首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhanced numbers of multiple shoots were induced from shoot tip explants of cucumber. The effects of amino acids (leucine, isoleucine, methionine, threonine, and tryptophan) and polyamines (spermidine, spermine, and putrescine) along with benzyladenine (BA) on multiple shoot induction were investigated. A Murashige and Skoog (MS) medium containing a combination of BA (4.44 μM), leucine (88 μM), and spermidine (68 μM) induced the maximum number of shoots (36.6 shoots per explant) compared to BA (4.44 μM) alone or BA (4.44 μM) with leucine (88 μM). The regenerated shoots were elongated on the same medium. Elongated shoots were transferred to the MS medium fortified with BA (4.44 μM), leucine (88 μM), and putrescine (62 μM) for root induction. Rooted plants were hardened and successfully established in soil with a 90% survival rate.  相似文献   

2.
In vitro culture is a useful tool in the ex situ conservation of rare, endemic, and threatened plant species. Crepis novoana (Compositae) is an endangered endemic in northwestern Spain. Use of in vitro culture tools is necessary due to the poor conservation status of populations of the species. The systems of in vitro propagation developed for this species in the present study were caulogenesis from leaf explants and growth of axillary buds from shoots. Explants were produced by placing fragments of leaves on Murashige and Skoog medium (MS) supplemented with 2.22 μM 6-benzyladenine (BA) and 2.69 μM naphthaleneacetic acid (NAA); caulogenesis was induced in 80% of explants, with development of a mean number of 2.48 shoots per explant. Axillary bud development from shoots was highest with MS supplemented with 4.44 μM BA and 0.54 μM NAA, resulting in production of a mean number of 49.77 shoots per explant. Immersion of the basal side of shoots in a solution of 5.37 mM NAA for 30 s yielded 90% success in the production of rooted shoots. Plantlets were well acclimatized, and almost 100% of plants transferred to soil recovered successfully.  相似文献   

3.
The development of stem callus mediated plant regeneration system for Withania somnifera is described. Maximum callus proliferation was obtained on Murashige and Skoog medium supplemented with 2.26 μM 2,4-D. Three-week-old, white, friable callus was used for shoot regeneration. The maximum shoot regeneration (6.2 ± 0.34 shoots/explant) was achieved in four weeks when callus was cultured on MS medium fortified with 4.44 μM BA and 0.57 μM IAA. Regenerated shoots were excised and multiplied (8.4 ± 0.43 shoots/explant) on MS medium supplemented with 4.44 μM of BA. Multiple shoots were divided into single shoots and were rooted (5.1 ± 0.49 rootlets/shoot) on half strength MS medium supplemented with 9.84 μM of IBA. After a hardening phase of 3 weeks the plantlets were transferred to the field. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Exacum Styer Group plantlets were regenerated through direct organogenesis from leaf explants. Four genotypes were evaluated on MS media supplemented with combinations of BA (0, 0.44, 2.22, 4.44, or 8.88 μM) and NAA (0, 0.05, 0.54, or 2.69 μM) for direct shoot organogenesis without an intervening callus phase. Regression analyses were used to analyze and interpret the data. There were significant genotype, media, and genotype × media interactions for several variables. Genotypes 01-09-01 and 01-37-61 had the highest number of shoots per explant across media (10.2 and 6.6, respectively) while the 4.44 μM BA plus 0.54 μM NAA treatment induced the greatest number of shoots among the genotypes evaluated.  相似文献   

5.
In vitro propagation of northern red oak (Quercus rubra) shoots was successful from cotyledonary node explants excised from 8-wk-old in vitro grown seedlings. Initially, four shoots per explant were obtained on Murashige and Skoog (MS) medium supplemented with 4.4 μM 6-benzylaminopurine (BA), 0.45 μM thidiazuron (TDZ), and 500 mg l−1 casein hydrolysate (CH) with a regeneration frequency of 64.7% after 3 wk. Subculturing explants (after harvesting shoots) to fresh treatment medium significantly increased shoot bud regeneration (16.6 buds per explant), but the buds failed to develop into shoots. A higher percentage (73.3%) of the explants regenerated four shoots per explant on woody plant medium (WPM) supplemented with 4.4 μM BA, 0.29 μM gibberellic acid (GA3), and 500 mg l−1 CH after 3 wk. Explants subcultured to fresh treatment medium after harvesting shoots significantly increased shoot regeneration (16 shoots per explant). Shoot elongation was achieved (4 cm) when shoots were excised and cultured on WPM supplemented with 0.44 μM BA and 0.29 μM GA3. In vitro regenerated shoots were rooted on WPM supplemented with 4.9 μM indole-3-butyric acid. A higher percentage regeneration response and shoot numbers per explant were recorded on WPM supplemented with BA and GA3, than on MS medium containing BA and TDZ. Lower concentrations of BA and GA3 were required for shoot elongation and prevention of shoot tip necrosis. Each cotyledonary node yielded approximately 20 shoots within 12 wk. Rooted plantlets were successfully acclimatized.  相似文献   

6.
Seabuckthorn (Hippophae rhamnoides) is a multipurpose small tree with unique berries of high nutritional and pharmaceutical values. A clonally propagated plant originating from a 20-year-old tree of H. r. rhamnoides × mongolica hybrid cultivar Julia and seedling offspring of this cultivar were investigated regarding induction of shoot organogenesis in leaf explants and in roots of intact seedlings, and induction of direct somatic embryogenesis in explants from shoot tissue. The highest percentage of leaf explants showing shoot organogenesis was achieved (juvenile explants, 65%; adult explants, 75%) when incubated in Murashige and Skoog (MS) medium supplemented with either 4.5 μM of the phenylurea cytokinin thidiazuron (TDZ) or 2.25 μM TDZ plus 2.2 μM 6-benzyladenine (BA), for juvenile and adult explants, respectively, both supplemented with 0.53 μM α-naphthaleneacetic acid (NAA). Juvenile explants developed on average 18 shoots per explant in the MS medium supplemented with 4.5 μM TDZ, a four fold increase over those incubated on the medium supplemented with 2.25 μM TDZ and 2.2 μM BA. Adult leaf explants grown on medium containing 2.25 μM TDZ and 2.2 μM BA medium produced 12 shoots per explant, while those grown on medium containing 4.5 μM TDZ produced 5 shoots per explant. Shoot organogenesis was observed in roots of intact seedlings pre-cultured on plain medium lacking nutrients (PM) or woody plant medium (WPM) salts and then grown on WPM salts supplemented with 4.4 μM BA, 0.29 μM gibberrelic acid (GA3), and 57.0 μM indoleacetic acid (IAA). The number of shoots formed on each seedling root system was ten fold higher when the pre-culture was in WPM medium indicating a promoting effect of mineral nutrients in the pre-culture medium. Somatic embryogenesis was induced in both juvenile and adult leaf explants in 65 and 78% of the explants, respectively, in MS-based medium supplemented with 2.0 μM N-(2-Chloro-4-pyridyl)-N 1-phenylurea (CPPU), 0.53 μM NAA and varying concentrations of BA. There was an interaction effect between MS salt strength and BA concentration. The most effective medium for inducing somatic embryogenesis in juvenile explants contained half strength MS salts and 2.2 μM BA and full strength MS salts and 13.2 μM BA for adult explants.  相似文献   

7.
Leaf, petal, petiole, and intermodal stems of six chrysanthemum cultivars were incubated on a medium supplemented with 0.00–6.66 μM benzyladenine (BA) either alone or in combination with 2.85–8.56 μM indoleacetic acid (IAA), and 0.46 μM kinetin (Kin). Significant differences in frequency of regeneration were observed among different cultivars when grown on media containing different plant growth regulators (PGRs). The highest frequency of regeneration was observed for cv. Brighton followed by cvs. Dark Roanoke and Tahoe. Low frequencies of shoot organogenesis were observed for cvs. Dark Orange Cupertino, Hudson Bay, and Ivory Eugene. Among different explants, petals exhibited the highest frequencies of shoot organoenesis and mean number of shoots per explant. Regenerated shoots of cv. Brighton transferred onto a medium containing 2.85–8.56 μM IAA developed highest frequency of roots (100%) with a mean of 7.6 roots per shoot. Well-rooted shoots transferred to plastic pots containing a soil mix were kept in a growth room for 1 week, and then moved to the greenhouse for further growth and development.  相似文献   

8.
An efficient and rapid method for in vitro clonal propagation of Huernia hystrix was developed, resulting in shoot regeneration within 3 weeks of culture. This endangered medicinal and ornamental succulent is in high demand. Multiple shoots were regenerated from stem explants (10 mm length) cultured on Murashige and Skoog (MS) medium containing 3% sucrose and supplemented with a range of NAA (0.00–8.06 μM) and BA (4.44–22.19 μM) concentrations. A 100% shoot response with a multiplication rate of four shoots per explant was obtained on MS medium containing 5.37 μM NAA and 22.19 μM BA. Callus produced at the base of the explant on the same medium showed root organogenic potential. The in vitro regenerated shoots produced roots when transferred to half strength MS medium with or without auxin. The micropropagated plants were easily acclimatized within 2 months under greenhouse conditions when potted in a soil and sand mixture (1:1; v/v) treated with a fungicide (Benlate, 0.01%). More than 95% survival with no observable morphological variations was obtained. The developed protocol provides a simple, cost-effective means for the conservation of endangered H. hystrix by clonal propagation within a short time.  相似文献   

9.
Summary An efficient protocol for in vitro propagation of the valuable medicinal plant, Wasabia japonica (Miq.) Matsumura is described through shoot tip proliferation and direct regeneration. Multiple shoots were induced from shoort tips cultured on Murashige and Skoog (MS) semi-solid medium containing various concentrations (0.5–50 μM) of N6-benzyladenine (BA), thidiazuron, kinetin, and zeatin. A comparison was made on shoot multiplication between semi-solid and liquid culture media. Well-developed shoots were obtained using full-strength MS semi-solid medium containing 5.0 μM BA. However, the greatest shoot proliferation was achieved on either full- or half-strength MS liquid media supplemented with 5.0 μM BA for 4 wk (15.3±0.9 and 15.0±0.7 shoots per explant, respectively), and on half-strength MS liquid medium for 6 wk (25.8±1.3 shoots per explant) in culture. In contrast, the maximum number of shoots per explant on full-strength MS semi-solid medium was achieved with either 5.0 μM BA (10.4±0.6 shoots per explant) or 10.0 μM kinetin (10.9±0.8 shoots per explant). Fresh weight of explants and length of shoots derived from full-strength MS liquid medium (1055±77 mg and 34.2±1.0 mm, respectively) were significantly higher than those derived from full-strength MS semisolid medium (437.6±17.3 mg and 15.4±0.7 mm, respectively). Quarter-strength MS liquid medium had no significant difference in shoot proliferation when compared to quarter-strength MS semi-solid medium. Elongated shoots were separated and rooted on half-strength MS semi-solid media fortified with 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA), or indole-3-acetic acid (IAA) ranging from 0.1 to 10.0 μM. Root formation was greatest with IBA when compared with IAA and NAA. One hundred percent of shoots were rooted on half-strength MS medium with 5.0 μM IBA, while vigorous roots were obtained with 10.0 μM IBA. Micropropagated plantlets were successfully established in soil with 95% survival rate after heardening.  相似文献   

10.
The effects of culture media and cytokinin types on micropropagation of mature Crataegus aronia L. were investigated. Using single-axillary bud explants, the growth of cultures on MS, WPM, DKW and NRM containing 4.44 μM benzyladenine (BA) plus 0.05 μM indole-3-butyric acid (IBA), and on NRM containing thidiazuron, meta-Topolin (mT) or BA at 1.25, 2.5, 5.0 or 7.5 μM plus 0.05 μM IBA were compared. The culture medium had significant effects on shoot number and length. In comparison with MS, DKW and WPM, shoot production was greater on NRM (5.7 shoots per explant). Shoot production on MS, DKW and WPM (4.2, 4.2 and 4.1, respectively) were statistically similar to each other. Thidiazuron was detrimental to shoot formation and caused formation of rosette shoots and/or large callus to form on explants. In the presence of mT, only some of the explants developed into shoots. Benzyladenine was the only cytokinin that promoted both shoot proliferation and shoot elongation. Higher shoot numbers were obtained at 5.0 and 7.5 μM BA compared to lower concentrations of BA. Over 80% of microshoots rooted and rooted shoots were successfully acclimatized to ex vitro conditions.  相似文献   

11.
Summary A protocol has been developed for in vitro plant regeneration from cotyledonary nodes of Pterocarpus marsupium Roxb. Multiple shoots were induced from cotyledonary nodes derived from 20-d-old axenic seedlings grown on Murashige and Skoog (MS) medium containing 2.22–13.32 μM benzyladenine (BA) or 2.32–13.93 μM kinetin alone or in combination with 0.26 μM α-naphthaleneacetic acid (NAA). The highest frequency for shoot regeneration (85%) and maximum number of shoots per explant (9.5) were obtained on the medium supplemented with 4.44 μM BA and 0.26 μM NAA after 15 wk of culture. A proliferating shoot culture was established by repeatedly subculturing the original cotyledonary nodal explant on fresh medium after each harvest of the newly formed shoots. Nearly 30% of the shoots formed roots after being transferred to half-strength MS medium containing 9.84 μM indole-3-butyric acid (IBA) after 25 d of culture. Fifty percent of shoots were also directly rooted as microtuttings on a peat moss, soil, and compost mixture (1∶1∶1). About 52% of plantlets were successfully acclimatized and established in pots.  相似文献   

12.
Summary A protocol has been developed for in vitro plant regeneration from cotyledonary nodes of Pterocarpus marsupium Roxb. Multiple shoots were induced from cotyledonary nodes derived from 20-d-old axenic seedlings grown on Murashige and Skoog (MS) medium containing 2.22–13.32 μM benzyladenine (BA) or 2.32–13.93 μM kinetin alone or in combination with 0.26 μM α-naphthaleneacetic acid (NAA). The highest frequency of responding explants (85%) and maximum number of shoots per explant (9.5) were obtained on MS medium supplemented with 4.44 μM BA and 0.26 μM NAA after 15 wk of culture. A proliferating shoot culture was established by repeatedly subculturing the orginal cotyledonary nodal explant on fresh medium after each harvest of the newly formed shoots. Nearly 30% of the shoots formed roots after being transferred to half-strength MS medium containing 9.84 μM indole-3-butyric acid after 25 d of culture. Fifty percent of shoots were also directly rooted as microcuttings on peat moss, soil, and compost mixture (1∶1∶1). About 52% plantlets rooted under ex vitro conditions were successfully acclimatized and established in pots.  相似文献   

13.
An efficient in vitro micropropagation system for Clivia miniata Regel was developed using basal tissues of young petals and young ovaries as explants. For callus induction, explants were incubated on Murashige and Skoog (MS) medium containing either 2.22 μM 6-benzyladenine (BA) and 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) or 4.44 μM BA, 5.37 μM α-naphthaleneacetic acid (NAA), and 9.05 μM 2,4-D. Moreover, callus was induced from young ovaries when these were incubated on MS medium containing 8.88 μM BA, 10.74 μM NAA, and 9.05 or 18.10 μM 2,4-D. Subsequently, callus was transferred to MS medium supplemented with kinetin (KT) and NAA for shoot organogenesis. Frequency of shoot regeneration from petal-derived callus was highest when callus was transferred to medium containing 2.69 μM NAA with either 9.29 or 13.94 μM KT. Shoot regeneration frequency from ovary-derived callus was highest when this callus was transferred to medium containing 9.29 μM KT and 10.74 μM NAA. Overall, different explant types exhibited different organogenic capacities wherein, young petals had higher shoot regeneration frequencies than young ovaries. The highest rooting frequency (98.25 ± 3.04%) was obtained when shoots were transferred to half-strength MS medium without plant growth regulators. Regenerated plantlets were transplanted to soil mix and acclimatized, yielding a 96.80% survival frequency. Only 0.6% of regenerated plantlets exhibited morphological changes. The diploid status (2n = 22) of regenerated plantlets was determined using chromosome counts of root-tips. Moreover, inter-simple sequence repeats were used to assess the genetic fidelity of regenerated plantlets. Overall, regenerated plants shared 90.5–100.0% genetic similarities with mother plants and 89.0–100.0% similarities with each other.  相似文献   

14.
An efficient micropropagation protocol based on multiple shoot induction and callus regeneration has been standardized in Sarcostemma brevistigma, a rare medicinal plant. The nodal cuttings were cultured on MS medium supplemented with BA (0.5–8 μM) or Kn (0.5–8 μM) alone or in combination with NAA (0.5–1.5 μM). Maximum multiple shoot induction was observed on MS medium supplemented with 4 μM BA. On this medium, 100% cultures responded with an average number of 11.3 shoots per explant. However, the average shoot length was limited to only 0.9 cm on this medium. The addition of 1 μM NAA along with 4 μM BA gave rise to an average number of 10.9 shoots with an average shoot length of 1.8 cm. Luxuriantly growing callus was obtained on MS medium supplemented with BA (5 μM) and 2,4-D (2 μM). The callus was subcultured on MS medium supplemented with BA (2–15 μM) or Kn (2–15 μM) alone or in combination with NAA (0.5–2 μM) for shoot organogenesis. Optimum callus regeneration was obtained on MS medium supplemented with 10 μM BA and 1 μM NAA. On this medium, 100% cultures responded with an average number of 13.4 shoots per culture. The shoots obtained via multiple shoot induction and organogenesis were rooted on half-strength MS medium supplemented with NAA (1–7 μM) or IBA (1–7 μM). IBA was better than NAA in terms of both the percentage of cultures that responded and the average number of roots per explant. The rooted shoots were successfully transplanted to soil with 86% success. This standardized protocol will help to conserve this rare medicinal plant.  相似文献   

15.
This paper describes an efficient in vitro micropropagation of Artemisia vulgaris using shoot tip and nodal explants. Among the various growth regulators tested, MS medium and B5 vitamins supplemented with BA (4.44 μM) and KN (2.32 μM) combination was found to yield a better response than BA (4.44–13.32 μM) or KN (0.46–13.92 μM) alone in the medium. BA and KN combinations produced a maximum of 23.3 shoots per explant with 99.8% shooting frequency. Multiple shoots raised were elongated on MS medium containing 0.44 μM BA and 1.44 μM GA3. Rooting was highest (98.2%) on MS medium containing 8.56 μM IAA. Rooted plantlets were successfully transferred to plastic cups containing autoclaved garden soil, farmyard soil and sand (2:1:1) for hardening. After 65 days, the plantlets were transferred to Botanical Evaluation Garden and maintained. The survival rate of plantlets varied under acclimatization. Plants looked healthy with no visually detectable phenotypic variations. This is the first report on plant regeneration via organogenesis of A. vulgaris.  相似文献   

16.
Two procedures for the in vitro propagation of Encyclia mariae, a threatened Mexican orchid, were developed. In the first procedure, leaves from in vitro germinated seedlings were cultured on Murashige and Skoog medium (MS) supplemented with the range of 2.21–4.4 μM 6-benzylaminopurine (BA) in combination with 2.69–10.74 μM naphthalene acetic (NAA), 2.07–8.29 μM indole-3-butyric (IBA), or 2.85–11.42 μM indole-3-acetic acid (IAA) to determine the best medium for the induction of shooting. Maximum direct shoot formation from leaves was observed on MS containing 22.21 μM BA and 10.74 μM NAA (25 shoots/explant). The second procedure began with the culture of protocorms on media containing NAA, IBA, or IAA, which induced callus formation with high regenerative potential in the form of protocorm-like-bodies (PLBs) that eventually differentiated into shoots. The optimal response was attained when these structures were cultured on medium with 4.14 μM IBA (30 shoots/PLB). To promote the elongation of shoots derived from PLBs, the material was subcultured onto MS medium containing 22.21 μM BA and 5.37 μM NAA. Through the exploration of the effects of auxins and matrix on the rooting of shoots, it was determined that the optimal rooting occurred on media supplemented either with 5.71 μM IAA or 4.14 μM IBA either on agar-gelled medium or in liquid media with coir as the matrix. Rooting was found to be 20% higher in liquid media than in agar-gelled medium.  相似文献   

17.
An efficient in vitro plant regeneration protocol through somatic embryogenesis and direct shoot organogenesis has been developed for pearl millet (Pennisetum glaucum). Efficient plant regeneration is a prerequisite for a complete genetic transformation protocol. Shoot tips, immature inflorescences, and seeds of two genotypes (843B and 7042-DMR) of pearl millet formed callus when cultured on Murashige and Skoog (MS) medium supplemented with varying levels of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9, 13.5, and 18 μM). The level of 2,4-D, the type of explant, and the genotype significantly effected callus induction. Calli from each of the three explant types developed somatic embryos on MS medium containing 2.22 μM 6-benzyladenine (BA) and either 1.13, 2.25, or 4.5 μM of 2,4-D. Somatic embryos developed from all three explants and generated shoots on MS medium containing high levels of BA (4.4, 8.8, or 13.2 μM) combined with 0.56 μM 2,4-D. The calli from the immature inflorescences exhibited the highest percentage of somatic embryogenesis and shoot regeneration. Moreover, these calli yielded the maximum number of differentiated shoots per callus. An efficient and direct shoot organogenesis protocol, without a visible, intervening callus stage, was successfully developed from shoot tip explants of both genotypes of pearl millet. Multiple shoots were induced on MS medium containing either BA or kinetin (4.4, 8.8, 17.6, or 26.4 μM). The number of shoots formed per shoot tip was significantly influenced by the level of cytokinin (BA/kinetin) and genotype. Maximum rooting was induced in 1/2 strength MS with 0.8% activated charcoal. The regenerated plants were transferred to soil in pots, where they exhibited normal growth.  相似文献   

18.
Camelina sativa was successfully established in vitro and systems for the regeneration of shoots from leaf explants developed. Methods for the surface-sterilisation of seeds were used which gave 95% germination, though the in vitro grown seedlings failed to develop beyond 28 days culture. In a micropropagation system, the rooting response of nodal explants was increased from a control level of 26.4% to 46.7% by the addition of 5.4 μM NAA. Leaf explants were more efficient for the regeneration of root and shoots than hypocotyls. For regeneration from leaf tissue the use of auxin (NAA) alone in the medium above a level of 0.54 μM resulted in root or callus growth. Cytokinin, in the form of BA alone failed to induce regeneration, but a combination of 4.44 μM BA and 0.54 μM NAA induced shoot regeneration at rates over 10.0 shoots per explant. Regenerated shoots were successfully transplanted to soil and flowered and set seed normally. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The effect of different cytokinins on multiple shoot regeneration from shoots of Centaurea ultreiae was studied. The culture system consisted of solid basal half-strength Murashige and Skoog medium supplemented with one of four cytokinins [6-benzyladenine (BA), zeatin, kinetin, or N6-(2-isopentyl) adenine (2-iP)] at each of five different concentrations. The highest multiplication rate (5.52 shoots per explant) was obtained in the medium supplemented with 4.44 μM BA. Shoots were successfully rooted (91% success) by dipping the basal end into a solution containing 10 M 1-naphthaleneacetic acid for 30 s. Genetic stability of the regenerated plants was assessed by random amplified polymorphic DNA (RAPD) analysis and flow cytometry. In the initial randomly selected plant material (control) and 20 of its regenerants, 2,688 bands were generated by RAPD with 12 different primers, and the same banding profiles were exhibited. Molecular and cytological analyses did not reveal genomic alterations in any of the regenerated plants obtained on medium containing 4.44 μM BA. The success of acclimatization to environmental conditions—100% of plants were successfully acclimatized—suggests that the micropropagation system described is a reliable method for propagation of C. ultreiae.  相似文献   

20.
Summary Variants from seed-propagated Lisianthus [Eustoma grandiflorum (Raf.) Shinn] were shoot-tip cultured to observe the effects of cytokinins, auxins and activated charcoal on organogenesis and anatomical characteristics. N6-Benzyladenine (BA) and kinetin at high concentrations (13.32–22.2 and 13.94–23.23 μM) resulted in good shoot formation but high percentages of hyperhydric shoots. Increased indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) concentrations favored root formation, while increased naphthaleneacetic acid concentration adversely affected root formation. Both shoot and root development were suppressed by activated charcoal. The highest percentage of regeneration and the largest number of glaucous shoots with an average of 15 shoots per explant after 4 wk of culture were obtained when the shoot tips were cultured on MS (Murashige and Skoog, 1962) medium supplemented with 4.44 μM BA and 1.47–4.92 μMIAA and IBA. In vitro-grown leaves had a higher number of stomata than field-grown leaves but the length and diameter of stomata showed no significant difference between the two types. Field-grown leaves had well-developed epicuticular wax layers. which were not observed on hyperhydric leaves. Hyperthydric plantlets could not survive when transplanted to soil, whereas glaucous plantlets survived in more than 80% of cases. Variation in soil type resulted in a slight difference in plantlet survival. Based on the results of our experiment, this protocol should be useful for the rapid micropropagation of lisianthus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号