首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the ability of pretreatment variables from three different domains (social-demographic, psychological, and psychophysiological) to predict posttreatment mean arterial pressure (MAP) for 59 unmedicated males with mild hypertension who were participating in a cross-cultural (USA-USSR) comparison of autogenic training and thermal biofeedback to a self-relaxation control. The overall multiple regression equation consisted of two variables and indicated that higher diastolic blood pressures during a cold pressor task were predictive of greater MAP reductions while higher scores on the Irritability subscale of the Buss-Durkee Hostility Scale were predictive of less MAP reductions. Suggestions for future research in this area are provided.This research was supported in part by a grant from NHLBI, No. HL-31189.  相似文献   

2.
Stimulation of cardiac receptors (CR) evokes blunted reflex reductions in mean arterial pressure (MAP) in pregnant compared with virgin rats. Because CR-mediated sympathoinhibition has preferential effects on the kidney, we tested whether, during pregnancy, renal vascular resistance (RVR) changes less in response to CR stimulation and investigated possible mechanisms. MAP, right atrial pressure, renal sympathetic nerve activity (RSNA), renal blood flow (RBF), and RVR were measured in anesthetized animals in response to CR stimulation by graded atrial injections of saline. Baseline MAP and RVR and reflex changes in these variables during CR stimulation were reduced in late-pregnant vs. virgin rats (P<0.05). Reflex changes in RSNA were attenuated in pregnant rats, but changes in RBF as a function of RSNA were similar in both groups. ANG II AT(1)-receptor blockade increased basal RBF more in virgin rats (P<0.05), but between-group differences in reflex changes in MAP, RSNA, and RVR were maintained after AT(1) blockade. Thus during CR simulation, reflex changes in RVR were reduced in pregnant versus virgin rats. This difference does not appear to involve differential effects of ANG II.  相似文献   

3.
We utilized variations in caloric availability and ambient temperature (T(a)) to examine interrelationships between energy expenditure and cardiovascular function in mice. Male C57BL/6J mice (n = 6) were implanted with telemetry devices and housed in metabolic chambers for measurement of mean arterial pressure (MAP), heart rate (HR), O(2) consumption (VO(2)), and locomotor activity. Fasting (T(a) = 23 degrees C), initiated at the onset of the dark phase, resulted in large and transient depressions in MAP, HR, VO(2), and locomotor activity that occurred during hours 6-17, which suggests torporlike episodes. Food restriction (14 days, 60% of baseline intake) at T(a) = 23 degrees C resulted in progressive reductions in MAP and HR across days that were coupled with an increasing occurrence of episodic torporlike reductions in HR (<300 beats/min) and VO(2) (<1.0 ml/min). Exposure to thermoneutrality (T(a) = 30 degrees C, n = 6) reduced baseline light-period MAP (-14 +/- 2 mmHg) and HR (-184 +/- 12 beats/min). Caloric restriction at thermoneutrality produced further reductions in MAP and HR, but indications of torporlike episodes were absent. The results reveal that mice exhibit robust cardiovascular responses to both acute and chronic negative energy balance. Furthermore, we conclude that T(a) is a very important consideration when assessing cardiovascular function in mice.  相似文献   

4.
Carbon sequestration programs, including afforestation and reforestation, are gaining attention globally and will alter many ecosystem processes, including water yield. Some previous analyses have addressed deforestation and water yield, while the effects of afforestation on water yield have been considered for some regions. However, to our knowledge no systematic global analysis of the effects of afforestation on water yield has been undertaken. To assess and predict these effects globally, we analyzed 26 catchment data sets with 504 observations, including annual runoff and low flow. We examined changes in the context of several variables, including original vegetation type, plantation species, plantation age, and mean annual precipitation (MAP). All of these variables should be useful for understanding and modeling the effects of afforestation on water yield. We found that annual runoff was reduced on average by 44% (±3%) and 31% (±2%) when grasslands and shrublands were afforested, respectively. Eucalypts had a larger impact than other tree species in afforested grasslands (P=0.002), reducing runoff (90) by 75% (±10%), compared with a 40% (±3%) average decrease with pines. Runoff losses increased significantly with plantation age for at least 20 years after planting, whether expressed as absolute changes (mm) or as a proportion of predicted runoff (%) (P<0.001). For grasslands, absolute reductions in annual runoff were greatest at wetter sites, but proportional reductions were significantly larger in drier sites (P<0.01 and P<0.001, respectively). Afforestation effects on low flow were similar to those on total annual flow, but proportional reductions were even larger for low flow (P<0.001). These results clearly demonstrate that reductions in runoff can be expected following afforestation of grasslands and shrublands and may be most severe in drier regions. Our results suggest that, in a region where natural runoff is less than 10% of MAP, afforestation should result in a complete loss of runoff; where natural runoff is 30% of precipitation, it will likely be cut by half or more when trees are planted. The possibility that afforestation could cause or intensify water shortages in many locations is a tradeoff that should be explicitly addressed in carbon sequestration programs.  相似文献   

5.
Studies to more clearly determine the mechanisms associated with arginine vasopressin (AVP)-induced vasodilation were performed in normal subjects and in quadriplegic subjects with impaired efferent sympathetic responses. Studies to compare the effects of AVP with the hemodynamic effects of nitroglycerin, an agent that primarily affects venous capacitance vessels, were also performed in normal subjects. Incremental infusions of AVP following V(1)-receptor blockade resulted in equivalent reductions in systemic vascular resistance (SVRI) in normal and in quadriplegic subjects. However, there were major differences in the effect on mean arterial pressure (MAP), which was reduced in quadriplegic subjects but did not change in normal subjects. This difference in MAP can be attributed to a difference in the magnitude of increase in cardiac output (CI), which was twofold greater in normal than in quadriplegic subjects. These observations are consistent with AVP-induced vasodilation of arterial resistance vessels with reflex sympathetic enhancement of CI and are clearly different from the hemodynamic effects of nitroglycerin, i.e., reductions in MAP, CI, and indexes of cardiac preload, with only minor changes in SVRI.  相似文献   

6.
Blood serum components in channel catfish ( Ictalurus punctatus ) were compared between raceway (with low dissolved oxygen) and pond populations. Normal limits were defined for the pond populations, for each of 18 variables, as ± two standard deviations. Carbon dioxide, blood urea nitrogen, total protein, uric acid, creatinine, sodium, and total bilirubin were all lower in fish raised in raceways. Carbon dioxide and sodium had the greatest reductions; all reductions were statistically significant.
Alkaline phosphatase, inorganic phosphorus, calcium, cholesterol, and glucose values were higher in raceway fish, but only alkaline phosphatase and glucose were significantly higher.  相似文献   

7.
摘要 目的:探讨快速序贯器官衰竭评分(qSOFA)联合血清同型半胱氨酸(Hcy)、三酰甘油(TG)对急性胰腺炎(AP)短期预后的预测价值。方法:选取2019年9月至2021年9月苏州大学附属第一医院消化科收治的210例AP患者为研究对象,根据亚特兰大AP分类指南分为轻症AP(MAP组)125例,中重症AP(MSAP组)45例和重症AP(SAP组)40例。对比三组的qSOFA评分和Hcy、TG水平。根据入院后28d预后结局,将所有患者分为存活组192例、死亡组18例。单因素及多因素Logistic回归分析AP患者预后的影响因素。采用受试者工作特征(ROC)曲线分析qSOFA评分、Hcy和TG对AP患者短期预后的预测价值。结果:SAP组和MSAP组患者的qSOFA评分、Hcy、TG水平均高于MAP组患者,且SAP组高于MSAP组(P<0.05);单因素、多因素Logistic回归最终分析结果显示,qSOFA评分较高、TG、Hcy水平升高是AP患者死亡的危险因素(P<0.05);qSOFA评分联合Hcy、TG预测AP患者短期预后的曲线下面积(AUC)为0.982,明显高于三指标单独检测的0.715、0.780、0.782。结论:qSOFA评分、TG、Hcy水平均是AP患者短期预后的影响因素,并且联合检测qSOFA评分和Hcy、TG水平对AP患者的短期预后具有较高的预测价值。  相似文献   

8.
Intravenous naloxone or naltrexone produced transient, dose-related reductions in the mean arterial pressure (MAP) and heart rate (HR) of urethane-anesthetized spontaneously hypertensive rats (SHRs). Yet these same doses of narcotic antagonists reduced HR but not MAP of normotensive Wistar-Kyoto rats (WKYs). Such effects were not observed upon administration to SHRs of increasing doses of methylnaltrexone, which possesses no central activity. (+)-Naloxone, which does not block opiate receptors, reduced HR but not MAP of both SHRs and WKYs. These findings indicate that SHRs and WKYs differ in their MAP and HR responses to narcotic antagonists. The high doses required for effect plus the brevity of the responses suggest that these drug effects are perhaps not mu-opiate receptor-mediated; however, the methylnaltrexone and (+)-naloxone findings clearly implicate a central specificity of action. We conclude that narcotic antagonist-induced changes in MAP and HR in SHRs are possibly specific and central in origin yet not mediated by mu-opiate receptors.  相似文献   

9.
Reductions in blood pressure after acute exercise by hypertensive rats   总被引:2,自引:0,他引:2  
Postexercise reductions in blood pressure at rest have been reported for hypertensive subjects. To determine whether post-exercise hypotension would occur in spontaneously hypertensive rats and to test the hypothesis that any reductions would result because of decreases in regional vascular resistances, hypertensive rats (n = 19) were instrumented with indwelling arterial catheters and Doppler probes to measure regional blood flows from the iliac, superior mesenteric, and renal arteries. Data were collected from animals who performed a 20- and a 40-min treadmill test at between 60 and 70% of their maximum O2 uptake. When the animals ran for 20 min, there was a pre- to postexercise drop in mean arterial pressure (MAP) from 158 +/- 3.6 to 150 +/- 3.6 mmHg (P less than 0.05), which was recorded 30 min after the exercise had ceased. The pre- to postexercise reduction in MAP after 40 min of treadmill running was from 154 +/- 3.1 to 138 +/- 3.0 mmHg (P less than 0.05) as recorded 30 min postexercise. Postexercise heart rate was significantly lower after the 40-min exercise bout, from a preexercise mean of 351 +/- 3 beats/min to 324 +/- 5 beats/min 30 min after the treadmill had stopped. Surprisingly, marked pre- to postexercise reductions in regional vascular resistance were not observed in either the iliac, superior mesenteric, or renal vascular beds. These data demonstrated the existence of postexercise hypotension in genetic hypertensive rats and suggested that reductions in cardiac output were the primary hemodynamic mechanism for this finding.  相似文献   

10.
研究不同深度土壤碳(C)、氮(N)、磷(P)含量及其化学计量比对气候因子(年降水量(MAP)和年平均气温(MAT))的响应差异, 对于理解气候变化如何影响生态系统功能具有重要意义。通过对蒙古高原干旱半干旱草地44个样点的野外调查, 探讨了不同深度(0-20、20-40、40-60、60-80 cm)土壤C、N、P含量及其化学计量比与MAP和MAT的关系。主要结果: (1)随土壤深度的增加, 土壤C和N含量逐渐减少, 土壤P含量不变; 土壤C:P和N:P逐渐降低, 土壤C:N相对稳定。(2)土壤C、N、P含量以及土壤C:P、N:P与MAP显著正相关, 与MAT显著负相关, 土壤C:N与MAP显著负相关, 与MAT无相关性; 随着土壤深度的增加, 土壤C、N、P含量及其化学计量比与气候因子的相关性均逐渐减弱。(3) MAP和MAT对不同深度土壤C、N、P含量和化学计量比的影响存在显著差异; 随着土壤深度的增加, MAP和MAT对土壤C、N、P含量及其化学计量特征变化的总解释度逐渐减少。该研究表明气候因子对土壤元素化学计量特征具有自上而下的调控作用, 蒙古高原草地土壤表层C、N、P含量及其化学计量比与MAP和MAT的关系更为密切。  相似文献   

11.
We investigated the effect of taltirelin hydrate ((?)-N-[(S)-hexahydro-1-methyl- 2,6-dioxo-4-pyrimidinyl-carbonyl]-L-histidyl-L-prolinamide tetrahydrate; taltirelin), a metabolically stable thyrotropin-releasing hormone (TRH) analog, on circulatory function, respiratory function, and viable time after bleeding in urethane-anesthetized rats. Massive volume-controlled bleeding caused marked reductions in mean arterial pressure (MAP) and respiratory rate (RR). The vital signs of control rats were lost within an average of 23 min after bleeding. Intravenous administration of taltirelin (0.03?0.3 mg/kg) and TRH (1 and 3 mg/kg) immediately after bleeding accelerated recovery of MAP and RR, and prolonged viable time in a dose-dependent manner. The potency of taltirelin in accelerating MAP and RR recovery and prolonging viable time was higher when compared with that of TRH. In addition, recovery of MAP and RR and the extension of viable time by taltirelin were inhibited by preintraperitoneal administration of atropine sulfate, which is a centrally acting muscarinic antagonist, but not by that of atropine methylbromide, which is a peripherally acting muscarinic antagonist. Taltirelin also recovered decreased arterial pH, bicarbonate ions, and base excess, and prevented a decrease in arterial oxygen saturation. In conclusion, the anti-shock effect of taltirelin was more potent than that of TRH. Taltirelin activity was mediated by the central muscarinic cholinergic system. In addition, taltirelin also corrected metabolic acidosis. These results suggest that taltirelin could be useful in the treatment of hypovolemic shock.  相似文献   

12.
Hypoperfusion of active skeletal muscle elicits a reflex pressor response termed the muscle metaboreflex. Our aim was to determine the muscle metaboreflex threshold and gain in humans by creating an open-loop relationship between active muscle blood flow and hemodynamic responses during a rhythmic handgrip exercise. Eleven healthy subjects performed the exercise at 5 or 15% of maximal voluntary contraction (MVC) in random order. During the exercise, forearm blood flow (FBF), which was continuously measured using Doppler ultrasound, was reduced in five steps by manipulating the inner pressure of an occlusion cuff on the upper arm. The FBF at each level was maintained for 3 min. The initial reductions in FBF elicited no hemodynamic changes, but once FBF fell below a threshold, mean arterial blood pressure (MAP) and heart rate (HR) increased and total vascular conductance (TVC) decreased in a linear manner. The threshold FBF during the 15% MVC trial was significantly higher than during the 5% MVC trial. The gain was then estimated as the slope of the relationship between the hemodynamic responses and FBFs below the threshold. The gains for the MAP and TVC responses did not differ between workloads, but the gain for the HR response was greater in the 15% MVC trial. Our findings thus indicate that increasing the workload shifts the threshold for the muscle metaboreflex to higher blood flows without changing the gain of the reflex for the MAP and TVC responses, whereas it enhances the gain for the HR response.  相似文献   

13.
We tested the hypothesis that dehydration exacerbates reductions of middle cerebral artery blood velocity (MCAv) and alters cerebrovascular control during standing after heavy resistance exercise. Ten males participated in two trials under 1) euhydration (EUH) and 2) dehydration (DEH; fluid restriction + 40 mg furosemide). We recorded finger photoplethysmographic arterial pressure and MCAv (transcranial Doppler) during 10 min of standing immediately after high-intensity leg press exercise. Symptoms (e.g., lightheadedness) were ranked by subjects during standing (1-5 scale). Low-frequency (LF) oscillations of mean arterial pressure (MAP) and mean MCAv were calculated as indicators of cerebrovascular control. DEH reduced plasma volume by 11% (P = 0.002; calculated from hemoglobin and hematocrit). During the first 30 s of standing after exercise, subjects reported greater symptoms during DEH vs. EUH (P = 0.05), but these were mild and resolved at 60 s. While MAP decreased similarly between conditions immediately after standing, MCAv decreased more with DEH than EUH (P = 0.02). With prolonged standing under DEH, mean MCAv remained below baseline (P ≤ 0.01), and below EUH values (P ≤ 0.05). LF oscillations of MAP were higher for DEH at baseline and during the entire 10 min of stand after exercise (P ≤ 0.057), while LF oscillations in mean MCAv were distinguishable only at baseline and 5 min following stand (P = 0.05). Our results suggest that mean MCAv falls below a "symptomatic threshold" in the acute phase of standing after exercise during DEH, although symptoms were mild and transient. During the prolonged phase of standing, increases in LF MAP and mean MCAv oscillations with DEH may help to maintain cerebral perfusion despite absolute MCAv remaining below the symptomatic threshold.  相似文献   

14.
The purpose of this study was to test the hypothesis that exacerbated reductions of cerebral blood velocity (CBV) during upright tilt with dehydration are associated with impaired cerebrovascular control. Nine healthy men were tilted head-up (HUT) to 70° for 10 min on two occasions separated by 7 days under euhydration (EUH) and dehydration (DEH; 40 mg of furosemide and water restriction) conditions. Beat-by-beat arterial pressures and CBV were measured during a 5-min supine baseline and during the first (T1) and last (T2) 5 min of HUT. Cerebral autoregulation and arterial baroreflex sensitivity were assessed in the frequency domain with cross-spectral techniques. DEH reduced plasma volume by 10% (P = 0.008) and supine mean CBV (CBV(mean)) by 11% (P = 0.002). Mean arterial pressure (MAP), stroke volume, and baroreflex sensitivity decreased during HUT (P ≤ 0.002), but absolute reductions were similar between hydration conditions, with the exception of stroke volume, which was lower at T1 during DEH than EUH (P = 0.04). CBV(mean) during DEH was lower (7 cm/s) over the course of the entire 10 min of HUT (P ≤ 0.004) than during EUH. Low-frequency oscillations (0.07-0.2 Hz) of MAP and CBV(mean) and MAP-CBV(mean) coherence were higher during DEH than EUH at T1 (P ≤ 0.02), but not at T2. Our results suggest that increased coherence between arterial pressure and CBV with the combination of DEH and HUT are indicative of altered cerebrovascular control. Increased CBV oscillations with DEH may reflect acute protective mechanisms to ensure adequate cerebral perfusion under conditions of reduced central blood volume.  相似文献   

15.
Hypohydration is associated with orthostatic intolerance; however, little is known about cerebrovascular mechanisms responsible. This study examined whether hypohydration reduces cerebral blood flow velocity (CBFV) in response to an orthostatic challenge. Eight subjects completed four orthostatic challenges (temperate conditions) twice before (Pre-EU and Pre-Hyp) and following recovery from passive heat stress ( approximately 3 h at 45 degrees C, 50% relative humidity, 1 m/s air speed) with (Post-EU) or without (Post-Hyp) fluid replacement of sweat losses (-3% body mass loss). Measurements included CBFV, mean arterial pressure (MAP), heart rate (HR), end-tidal CO(2), and core and skin temperatures. Test sessions included being seated (20 min) followed by standing (60 s) then resitting (60 s) with metronomic breathing (15 breaths/min). CBFV and MAP responses to standing were similar during Pre-EU and Pre-Hyp. Standing Post-Hyp exacerbated the magnitude (-28.0 +/- 1.4% of baseline) and duration (9.0 +/- 1.6 s) of CBFV reductions and increased cerebrovascular resistance (CVR) compared with Post-EU (-20.0 +/- 2.1% and 6.6 +/- 0.9 s). Standing Post-EU also resulted in a reduction in CBFV, and a smaller decrease in CVR compared with Pre-EU. MAP decreases were similar for Post-EU (-18 +/- 4 mmHg) and Post-Hyp (-21 +/- 5 mmHg) from seated to standing. These data demonstrate that despite similar MAP decreases, hypohydration, and prior heat stress (despite apparent recovery) produce greater CBFV reduction when standing. These observations suggest that hypohydration and prior heat stress are associated with greater reductions in CBFV with greater CVR, which likely contribute to orthostatic intolerance.  相似文献   

16.
The rapid loss, fragmentation and degradation of tropical forests threaten the survival of many animal species. However, the way in which these phenomena affect animal health has been poorly explored, thus limiting the design of appropriate conservation strategies. To address this, here we identified using linear mixed models the effect of proximal (diet, activity pattern, hunting and logging) and distal (sum of the basal areas of fruiting-tree species [SBAFS], landscape forest cover and degree of forest fragmentation) variables over fecal glucocorticoid metabolite (fGCM) levels–hormones associated with animal health and fitness–of six groups of spider monkeys (Ateles geoffroyi) inhabiting six landscapes with different spatial structures in Mexico. Proximal variables showed a stronger predictive power over fGCMs than distal. In this sense, increases in travel time, the occurrence of hunting, and reductions in rest time and fruit consumption resulted in higher fGCM levels. Regarding distal variables, increases in SBAFS were negatively related to fGCM levels, thus suggesting that food scarcity increases stress hormone levels. Nevertheless, contrary to theoretical expectations, spider monkeys living in smaller tracts of forest spent less time travelling, but the same time feeding on fruit as those in more forested areas. The lower net energy return associated with this combination of factors would explain why, contrary to theoretical expectations, increased forest cover was associated with increased levels of fGCMs in these groups. Our study shows that, at least in the short term, spider monkeys in fragmented landscapes do not always present higher levels of stress hormones compared to those inhabiting continuous forest, and the importance of preserving fruit sources and controlling hunting for reducing the levels of stress hormones in free ranging spider monkeys.  相似文献   

17.
During moderate actual or simulated hemorrhage, as cardiac output decreases, reductions in systemic vascular conductance (SVC) maintain mean arterial pressure (MAP). Heat stress, however, compromises the control of MAP during simulated hemorrhage, and it remains unknown whether this response is due to a persistently high SVC and/or a low cardiac output. This study tested the hypothesis that an inadequate decrease in SVC is the primary contributing mechanism by which heat stress compromises blood pressure control during simulated hemorrhage. Simulated hemorrhage was imposed via lower body negative pressure (LBNP) to presyncope in 11 passively heat-stressed subjects (increase core temperature: 1.2 ± 0.2°C; means ± SD). Cardiac output was measured via thermodilution, and SVC was calculated while subjects were normothermic, heat stressed, and throughout subsequent LBNP. MAP was not changed by heat stress but was reduced to 45 ± 12 mmHg at the termination of LBNP. Heat stress increased cardiac output from 7.1 ± 1.1 to 11.7 ± 2.2 l/min (P < 0.001) and increased SVC from 0.094 ± 0.018 to 0.163 ± 0.032 l·min(-1)·mmHg(-1) (P < 0.001). Although cardiac output at the onset of syncopal symptoms was 37 ± 16% lower relative to pre-LBNP, presyncope cardiac output (7.3 ± 2.0 l/min) was not different than normothermic values (P = 0.46). SVC did not change throughout LBNP (P > 0.05) and at presyncope was 0.168 ± 0.044 l·min(-1)·mmHg(-1). These data indicate that in humans a cardiac output adequate to maintain MAP while normothermic is no longer adequate during a heat-stressed-simulated hemorrhage. The absence of a decrease in SVC at a time of profound reductions in MAP suggests that inadequate control of vascular conductance is a primary mechanism compromising blood pressure control during these conditions.  相似文献   

18.
We investigated the effect of taltirelin hydrate ((?)-N-[(S)-hexahydro-1-methyl- 2,6-dioxo-4-pyrimidinyl-carbonyl]-L-histidyl-L-prolinamide tetrahydrate; taltirelin), a metabolically stable thyrotropin-releasing hormone (TRH) analog, on circulatory function, respiratory function, and viable time after bleeding in urethane-anesthetized rats. Massive volume-controlled bleeding caused marked reductions in mean arterial pressure (MAP) and respiratory rate (RR). The vital signs of control rats were lost within an average of 23?min after bleeding. Intravenous administration of taltirelin (0.03–0.3?mg/kg) and TRH (1 and 3?mg/kg) immediately after bleeding accelerated recovery of MAP and RR, and prolonged viable time in a dose-dependent manner. The potency of taltirelin in accelerating MAP and RR recovery and prolonging viable time was higher when compared with that of TRH. In addition, recovery of MAP and RR and the extension of viable time by taltirelin were inhibited by preintraperitoneal administration of atropine sulfate, which is a centrally acting muscarinic antagonist, but not by that of atropine methylbromide, which is a peripherally acting muscarinic antagonist. Taltirelin also recovered decreased arterial pH, bicarbonate ions, and base excess, and prevented a decrease in arterial oxygen saturation. In conclusion, the anti-shock effect of taltirelin was more potent than that of TRH. Taltirelin activity was mediated by the central muscarinic cholinergic system. In addition, taltirelin also corrected metabolic acidosis. These results suggest that taltirelin could be useful in the treatment of hypovolemic shock.  相似文献   

19.
20.
The antihypertensive influence of fish oil is controversial, and the mechanisms remain unclear. Because the inverse relation between fish oil and hypertension appears to be partially dependent on the degree of hypertension, we tested the hypothesis that fish oil would elicit more dramatic reductions in mean arterial pressure (MAP) and muscle sympathetic nerve activity (MSNA) in prehypertensive (PHT) compared with normotensive (NT) subjects. Resting MAP, MSNA, and heart rate (HR) were examined before and after 8 wk of fish oil (9 g/day; 1.6 g eicosapentaenoic acid and 1.1 g docosahexaenoic acid) or placebo (olive oil; 9 g/day) in 38 NT (19 fish oil; 19 placebo) and 29 PHT (15 fish oil; 14 placebo) volunteers. Fish oil did not alter resting MAP, MSNA, or HR in either NT (80 ± 1 to 80 ± 1 mmHg; 11 ± 2 to 10 ± 1 bursts/min; 71 ± 2 to 71 ± 2 beats/min) or PHT (88 ± 2 to 87 ± 1 mmHg; 11 ± 2 to 10 ± 2 bursts/min; 73 ± 2 to 73 ± 2 beats/min) subjects. When NT and PHT groups were consolidated, analysis of covariance confirmed that pretreatment resting MAP was not associated with changes in MSNA after fish oil. In contrast, pretreatment resting HR was correlated with changes in MSNA (r = 0.47; P = 0.007) and MAP (r = 0.42; P < 0.007) after fish oil but not placebo. In conclusion, fish oil did not alter sympathetic neural control in NT or PHT subjects. However, our findings suggest that fish oil is associated with modest sympathoinhibition in individuals with higher resting heart rates, a finding that is consistent with a recent meta-analysis examining the relations among fish oil, HR, and the risk of cardiovascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号