首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
GB24 is a mouse monoclonal antibody raised against human trophoblast microvilli, which recognizes an antigenic determinant on the acrosomal region of the human sperm head. By indirect immunofluorescence, reactivity of GB24 could not be detected on freshly ejaculated spermatozoa but was strongly positive after sperm permeabilization with acetone. On viable, motile spermatozoa, reactivity appeared after induction of the acrosomal reaction with the calcium ionophore A23187. These results suggest that the antigen recognized by GB24 is present on the inner acrosomal membrane. A quantitative evaluation assay of the acrosome reaction on viable spermatozoa by flow cytometry using GB24 and indirect immunofluorescence is proposed.  相似文献   

2.
FITC-labelled sperm-specific antibodies against hamster spermatozoa were utilized as probes in acrosome reaction assays. An indirect immunofluorescence test demonstrated the localisation of two sperm proteins of 19 kDa and 23 kDa on the anterior acrosomal cap region of washed cauda epididymal sperm. These proteins were not detected in reacted acrosome or on immature or immotile sperm. Antisperm agglutinating antibodies specific to these two low molecular weight sperm antigens could be useful probes for evaluating the acrosomal status of mammalian spermatozoa.  相似文献   

3.
A monoclonal antibody (J-23) to the 15 kDa component on the sperm head, the acceptor, which functions in zona binding, was shown to induce the acrosome reaction in capacitated cells, but not in fresh cells. The antibody recognized its epitope in the acrosomal cap region of fresh spermatozoa and in the equatorial region on washed and capacitated spermatozoa. However, equatorial expression did not depend on the acrosome reaction, since washing fresh spermatozoa increased the percentage with equatorial fluorescence, but did not increase the percentage with reacted acrosomes. The data indicate that the acrosome reaction can be induced in capacitated spermatozoa in the absence of zona glycoproteins.  相似文献   

4.
A monoclonal antibody generated against hamster epididymal spermatozoa and recognizing an antigen within the acrosome was used in conjunction with FITC-antimouse immunoglobulin as a marker of the human acrosome during sperm development, capacitation, and the acrosome reaction. The specificity of binding of the monoclonal antibody was assessed using immunolocalization by epi-fluorescence and electron microscopy. Immunofluorescence revealed that antibody bound over the entire anterior acrosome in hamster and human spermatozoa. Ultrastructural localization indicated that antigen was predominantly present on the inner face of the outer acrosomal membrane and within the acrosomal content. Qualitative specificity was studied using a highly purified preparation of hamster acrosomes in an enzyme-linked immunosorbent assay. Since the antibody rapidly visualized human acrosomes, it was used to detect abnormal acrosome morphology of mature spermatozoa and to mark spermatids present in the ejaculate. During incubation in capacitating medium, changes in the immunofluorescence of live or methanol fixed spermatozoa were correlated with incubation interval and the ability of spermatozoa to fuse with zona-free hamster oocytes. Spermatozoa bound to zona-free hamster oocytes displayed no fluorescence, confirming that acrosome loss occurred before spermatozoa attached to the vitellus.  相似文献   

5.
Experiments have been carried out characterizing an Mr 22,000 protein present in the acrosomes of hamster and bull spermatozoa. The Mr 22,000 protein is resistant to solubilization in detergent solutions containing high or low salt and has a pI of -5.2. With various lectins, the protein from hamster sperm was shown to be sparingly glycosylated with N-acetylglucosamine, mannose, and galactose while that from the bull demonstrated a slight reactivity for galactose. Using a specific monoclonal antibody (MAB 4/18), the Mr 22,000 polypeptide has been localized exclusively to the acrosomes of mature testicular and epididymal hamster and bovine sperm. Acrosomal components of differentiating bovine and hamster spermatids in tissue sections did not react with the monoclonal antibody, although the protein was present in immunoblots of round spermatids. In bovine sperm, MAB 4/18-staining at the ultrastructural level with immunogold-labeled second antibody was present as a reticulum throughout the acrosomal cap and as punctate aggregates in the equatorial segment. In hamster sperm, MAB 4/18-reactivity was present along the periphery of the acrosome in conjunction with matrix components (M1 and M2), as well as along the inner acrosomal membrane. These observations indicate that the acrosomes of bovine and hamster sperm possess an immunologically related Mr 22,000 protein and suggest that differences in MAB 4/18-staining of spermatids and spermatozoa is a result of epitope modification and/or a change in accessibility of the epitope to the antibody probe during the course of spermiogenesis. Based on its localization and solubility properties, we suggest that the Mr 22,000 protein, in conjunction with other polypeptides, forms a structural framework to maintain acrosomal shape and/or compartmentalize acrosomal contents.  相似文献   

6.
Mammalian sperm acrosomes contain a trypsin-like protease called acrosin which causes limited and specific hydrolysis of the extracellular matrix of the mammalian egg, the zona pellucida. Acrosin was localized on hamster, guinea-pig and human sperm using monoclonal and polyclonal antibodies to human acrosin labelled with colloidal gold. This was visualized directly with transmission electron microscopy, and with light and scanning microscopy after silver enhancement of the colloidal gold probe. Four distinct labelling patterns were found during capacitation and the acrosome reaction in hamster and guinea-pig spermatozoa, and three patterns were found in human spermatozoa. In the hamster, acrosin was not detected on the inner acrosomal surface after the completion of the acrosome reaction, thus correlating with the observation that hamster spermatozoa lose the ability to penetrate the zona after the acrosome reaction. With guinea-pig and human spermatozoa, acrosin was still detected after the completion of the acrosome reaction, thus correlating with the observation that acrosome reacted guinea-pig spermatozoa bind to and penetrate the zona pellucida.  相似文献   

7.
Human ejaculated spermatozoa were washed through a Percoll gradient, preincubated for 10 hr in a defined medium containing serum albumin, and then induced to undergo rapid acrosome reactions by addition of human follicular fluid or a Sephadex G-75 column fraction of the fluid. Induction by follicular fluid did not occur when the spermatozoa were preincubated for only 0 or 5 hr. The reactions were detected by indirect immunofluorescence using a monoclonal antibody directed against the human sperm acrosomal region. The percentage of acrosomal loss counted by transmission electron microscopy agreed with that counted by immunofluorescence. The apparent molecular weight of the Sephadex G-75 fraction containing the peak of acrosome reaction-inducing activity was 45,000 ± 4,200 (SD). The occurrence of physiological acrosome reactions was supported by: assessing motility (no significant loss of motility occurred during the treatment period when sperm were preincubated with bovine serum albumin), transmission electron microscopy (the ultrastructural criteria for the acrosome reaction were met), and zona-free hamster oocyte binding and penetration (spermatozoa pretreated with the active fraction of follicular fluid, then washed and incubated with oocytes, showed significantly greater binding to and penetration of oocytes). The stimulation of the acrosome reaction by follicular fluid is apparently not due to blood serum contamination; treatment of preincubated spermatozoa with sera from the follicular fluid donors had no effect on the spermatozoa. The nature of the active component(s) in that fraction is currently being investigated.  相似文献   

8.
Actin was localized in testicular spermatids and in ionophore-treated ejaculated sperm of boar by use of a monoclonal anti-actin antibody labeled with colloidal gold. With the on-grid postembedding immunostaining of Lowicryl K4M sections, actin was identified in the subacrosomal region of differentiating spermatids, in the microfilaments of the surrounding Sertoli cells, and in the myoid cells of the tubular wall. Ejaculated sperm, labeled with the preembedding method, showed actin between the plasma membrane and the outer acrosomal membrane of the equatorial segment. Indirect immunofluorescence was positive in the equatorial segment and in the acrosomal cap of intact sperm, whereas reacted sperm at the anterior head region retained fluorescence only in the inner acrosomal membrane. Rhodamine-phalloidin failed to stain intact and reacted sperm. The distribution of actin in sperm head membranes (inner acrosomal membrane, membranes of the equatorial segment), which are retained after the acrosome reaction, is discussed.  相似文献   

9.
Fluorescein-labeled GB 24, a mouse monoclonal antibody, was evaluated as an acrosomal dye for boar spermatozoa that had previously been stained with propidium iodide (PI) to assess sperm viability. A specific sperm-staining pattern with fluorescein-labeled GB 24 was shown to be associated with acrosome reaction on freshly ejaculated sperm when fixed with acetone or induced with ionophore A 23187, whereas the presence of PI staining was typical of dying spermatozoa. The GB 24-PI procedure was as accurate as the glutaraldehyde method in assessing acrosomal presence or absence on freshly ejaculated spermatozoa when spontaneous or A 23187-induced acrosomal reactions were considered. Approximately half of A 23187-induced spermatozoa with acrosomal loss did not exhibit a PI fluorescence; these were potentially viable acrosome-reacted spermatozoa. On semen diluted in a boar sperm-specific diluent (BTS-A) and stored, percentages of spermatozoa with nonintact acrosome from glutaraldehyde and GB 24-PI were not significantly different. Conversely, data from GB 24-PI was significantly lower than those from glutaraldehyde when semen were undiluted. This suggested that spermatozoa with reacted acrosome gradually lost their ability to bind with GB 24. Providing unequivocal and rapid scoring of acrosome-reacted spermatozoa, the GB 24-PI procedure may be a valuable tool in the evaluation of the acrosomal status of porcine fresh spermatozoa.  相似文献   

10.
Summary In a survey of sperm antigens in the rat, a new intra-acrosomal antigen was found using a monoclonal antibody MC41 raised against rat epididymal spermatozoa. The MC41 was immunoglobulin G1 and recognized spermatozoa from rat, mouse and hamster. Indirect immunofluorescence with MC41 specifically stained the crescent region of the anterior acrosome of the sperm head. Immuno-gold electron microscopy demonstrated that the antigen was localized within the acrosomal matrix. Immunoblot study showed that MC41 recognized a band of approximately 165000 dalton in the extract of rat sperm from the cauda epididymidis. Immunohistochemistry with MC41 demonstrated that the antigen was first detected in approximately step-2 spermatids, and distributed over the entire cytoplasmic region of spermatids from step 2 to early step 19. The head region became strongly stained in late step-19 spermatids and then in mature spermatozoa. Distinct immunostaining was not found in the developing acrosome of spermatids throughout spermiogenesis. These results suggest that the MC41 antigen is a unique intra-acrosomal antigen which is accumulated into the acrosome during the terminal step of spermiogenesis.  相似文献   

11.
Mammalian spermatozoa must undergo many changes to be able to fertilize the oocyte. One of these changes, the acrosome reaction, has been established as a requisite for gamete membrane fusion to occur; it consists of the fusion and vesiculation of the sperm plasma membrane with the outer acrosomal membrane of the principal segment of the acrosome. Reaction of the equatorial segment has occasionally been observed. The objective of the present work was to determine whether the presence of the sperm plasma membrane over the equatorial segment is necessary for gamete membrane fusion to occur. Golden hamster spermatozoa were capacitated in vitro in TAPL 10K, and the maximum possible percentage of acrosome reaction was determined at 82.79% + 1.69% SD (P = 0.27; r = 0.21). Ultrastructural studies showed that 93.6% of the reacted spermatozoa in this population had their principal and equatorial segments reacted. The fertilizing ability of these spermatozoa was assayed using zona-free hamster oocytes. The percentage of fertilized ova obtained was 98.8% (308/312). Ultrastructural studies snowed the presence of spermatozoa with reacted equatorial segment inside the cytoplasm of immature oocytes. The evidence presented in this work demonstrates that the plasma membrane of spermatozoa with reacted equatorial segment retains its ability to fuse with the oocyte.  相似文献   

12.
The acrosome of the stallion spermatozoon was visualized by indirect immunofluorescence with monoclonal antibody (18.6) which recognized an integral acrosomal membrane component. Localization was confirmed by electron microscopy using peroxidase labelled antibody. In fresh semen samples (n = 19), 73.9 +/- 9.1% of the spermatozoa from five fertile stallions displayed a uniform bright fluorescence over their acrosome region. In two semen samples from an infertile stallion only 28% and 35% of spermatozoa showed the same pattern of fluorescence. Spermatozoa from fertile stallions incubated for up to 12 hours in TALP medium maintained motility and exhibited a significant progressive loss of acrosomes as detected by immunofluorescence. Alternatively, a similar loss of acrosomes could be induced with calcium ionophore A23187 over a 90 minute incubation. Ultrastructural observations and incubation with zona-free hamster eggs indicated that only with ionophore treatment was immunofluorescent acrosome loss correlated with a physiological acrosome reaction, while prolonged sperm incubation led to degenerative membrane changes. It was concluded that, if carefully validated, immunofluorescent localization of the acrosome of stallion sperm with monoclonal antibody could be used to monitor the acrosome reaction. Furthermore, definitive acrosome visualization would be valuable in assessing semen quality.  相似文献   

13.
Two monoclonal antibodies (16 D3 and 24 E3) were used to map tubulin domains in human spermatozoa by indirect immunofluorescence. Their specificity to tubulin in these cells was established by Western blotting. Whereas 16 D3 uniformly stained the principal piece of the flagellum, the staining provided by 24 E3 decreased along the tail to become very weak 30 micron further away from the midpiece. This latter antibody also reacted with the proximal centriole as well as the midpiece, but not all spermatozoa stained identically at this level indicating heterogeneity within the population of sperm cells from a given donor. 16 D3 reacted weakly with the head, and the staining was interrupted after a bright spot in the neck. The study of a pathological case (the short tail spermatozoon) with an abnormal arrangement of dense fibers was consistent with a correlation between the distribution of the epitope defined by 24 E3 and that of peri-axenomal structures. The existence of tubulin domains interacting with these structures is postulated.  相似文献   

14.
Kaul G  Sharma GS  Singh B  Gandhi KK 《Theriogenology》2001,55(7):1457-1468
Studies on buffalo sperm capacitation have been limited because of the non-availability of a direct assay system. We describe two methods for detecting the acrosomal status of buffalo spermatozoa, namely chlortetracycline (CTC) fluorescence assay and Pisum sativum agglutinin (FITC-PSA) stain. We also test them under various treatment regimens and simultaneously standardize and calibrate them with transmission electron microscopy. An initial comparison of three physiological media, such as Krebs-Ringer bicarbonate buffer, Tyrode solution and Brackett & Oliphant medium (having different calcium concentrations and osmolality) used for studying the capacitation of buffalo spermatozoa and assessed by CTC, FITC-PSA, Giemsa stain and TEM, revealed Brackett & Oliphant medium to be marginally better than the other two media. When stained with chlortetracycline, three distinct fluorescent patterns were visible in buffalo spermatozoa under capacitating conditions. These were 'F' with fluorescence in the post acrosomal region characteristic of uncapacitated acrosome-intact cells; 'B' with fluorescence on the anterior portion of the sperm head and a dark band in the post-acrosomal region, characteristic of capacitated, acrosome intact cells and 'AR' with a fluorescent band on the posterior portion of the head, characteristic of acrosome-reacted cells. The FITC-PSA intensely labels the acrosomal region of acrosome intact buffalo sperm. Acrosome reacted sperms had diminished acrosomal labelling by both the probes used. Buffalo spermatozoa was not capacitated when calcium was either omitted from the medium or chelated with EGTA. In the presence of Ca2+ ionophore, A23187, 68% at 4 h and 85% at 8 h completed the acrosome reaction. Time course studies revealed a 4 h incubation period at 1.71 mM Ca2+ concentration to be necessary before transformation of 'F' to 'B' cells could take place. Spontaneous acrosome reaction induced at 6 and 8 h incubation of buffalo spermatozoa in KRB medium resulted in conversion of 'B' cells to 'AR' cells while 'F' cells remained unchanged. A simultaneous evaluation of acrosome intact and acrosome-reacted cells using FITC-PSA, Giemsa and TEM gave results similar to examination by CTC stain. Both the assays are rapid, reproducible, reliable and they detect an increase or decrease in physiological acrosome reactions. They thus can be used to study effects of calcium and prove to be good monitoring systems to identify buffalo sperm capacitation and acrosome reaction in individual buffalo bulls for fertility studies.  相似文献   

15.
Biochemical and immunoelectron microscopic methods have been used to analyze the distribution of actin in boar spermatozoa and its state of aggregation before and after acrosome reaction. F-actin was detected on sperm head and tail by electron microscopy using an improved phalloidin probe: incubation with a fluorescein-phalloidin complex and an anti-fluorescein antibody, followed by labeling with protein A-gold complex. Gold particles, indicating the presence of F-actin, were localized on the sperm surface of the acrosome-reacted spermatozoa. Specific labeling was localized (1) between the outer acrosomal membrane and the plasma membrane in the equatorial region, (2) between the outer surface of the fibrous sheath and the plasma membrane in the postacrosomal region, (3) around the connecting piece and the neck region, and (4) on the external surface of the fibrous sheath in the principal piece of the tail. Furthermore, after NP-40 extraction, the SDS-PAGE revealed a difference in solubility between reacted and unreacted boar spermatozoa, reflecting actin polymerization. We conclude that most actin in the acrosome reacted boar spermatozoa is polymeric.  相似文献   

16.
A monoclonal antibody (MAb) against human acrosome-reacted sperm was attached to paramagnetic polystyrene beads. Human sperm prepared by the swim-up method were 1) incubated in m-BWW, 2) incubated and ionophore treated, or 3) incubated with 5% seminal fluid. After treatment, sperm were mixed with the beads and incubated for 1 hr. Variously treated sperm showed different binding abilities to the beads. Sperm bound to the beads were collected by a magnet and subjected to triple staining. Most of the collected sperm were acrosome reacted. The results suggested that the beads can be used to estimate the acrosomal status of sperm, and that the use of antibody-coated paramagnetic beads provides a convenient way of collecting acrosome-reacted sperm. The acrosomal status detected by the beads was also compared with the ability of sperm to fuse with zona-free hamster eggs. It was found that greater bead-binding ability correlated with more sperm fusing with zona-free hamster eggs.  相似文献   

17.
A sperm antigen corresponding to baboon sperm monoclonal antibody 1A9 was localized in the testis and ejaculated sperm in this animal, using the immunofluorescence technique and immunogold labelling. Immunohistochemical studies of the baboon testis showed that the antigenic determinant was localized in the late spermatid cells and spermatozoa close to the seminiferous tubules. Immunofluorescence studies indicate that the protein was localized on the acrosome region of ejaculated baboon sperm. At the electron-microscopic level, gold particles indicative of the presence of this determinant recognized by 1A9 monoclonal antibody were detected on the inner acrosomal region of ejaculated baboon sperm.  相似文献   

18.
Using a monoclonal antibody as a highly specific probe and a seminal particle-free fraction of rabbit ejaculated spermatozoa, actin has been localized in the postacrosomal region of mature rabbit spermatozoa. The sperm actin has been extracted and identified on two-dimensional PAGE immunoblots as a single spot of pI = 5.45 and Mr = 43,000. Rabbit sperm actin is present in a nonfilamentous form and is not removed by removing the plasma membrane. Unlike mature spermatozoa, however, filamentous actin is present in spermatogenic cells, as determined by rhodamine phalloidin staining. Starting as diffusely distributed in spermatocytes, actin accumulates in the subacrosomal space and appears as a band in conjunction with the developing acrosome. This band lengthens throughout the spermatid stage and becomes continuous with the postacrosomal region staining in testicular spermatozoa. Actin may therefore function during spermatogenesis to both shape the acrosome to the nucleus and to anchor inner acrosomal membrane proteins.  相似文献   

19.
The acrosome reaction is a regulated exocytotic process leading to a massive fusion between the outer acrosomal membrane and the cell membrane. In spite of the great amount of information available related to the acrosome reaction in several species, there is a remarkable paucity about the role of monomeric guanosine triphosphatases (GTPases) of the Rab family-well-established participants in exocytosis in other cell types-in the acrosome reaction. Western blot and immunofluorescence analysis indicate that Rab3A is present in human spermatozoa and localizes to the acrosomal region in the sperm head. One difficulty in studying the role of proteins in intact cells is the fact that they are unable to cross the cell membrane. Therefore, we established a working model of streptolysin O-permeabilized human spermatozoa. Permeabilized spermatozoa were able to respond in a regulated way to different stimuli, such as G protein activators and calcium. An acrosomal reaction was also triggered by a Rab3A peptide corresponding to the effector region. More important, recombinant Rab3A protein in the GTP-bound form caused acrosome exocytosis. The same protein loaded with GDP or Rab11 in the GTP-bound form was inactive. Also, recombinant GDI (GDP dissociation inhibitor)-a protein that releases Rab proteins from membrane-inhibited a GTPgammaS-stimulated acrosome reaction. Our results indicate that 1) permeabilized spermatozoa can be used to study the role of macromolecules in the acrosome reaction, 2) Rab3A is present in human spermatozoa, and 3) Rab3A or another Rab3 isoform is involved in the exocytosis of the acrosomal granule in human spermatozoa.  相似文献   

20.
Liu B  Wang P  Wang Z  Zhang W 《PloS one》2011,6(2):e16985
Voltage-dependent anion channel (VDAC) is mainly located in the mitochondrial outer membrane and participates in many biological processes. In mammals, three VDAC subtypes (VDAC1, 2 and 3) have been identified. Although VDAC has been extensively studied in various tissues and cells, there is little knowledge about the distribution and function of VDAC in male mammalian reproductive system. Several studies have demonstrated that VDAC exists in mammalian spermatozoa and is implicated in spermatogenesis, sperm maturation, motility and fertilization. However, there is no knowledge about the respective localization and function of three VDAC subtypes in human spermatozoa. In this study, we focused on the presence of VDAC2 in human spermatozoa and its possible role in the acrosomal integrity and acrosome reaction using specific anti-VDAC2 monoclonal antibody for the first time. The results exhibited that native VDAC2 existed in the membrane components of human spermatozoa. The co-incubation of spermatozoa with anti-VDAC2 antibody did not affect the acrosomal integrity and acrosome reaction, but inhibited ionophore A23187-induced intracellular Ca(2+) increase. Our study suggested that VDAC2 was located in the acrosomal membrane or plasma membrane of human spermatozoa, and played putative roles in sperm functions through mediating Ca(2+) transmembrane transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号