphorylation of the light-harvesting complex of photosystem II was found to be favored by thiol-oxidizing conditions and strongly downregulated at moderately thiol-reducing conditions. In contrast, phosphorylation of the photosystem II reaction center proteins D1 and D2 as well as that of other photosystem II subunits was found to be stimulated up to 2-fold by moderately thiol-reducing conditions and kept at a high level also at highly reducing conditions. These responses of the level of thylakoid protein phosphorylation to changes in the thiol disulfide redox state are reminiscent of those observed in vivo in response to changes in the light intensity and point to the possibility of a second loop of redox regulation of thylakoid protein phosphorylation via the ferredoxin-thioredoxin system.  相似文献   

20.
Proteins of the YidC/Oxa1p/ALB3 family play an important role in inserting proteins into membranes of mitochondria, bacteria, and chloroplasts. In Chlamydomonas reinhardtii, one member of this family, Albino3.1 (Alb3.1), was previously shown to be mainly involved in the assembly of the light-harvesting complex. Here, we show that a second member, Alb3.2, is located in the thylakoid membrane, where it is associated with large molecular weight complexes. Coimmunoprecipitation experiments indicate that Alb3.2 interacts with Alb3.1 and the reaction center polypeptides of photosystem I and II as well as with VIPP1, which is involved in thylakoid formation. Moreover, depletion of Alb3.2 by RNA interference to 25 to 40% of wild-type levels leads to a reduction in photosystems I and II, indicating that the level of Alb3.2 is limiting for the assembly and/or maintenance of these complexes in the thylakoid membrane. Although the levels of several photosynthetic proteins are reduced under these conditions, other proteins are overproduced, such as VIPP1 and the chloroplast chaperone pair Hsp70/Cdj2. These changes are accompanied by a large increase in vacuolar size and, after a prolonged period, by cell death. We conclude that Alb3.2 is required directly or indirectly, through its impact on thylakoid protein biogenesis, for cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号