首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Zalacain  E Cundliffe 《Gene》1991,97(1):137-142
In addition to tlrA, tlrB and tlrC, which were previously cloned by others, a fourth antibiotic-resistance gene (tlrD) has been isolated from Streptomyces fradiae, a producer of tylosin (Ty), and cloned in Streptomyces lividans. Like tlrA, tlrD encodes an enzyme that methylates the N6-amino group of the A2058 nucleoside within 23S ribosomal RNA. However, whereas the tlrA protein dimethylates that nucleoside, the tlrD product generates N6-monomethyladenosine. The genes also differ in their mode of expression: tlrA is inducible, whereas tlrD is apparently expressed constitutively, and it has been confirmed that the tlrA-encoded enzyme can add a second methyl group to 23S rRNA that has already been monomethylated by the tlrD-encoded enzyme. Presumably, that is what happens in S. fradiae.  相似文献   

2.
G Jenkins  E Cundliffe 《Gene》1991,108(1):55-62
Inducible resistance to lincomycin and macrolides in Streptomyces lividans TK21 results from expression of two linked genes: lrm, encoding a ribosomal RNA methyltransferase that confers high-level resistance to lincomycin with lower levels of resistance to macrolides, and mgt, encoding a glycosyl transferase that specifically inactivates macrolides using UDP-glucose as cofactor. The lrm and mgt genes have been cloned and sequenced. The deduced lrm product is a 26-kDa protein with much similarity to other ribosomal RNA methyltransferases, such as the carB, tlrA and ermE products, whereas the mgt product (predicted to be 42 kDa) resembles a eukaryotic glycosyl transferase. Macrolides that induce the lrm-mgt gene pair are substrates for inactivation by the mgt product, and the lrm product confers ribosomal resistance to such inducers.  相似文献   

3.
4.
5.
E Cundliffe 《Gene》1992,115(1-2):75-84
Ribosomal (r) resistance to gentamicin in clones containing DNA from the producing organism Micromonospora purpurea is determined by grmA, and not by kgmA as originally reported. The kgmA gene originated in Streptomyces tenebrarius and is identical to kgmB. Both grmA and kgm encode enzymes that methylate single specific sites within 16S rRNA, although the site of action of the grmA product has not yet been determined. In either case, the methylated nucleoside is 7-methyl G. Inducible resistance to lincomycin (Ln) and macrolides in Streptomyces lividans TK21 results from expression of two genes: lrm, encoding an rRNA methyltransferase and mgt, encoding a glycosyl transferase (MGT), that specifically inactivates macrolides. The lrm product monomethylates residue A2058 within 23S rRNA (Escherichia coli numbering scheme) and confers high-level resistance to Ln with much lower levels of resistance to macrolides. Substrates for MGT, which utilises UDP-glucose as cofactor, include macrolides with 12-, 14-, 15- or 16-atom cyclic polyketide lactones (as in methymycin, erythromycin, azithromycin or tylosin, respectively) although spiramycin and carbomycin are not apparently modified. The enzyme is specific for the 2'-OH group of saccharide moieties attached to C5 of the 16-atom lactone ring (corresponding to C5 or C3 in 14- or 12-atom lactones, respectively). The lrm and mgt genes have been cloned and sequenced. The deduced lrm product is a 26-kDa protein, similar to other rRNA methyltransferases, such as the carB, tlrA and ermE products, whereas the mgt product (deduced to be 42 kDa) resembles a glycosyl transferase from barley.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
L Katz  D Brown  K Boris  J Tuan 《Gene》1987,55(2-3):319-325
The ermE gene was cloned from Streptomyces erythraeus into Escherichia coli on a series of plasmids. When transcribed from the lac promoter, ermE conferred high-level resistance to erythromycin and other macrolide-lincosamide-streptogramin-B (MLS) antibiotics. A methylase activity capable of N6-mono- and N6,N6-dimethylation of adenine residues in E. coli rRNA was detected in extracts of MLS-resistant cells. In addition, rRNA extracted from MLS-resistant E. coli contained N6-mono- and N6,N6-dimethylated adenine residues.  相似文献   

7.
Inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics in Streptomyces spp. comprises a family of diverse phenotypes in which characteristic subsets of the macrolide-lincosamide-streptogramin antibiotics induce resistance mediated by mono- or dimethylation of adenine, or both, in 23S ribosomal ribonucleic acid. In these studies, diverse patterns of induction specificity in Streptomyces and associated ribosomal ribonucleic acid changes are described. In Streptomyces fradiae NRRL 2702 erythromycin induced resistance to vernamycin B, whereas in Streptomyces hygroscopicus IFO 12995, the reverse was found: vernamycin B induced resistance to erythromycin. In a Streptomyces viridochromogenes (NRRL 2860) model system studied in detail, tylosin induced resistance to erythromycin associated with N6-monomethylation of 23S ribosomal ribonucleic acid, whereas in Staphylococcus aureus, erythromycin induced resistance to tylosin mediated by N6-dimethylation of adenine. Inducible macrolide-lincosamide-streptogramin resistance was found in S. fradiae NRRL 2702 and S. hygroscopicus IFO 12995, which synthesize the macrolides tylosin and maridomycin, respectively, as well as in the lincosamide producer Streptomyces lincolnensis NRRL 2936 and the streptogramin type B producer Streptomyces diastaticus NRRL 2560. A wide range of different macrolides including chalcomycin, tylosin, and cirramycin induced resistance when tested in an appropriate system. Lincomycin was active as inducer in S. lincolnensis, the organism by which it is produced, and streptogramin type B antibiotics induced resistance in S. fradiae, S. hygroscopicus, and the streptogramin type B producer S. diastaticus. Patterns of adenine methylation found included (i) lincomycin-induced monomethylation in S. lincolnensis (and constitutive monomethylation in a mutant selected with maridomycin), (ii) concurrent equimolar levels of adenine mono- plus dimethylation in S. hygroscopicus, (iii) monomethylation in S. fradiae (and dimethylation in a mutant selected with erythromycin), and (iv) adenine dimethylation in S. diastaticus induced by ostreogrycin B.  相似文献   

8.
Self-resistance has been investigated in Streptomyces caelestis (producer of the lincosamide antibiotic celesticetin), from which a lincosamide resistance determinant (clr) has been isolated on a 1-kilobase DNA fragment and cloned in Streptomyces lividans. The clr product is a specific methylase which produces a single residue of N6-monomethyladenine in 23S rRNA at position 2058, thereby rendering the 50S ribosmal subunit resistant to the action of lincosamides.  相似文献   

9.
In a previous phylogenetic study of the genus Streptomyces using the rpoB gene, N531, which stands for an aspargine residue in position 531 of RpoB instead of serine (S531), known to be associated with natural rifampin resistance in several organisms, was also observed in the RpoB of several Streptomyces species. To determine whether N531 is associated with the rifampin resistance of Streptomyces strains, we analyzed the rifampin minimum inhibitory concentrations (MICs) of 11 strains of the N531 RpoB type (putative rifampin resistant strains) and of 12 strains of the S531 RpoB type. (putative rifampin susceptible strains). In general, the N531 RpoB types showed higher MIC levels (16-128 microg/ml) than the S531 RpoB types (0-8 microg/ml). To determine the isolation frequencies of N531 RpoB types versus rifampin concentration, we applied screening methods involving different rifampin concentrations (0, 20 and 100 microg/ml) to Korean soils. Higher isolation frequencies of the N531 RpoB types were observed at the higher rifampin concentrations. In addition, during the course of this study we developed an allele specific PCR method to detect rifampin resistant Streptomyces strains. Our results strongly suggested that N531 might be involved in a major mechanism of natural rifampin resistance in strains of the genus Streptomyces.  相似文献   

10.
Streptomyces avermitilis contains a unique restriction system that restricts plasmid DNA containing N6-methyladenine or 5-methylcytosine. Shuttle vectors isolated from Escherichia coli RR1 or plasmids isolated from modification-proficient Streptomyces spp. cannot be directly introduced into S. avermitilis. This restriction barrier can be overcome by first transferring plasmids into Streptomyces lividans or a modification-deficient E. coli strain and then into S. avermitilis. The transformation frequency was reduced greater than 1,000-fold when plasmid DNA was modified by dam or TaqI methylases to contain N6-methyladenine or by AluI, HhaI, HphI methylases to contain 5-methylcytosine. Methyl-specific restriction appears to be common in Streptomyces spp., since either N6-methyladenine-specific or 5-methylcytosine-specific restriction was observed in seven of nine strains tested.  相似文献   

11.
Streptomyces lividans TK21 possesses inducible ribosomal RNA methylase activity that confers high-level resistance to lincomycin and lower levels of resistance to certain macrolides. The methylase gene (designated lrm) is inducible by erythromycin and other macrolides and also by celesticetin (a lincosamide) but not by lincomycin. The lrm enzyme monomethylates the N6-amino group of adenosine at position 2058 within 23S-like ribosomal RNA.  相似文献   

12.
The pur6 gene of the puromycin biosynthetic gene (pur) cluster from Streptomyces alboniger is shown to be essential for puromycin biosynthesis. Cell lysates from this mycelial bacterium were active in linking L-tyrosine to both 3'-amino-3'-deoxyadenosine and N6,N6-dimethyl-3'-amino-3'-deoxyadenosine with a peptide-like bond. Identical reactions were performed by cell lysates from Streptomyces lividans or Escherichia coli transformants that expressed pur6 from a variety of plasmid constructs. Physicochemical and biochemical analyses suggested that their products were tridemethyl puromycin and O-demethylpuromycin, respectively. Therefore, it appears that Pur6 is the tyrosinyl-aminonucleoside synthetase of the puromycin biosynthetic pathway.  相似文献   

13.
Conditions for efficient transformation of Amycolatopsis orientalis (Nocardia orientalis) protoplasts by Streptomyces plasmid cloning vectors were identified. Three streptomycete plasmid origins of replication function in A. orientalis, as do the apramycin resistance gene from Escherichia coli, the thiostrepton resistance gene from Streptomyces azureus, and the tyrosinase gene from Streptomyces antibioticus. A. orientalis appears to express some restriction and modification, because highest transformation frequencies (10(6)/micrograms of DNA) were obtained when plasmid pIJ702 was modified by passage in A. orientalis.  相似文献   

14.
Coresistance to macrolide, lincosamide, and streptogramin B-type (MLS) antibiotics by a common biochemical mechanism characterizes clinically resistant pathogens. Of 10 streptomycetes tested for resistance to macrolide, lincosamide, and streptogramin B-type antibiotics, only 1, Streptomyces erythreus, the organism used for production of erythromycin, was found resistant to all three classes; moreover, it was the only streptomycete in the series tested found to contain N6-dimethyladenine (m62A) in 23S ribosomal ribonucleic acid, the structural alteration of ribosomal ribonucleic acid associated with clinical resistance. Of the seven streptomycetes tested for the presence of m62A and N6-methyladenine (m6A), two, S. fradiae and S. cirratus, which produce the macrolide antibiotics tylosin and cirramycin, respectively, were found to contain m6A, but not m62A. The remaining strains tested, including strains which produce lincomycin and streptogramins, contained neither m6A nor m62A.  相似文献   

15.
N. BAMAS-JACQUES, S. LORENZON, P. LACROIX, C. DE SWETSCHIN and J. CROUZET.1999. Streptomyces pristinaespiralis synthesizes pristinamycin, a member of the streptogramin antibiotic family which consists of a mixture of two types of chemically unrelated compounds named pristinamycins I and pristinamycins II. In order to estimate the size of the Strep. pristinaespiralis chromosome and to elucidate the organization of the pristinamycin biosynthetic and resistance genes already identified, it was decided to use the pulsed-field gel electrophoresis technique. Results indicate that the Strep. pristinaespiralis chromosome is linear and about 7580 kb, as previously shown for several other Streptomyces species. By hybridization, it could be shown that the biosynthetic and resistance genes for pristinamycins I and pristinamycins II, except for the multidrug resistance gene ptr , are interspersed and seem to be organized as a single large cluster, covering less than 200 kb corresponding to 2·6% of the total size of the chromosome. The consequences and significance of such a genetic organization are discussed.  相似文献   

16.
W H Rodgers  W Springer  F E Young 《Gene》1982,18(2):133-141
A Streptomyces fradiae DNA sequence, which codes for a neomycin phosphotransferase, has been subcloned from the Streptomyces recombinant plasmid pIJ2 [a chimera between the Streptomyces plasmid SLP1.2 and chromosomal DNA containing a neomycin (Nm) resistance gene] into the BamHI restriction enzyme site of pHV14. Three different recombinant plasmids (pWHR1, pWHR2, pWHR3) have been isolated which transform Escherichia coli to Nm resistance. Southern transfer hybridization experiments show that the recombinant plasmids contain the cloned Streptomyces Nm resistance gene, and lysates of E. coli containing the recombinant plasmids were shown to have Nm phosphotransferase activity, demonstrating that a gene from Streptomyces can be expressed in E. coli.  相似文献   

17.
The pur3 gene of the puromycin (pur) cluster from Streptomyces alboniger is essential for the biosynthesis of this antibiotic. Cell extracts from Streptomyces lividans containing pur3 had monophosphatase activity versus a variety of mononucleotides including 3'-amino-3'-dAMP (3'-N-3'-dAMP), (N6,N6)-dimethyl-3'-amino-3'-dAMP (PAN-5'-P) and AMP. This is in accordance with the high similarity of this protein to inositol monophosphatases from different sources. Pur3 was expressed in Escherichia coli as a recombinant protein and purified to apparent homogeneity. Similar to the intact protein in S. lividans, this recombinant enzyme dephosphorylated a wide variety of substrates for which the lowest Km values were obtained for the putative intermediates of the puromycin biosynthetic pathway 3'-N-3'-dAMP (Km = 1.37 mM) and PAN-5'-P (Km = 1.40 mM). The identification of this activity has allowed the revision of a previous proposal for the puromycin biosynthetic pathway.  相似文献   

18.
Restriction endonuclease cleavage maps of five DNA fragments carrying genes for neomycin phosphotransferase and neomycin acetyltransferase (from Streptomyces fradiae), viomycin phosphotransferase (from S. vinaceus), and ribosomal methylases determining resistance to thiostrepton (from S. azureus) and MLS antibiotics (from S. erythreus) are described, together with a map for the SLP1.2 Streptomyces plasmid used to isolate the fragments. Construction of a versatile Streptomyces cloning vector (pIJ61) is reported. pIJ61 carries neomycin phosphotransferase and thiostrepton resistance genes and has unique BamHI and PstI sites which will allow clone recognition by insertional inactivation of neomycin resistance; cloning sites for several other endonucleases are also present. pIJ28, a shuttle vector for Streptomyces and E. coli, carries neomycin resistance and the SLP1.2 and pBR322 replicons.  相似文献   

19.
Two distinct DNA sequences expressing novobiocin resistance in Streptomyces lividans were cloned from the novobiocin-producing species Streptomyces niveus. Clone pGL101 (5kb) conferred resistance to 50 micrograms ml-1 novobiocin, whereas clones pGL102 and pGL103, which carry the same 6.5kb insert but in opposite orientations, expressed resistance to 150 micrograms ml-1. The cloned inserts from pGL101 and pGL103 failed to hybridize with each other or with the cloned novobiocin-resistant gyrB sequence from Streptomyces sphaeroides. Both probes hybridized strongly with DNA from the novobiocin-producing species S. niveus and S. sphaeroides but no hybridization (pGL103) or very weak hybridization (pGL101) was detected with DNA from the non-producing species S. lividans, Streptomyces griseus and Streptomyces antibioticus. S. niveus contains at least three novobiocin-resistance determinants with the pGL101 and pGL103 cloned sequences specific for novobiocin-producing strains of Streptomyces.  相似文献   

20.
A novel cosmid (pABC6.5) whose DNA insert from Streptomyces capreolus, the A201A antibiotic producer, overlaps the inserts of the previously reported pCAR11 and pCAR13 cosmids, has been isolated. These two latter cosmids were known to contain the aminonucleoside antibiotic A201A resistance determinants ard2 and ard1, respectively. Together, these three cosmids have permitted the identification of a DNA stretch of 19 kb between ard1 and ard2, which should comprise a large region of a putative A201A biosynthetic (ata) gene cluster. The sequence of the 7 kb upstream of ard1 towards ard2 reveals seven consecutive open reading frames: ataP3, ataP5, ataP4, ataP10, ataP7, ata12 and ataPKS1. Except for the last two, their deduced products present high similarities to an identical number of counterparts from the pur cluster of Streptomyces alboniger that were either known or proposed to be implicated in the biosynthesis of the N6,N6-dimethyl-3'-amino-3'-deoxyadenosine moiety of puromycin. Because A201A contains this chemical moiety, these ataP genes are most likely implicated in its biosynthesis. Accordingly, the ataP4, ataP5 and ataP10 genes complemented specific puromycin nonproducing Deltapur4, Deltapur5 and Deltapur10 mutants of S. alboniger, respectively. Amino acid sequence comparisons suggest that ata12 and ataPKS1 could be implicated in the biosynthesis of the d-rhamnose and alpha-p-coumaric acid moieties of A201A. Further sequencing of 2 kb of DNA downstream of ard1 has disclosed a region which might contain one end of the ata cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号