首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim

In the mid‐20th century, many populations of large‐bodied mammals experienced declines throughout North America. Fortunately, within the last several decades, some have begun to rebound and even recolonize extirpated portions of their native range, including black bears (Ursus americanus) in the montane areas of the western Great Basin. In this study, we examine genetic variation in source and recolonized areas to better understand the genetic consequences of recolonization.

Location

Western Great Basin, USA.

Methods

Using multiple loci, we characterized genetic variation among source and recently recolonized areas occupied by black bears, tested for population structure and applied approximate Bayesian computation to test competing hypotheses of demographic history. We assessed signals of gene flow using expectations of genetic consequences derived from alternative modes of recolonization (bottleneck, metapopulation, island model) and tested for significant signals of genetic bottlenecks in areas recently recolonized by black bears.

Results

As anticipated from field survey data and hypothesized expectations, genetic variation of western Great Basin black bears retain an overall signature of demographic decline followed by recent rebound. Furthermore, results reveal that bears in the recolonized range are minimally differentiated from the source area, but newly established subpopulations have lower effective population sizes and reduced allelic diversity. Nevertheless, recolonized areas fail to show a significant signal of a genetic bottleneck. Moreover, bears occupying recolonized areas experience asymmetric gene flow, yielding strong support for a model of genetic connectivity that is best described as a metapopulation.

Main Conclusion

This study presents one of the few empirical examples of genetic consequences of natural recolonization in large‐bodied mammals. Furthermore, these results have implications for understanding the complexities associated with the genetic consequences of recent and ongoing recolonization and highlight the need to develop management strategies uniquely tailored to support connectivity between source and recolonized areas.
  相似文献   

2.

Aim

Natural range expansions and human‐mediated colonizations usually involve a small number of individuals that establish new populations in novel habitats. In both cases, founders carry only a fraction of the total genetic variation of the source populations. Here, we used native and non‐native populations of the green anole, Anolis carolinensis, to compare the current distribution of genetic variation in populations shaped by natural range expansion and human‐mediated colonization.

Location

North America, Hawaiian Islands, Western Pacific Islands.

Methods

We analysed 401 mtDNA haplotypes to infer the colonization history of A. carolinensis on nine islands in the Pacific Ocean. We then genotyped 576 individuals at seven microsatellite loci to assess the levels of genetic diversity and population genetic differentiation for both the native and non‐native ranges.

Results

Our findings support two separate introductions to the Hawaiian Islands and several western Pacific islands, with subsequent colonizations within each region following a stepping‐stone model. Genetic diversity at neutral markers was significantly lower in the non‐native range because of founder effects, which also contributed to the increased population genetic differentiation among the non‐native regions. In contrast, a steady reduction in genetic diversity with increasing distance from the ancestral population was observed in the native range following range expansion.

Main conclusions

Range expansions cause serial founder events that are the spatial analogue of genetic drift, producing a pattern of isolation‐by‐distance in the native range of the species. In human‐mediated colonizations, after an initial loss of genetic diversity, founder effects appear to persist, resulting in overall high genetic differentiation among non‐native regions but an absence of isolation‐by‐distance. Contrasting the processes influencing the amount and structuring of genetic variability during natural range expansion and human‐mediated biological invasions can shed new light on the fate of natural populations exposed to novel and changing environments.
  相似文献   

3.

Aim

The genetics of organisms currently isolated in refugia has received little attention compared to post‐glacial expansions. We study the population history and connectivity of a rat endemic to montane habitat in Borneo to better understand the history and potential of populations in interglacial mountain refugia.

Location

Sabah, Borneo, Malaysia.

Methods

We performed a field survey of the summit rat (Rattus baluensis) on two mountains, Mt. Kinabalu and Mt. Tambuyukon, its entire known distribution. We sequenced mitogenomes and 27 introns (19 of which were polymorphic) in 49 individuals from both populations. We analysed their current genetic structure and diversity, and inferred their demographic history with approximate Bayesian computation.

Results

Summit rats were tightly associated with mountain mossy forest and scrubland above 2,000 m, facilitating the prediction of their past and future distributions. The genetic analysis supports a Holocene fragmentation of a larger population into smaller ones that are now isolated in interglacial refugia on mountaintops. These findings are consistent with climatic reconstructions and the retreat of upland forest to higher elevations after the Last Glacial Maximum (LGM), ~21 kya.

Main conclusions

The two isolated populations of summit rats formed through the upland shift of their habitat after the LGM. The current trend of global warming will likely lead to diminishing suitable upland habitat and result in the extinction of the population on Mt. Tambuyukon. The population on Mt. Kinabalu, the higher peak, could persist at higher elevations, highlighting the singular value of high tropical mountains as reservoirs of biodiversity during past and ongoing climate change.
  相似文献   

4.

Aim

We investigate whether (1) environmental predictors allow to delineate the distribution of discrete community types at the continental scale and (2) how data completeness influences model generalization in relation to the compositional variation of the modelled entities.

Location

Europe.

Methods

We used comprehensive datasets of two community types of conservation concern in Europe: acidophilous beech forests and base‐rich fens. We computed community distribution models (CDMs) calibrated with environmental predictors to predict the occurrence of both community types, evaluating geographical transferability, interpolation and extrapolation under different scenarios of sampling bias. We used generalized dissimilarity modelling (GDM) to assess the role of geographical and environmental drivers in compositional variation within the predicted distributions.

Results

For the two community types, CDMs computed for the whole study area provided good performance when evaluated by random cross‐validation and external validation. Geographical transferability provided lower but relatively good performance, while model extrapolation performed poorly when compared with interpolation. Generalized dissimilarity modelling showed a predominant effect of geographical distance on compositional variation, complemented with the environmental predictors that also influenced habitat suitability.

Main conclusions

Correlative approaches typically used for modelling the distribution of individual species are also useful for delineating the potential area of occupancy of community types at the continental scale, when using consistent definitions of the modelled entity and high data completeness. The combination of CDMs with GDM further improves the understanding of diversity patterns of plant communities, providing spatially explicit information for mapping vegetation diversity and related habitat types at large scales.
  相似文献   

5.

Aim

To investigate phylogeographic patterns among and within co‐occurring sea snake species from Australia's endemic viviparous Aipysurus lineage, which includes critically endangered species, and evaluate the conservation implications of geographically structured patterns of genetic divergence and diversity.

Location

Australia's tropical shallow water marine environments spanning four regions: Great Barrier Reef (GBR), Gulf of Carpentaria (GoC), Timor Sea (TS) and coastal WA (WAC).

Methods

Samples from >550 snakes representing all nine nominal Aipysurus group species were obtained from throughout their known Australian ranges. Coalescent phylogenetic analyses and Bayesian molecular dating of mitochondrial DNA, combined with Bayesian and traditional population genetic analyses of 11 microsatellite loci, were used to evaluate genetic divergence and diversity.

Results

Mitochondrial DNA revealed highly congruent phylogeographic breaks among co‐occurring species, largely supported by nuclear microsatellites. For each species, each region was characterized by a unique suite of haplotypes (phylogroups). Divergences between the TS, GoC and/or GBR were invariably shallow and dated as occurring 50,000–130,000 years ago, coinciding with the cyclic Pleistocene emergence of the Torres Strait land bridge. By contrast, sea snakes from coastal WA were consistently highly divergent from other regions and dated as diverging 178,000–526,000 years ago, which was not associated with any known vicariant events.

Main Conclusions

Previously unappreciated highly divergent sea snake lineages in coastal WA potentially represent cryptic species, highlighting this region as a high‐priority area for conservation. The cyclic emergence of the Torres Strait land bridge is consisted with observed divergences between the TS, GoC and/or GBR; however, processes involved in the earlier divergences involving the WAC remain to be determined. The observed strong population genetic structures (as surrogates for dispersal) indicate that sea snakes have limited potential to reverse population declines via replenishment from other sources over time frames relevant to conservation.
  相似文献   

6.

Aim

Global conservation planning is often oriented around vertebrates and plants, yet most organisms are invertebrates. To explore the potential conservation implications of this bias, we assessed how well patterns of diversity for an influential group of invertebrates, the ants, correspond with those of three vertebrate groups (birds, mammals and amphibians).

Location

Global.

Methods

We compiled data on the number of genera of ants and the three vertebrate groups for 370 political regions across the world. We then compared their correlations both for overall diversity and between subsets of genera likely to be of conservation concern. We also developed generalized additive models (GAM) to identify regions where vertebrates and ants diverged in their diversity patterns.

Results

While ant and vertebrate diversity do positively correlate, the correlations are substantially weaker for the ant lineages of the greatest conservation concern. Vertebrates also notably fail to predict ant diversity in specific geographic areas, including Australia and Southeast Asia, parts of Africa and Madagascar, and south‐western China. These failures may be genuine differences in diversity patterns, or they may indicate important gaps in our knowledge of ant and vertebrate diversity.

Main conclusions

We conclude that it is currently unwise to assume that global conservation priorities based on vertebrates will conserve ants as well. We suspect that this also applies to other invertebrates.
  相似文献   

7.

Aim

Life history traits and range size are key correlates of genetic diversity in trees. We used a standardized sampling protocol to explore how life history traits and range size relate to the magnitude, variance and structuring (both between‐ and within‐population) of genetic diversity in Neotropical tree species.

Location

The Neotropics

Methods

We present a meta‐analysis of new population genetic data generated for 23 Neotropical tree species (=2,966 trees, 86 populations) across a shared and broad geographic area. We compared established population genetic metrics across these species (e.g., genetic diversity, population structure, fine‐scale genetic structure), plus we estimated the rarely used variance in genetic diversity among populations. We used a multivariate, maximum likelihood, multimodel inference approach to explore the relative influence of life history traits and range size on patterns of neutral genetic diversity.

Results

We found that pioneer and narrow range species had lower levels but greater variance in genetic diversity—signs of founder effects and stronger genetic drift. Animal‐dispersed species had lower population differentiation, indicating extensive gene flow. Abiotically dispersed and pioneer species had stronger fine‐scale genetic structure, suggesting restricted seed dispersal and family cohort establishment.

Main conclusions

Our multivariable and multispecies approach allows ecologically relevant conclusions, since knowing whether one parameter has an effect, or one species shows a response in isolation, is dependent on the combination of traits expressed by a species. Our study demonstrates the influence of ecological processes on the distribution of genetic variation in tropical trees, and will help guide genetic resource management, and contribute to predicting the impacts of land use change.
  相似文献   

8.

Aim

The risk climate change poses to biodiversity is often estimated by forecasting the areas that will be climatically suitable for species in the future and measuring the distance of the “range shifts” species would have to make to reach these areas. Species’ traits could indicate their capacity to undergo range shifts. However, it is not clear how range‐shift capacity influences risk. We used traits from a recent evidence review to measure the relative potential of species to track changing climatic conditions.

Location

Europe.

Time period

Baseline period (1961–1990) and forecast period (2035–2064).

Major taxa studied

62 mammal species.

Methods

We modelled species distributions using two general circulation models and two representative concentration pathways (RCPs) to calculate three metrics of “exposure” to climate change: range area gained, range area lost and distance moved by the range margin. We identified traits that could inform species’ range‐shift capacity (i.e., potential to establish new populations and proliferate, and thus undertake range shifts), from a recent evidence‐based framework. The traits represent ecological generalization and reproductive strategy. We ranked species according to each metric of exposure and range‐shift capacity, calculating sensitivity to ranking methods, and synthesized both exposure and range‐shift capacity into “risk syndromes.”

Results

Many species studied whose survival depends on colonizing new areas were relatively unlikely to undergo range shifts. Under the worst‐case scenario, 62% of species studied were relatively highly exposed. 47% were highly exposed and had relatively low range‐shift capacity. Only 14% of species faced both low exposure and high range‐shift capacity. Both range‐shift and exposure metrics had a greater effect on risk assessments than climate models.

Main conclusions

The degree to which species’ potential ranges will be altered by climate change often does not correspond to species’ range‐shift capacities. Both exposure and range‐shift capacity should be considered when evaluating biodiversity risk from climate change.
  相似文献   

9.

Aim

Invasive species are predicted to experience a reduction in genetic diversity during the introduction process because of founder effects, yet they are able to successfully establish in new regions and outcompete the native biota. Admixture has been proposed as a potential solution to this genetic paradox. We adopted a phylogeographic approach to investigate the invasion history of the delicate skink ( Lampropholis delicata) in the Pacific region and test the hypothesis that admixture is important for the success of biological invasions.

Location

Eastern Australia and the Pacific region (Lord Howe Island, New Zealand, Hawaii).

Methods

We obtained mitochondrial DNA sequence data ( ND2, ND4) from across the native Australian range (238 samples, 120 populations) and 371 samples from the introduced range of L. delicata. Genetic distances and Analysis of molecular variance (AMOVA) were used to examine the level of genetic variation across the native and introduced ranges.

Results

Fourteen haplotypes were evident in the introduced range (1 in Hawaii, 7 in New Zealand, 7 in Lord Howe Island), with a shared haplotype present in both New Zealand and Lord Howe Island. Five source regions were identified (Brisbane, Tenterfield, Border Ranges, Yamba‐Coffs Harbour, Sydney) from across four distinct native‐range genetic lineages. The Hawaiian population stems from a single introduction from Brisbane, whereas one or more introductions from the Tenterfield region led to the New Zealand populations. Multiple introductions from across all five source regions have resulted in extreme admixture (up to 8.3% sequence divergence) within Lord Howe Island.

Main Conclusions

L. delicata introductions are capable of being successful both in the presence and absence of admixture. Contrary to the predictions of the sequential two‐step model, the presence of admixture was not related to the time since initial introduction. We suggest that the importance of admixture in determining the success of biological invasions has been overemphasized.
  相似文献   

10.

Aim

We analysed beta‐diversity patterns of various biological groups simultaneously, from the perspective of site ecological uniqueness. We also investigated whether ecological uniqueness variation could be explained by variations in environmental conditions and spatial variables.

Data

Central Amazonia.

Methods

We estimated the total beta diversity and ecological uniqueness for 14 biological groups, including plants and animals, sampled at the same sites on a mesoscale in central Amazonia, Brazil. The uniqueness values for all biological groups were combined in a single matrix (multi‐taxa matrix of site uniqueness), which was then used as a response variable matrix in a partial redundancy analysis. We also investigated differences in the uniqueness patterns between plant and animal groups.

Results

In general, plants showed higher total beta diversity than animals. For plants, uniqueness was explained mainly by environmental conditions, while for animals, uniqueness was also related to spatial variables. Although variation in uniqueness was mainly related to soil clay content, it is difficult to determine a single major environmental variable underlying the variation in uniqueness because the topographical gradient influences many of them, including soil clay content.

Main Conclusion

The uniqueness values were higher in low‐lying areas, indicating that near‐stream sites were more ecologically unique. Despite the lower number of species in the lowlands, their unique biota contributed strongly to the maintenance of the total beta diversity of the area. This finding should be considered in conservation plans that aim to represent and preserve the regional biota. Our approach proved to be useful to analyse and compare the ecological uniqueness of multiple taxa.
  相似文献   

11.

Aim

Human‐driven impacts constantly threat amphibians, even in largely protected regions such as the Amazon. The Brazilian Amazon is home to a great diversity of amphibians, several of them currently threatened with extinction. We investigated how climate change, deforestation and establishment of hydroelectric dams could affect the geographic distribution of Amazonian amphibians by 2030 and midcentury.

Location

The Brazilian Amazon.

Methods

We overlapped the geographic distribution of 255 species with the location of hydroelectric dams, models of deforestation and climate change scenarios for the future.

Results

We found that nearly 67% of all species and 54% of species with high degree of endemism within the Legal Brazilian Amazon would lose habitats due to the hydroelectric overlapping. In addition, deforestation is also a potential threat to amphibians, but had a smaller impact compared to the likely changes in climate. The largest potential range loss would be caused by the likely increase in temperature. We found that five amphibian families would have at least half of the species with over 50% of potential distribution range within the Legal Brazilian Amazon limits threatened by climate change between 2030 and 2050.

Main conclusions

Amphibians in the Amazon are highly vulnerable to climate change, which may cause, directly or indirectly, deleterious biological changes for the group. Under modelled scenarios, the Brazilian Government needs to plan for the development of the Amazon prioritizing landscape changes of low environmental impact and economic development to ensure that such changes do not cause major impacts on amphibian species while reducing the emission of greenhouse gases.
  相似文献   

12.

Aim

Urban floras are composed of species of different origin, both native and alien, and with various traits and niches. It is likely that these species will respond to the ongoing climate change in different ways, resulting in future species compositions with no analogues in current European cities. Our goal was to estimate potential shifts in plant species composition in European cities under different scenarios of climate change for the 21st century.

Location

Europe.

Methods

Potential changes in the distribution of 375 species currently growing in 60 large cities in Southern, Central and Western Europe were modelled using generalized linear models and four climate change projections for two future periods (2041–2060 and 2061–2080). These projections were based on two global climate models (CCSM4 and MIROC‐ESM) and two Representative Concentration Pathways (2.6 and 8.5).

Results

Results were similar across all climate projections, suggesting that the composition of urban plant communities will change considerably due to future climate change. However, even under the most severe climate change scenario, native and alien species will respond to climate change similarly. Many currently established species will decline and others, especially annuals currently restricted to Southern Europe, will spread to northern cities. In contrast, perennial herbs, woody plants and most species with temperate continental and oceanic distribution ranges will make up a smaller proportion of future European urban plant communities in comparison with the present communities.

Main conclusions

The projected 21st century climate change will lead to considerable changes in the species composition of urban floras. These changes will affect the structure and functioning of urban plant communities.
  相似文献   

13.

Aim

Large ‐ scale diversity patterns are generated by different but not mutually exclusive mechanisms. However, understanding of multiple facets of diversity and their determinants in the freshwater realm remains limited. Here, we characterized the geographical gradients, hotspots and spatial congruence of three facets of freshwater molluscan diversity and evaluated the relative importance of three different underlying mechanisms related to the energy, area/environmental heterogeneity and dispersal/historical hypotheses.

Location

China.

Methods

Species richness (SR), functional richness (FR) and taxonomic distinctness (TD, a proxy of phylogenetic diversity) were calculated for 212 drainage basins with a total of 313 molluscan species. Spatial congruence between the diversity facets was evaluated with Pearson correlation coefficient and overlap among hotspots. Multiple linear regression models and variation partitioning were used to assess the relative importance of different mechanisms.

Results

Hotspots of SR and FR were mainly concentrated in the Yangtze River and Huai River basins, while high TD values were patchily distributed across China. We found extremely low spatial congruence between TD and both SR and FR, while there was relatively high concordance between SR and FR. All diversity facets were best explained by the dispersal/historical hypothesis with strong unique effects, followed by the factors related to the energy hypothesis. The area/ environmental heterogeneity hypothesis was only weakly supported.

Main conclusions

We found a potentially strong influence of dispersal limitation and evolutionary history on the geographical diversity gradients of Chinese molluscs. This finding contrasts with the general finding that energy‐related factors are the strongest correlates of diversity patterns at large spatial scales. Moreover, our results do not support the idea that using any one diversity component as a surrogate of the others in developing conservation strategies. Instead, an integrative approach embracing multiple facets of diversity should be adopted in the conservation of freshwater biodiversity.
  相似文献   

14.

Aim

Many invasive populations exhibit dynamic life history shifts along their invasion route. We investigated whether these shifts represent consistent biological responses of a given species to range expansion, even in systems located in different geographic regions.

Location

North‐eastern France, Central Ontario (Canada).

Method

We investigated population density, life history traits and age‐specific reproductive investment in expanding populations of round goby at three invasion stages (expansion front, area colonized one year earlier and area colonized for ~five years) along the invasive routes in two river systems differing in climate and system productivity. Interindividual variability, shown to affect range expansion rates, was also investigated along the invasion routes. The study was based on female round gobies collected in three locations within each invasion stage twice monthly throughout the reproductive season (March/May to July).

Results

In both systems, reproductive investment was highest in the newly colonized area and decreased with time since colonization. A faster decrease in reproductive investment was found in the warmer, more productive system behind the invasion front, potentially associated with faster population growth and increased intraspecific competition. In both systems, individual variability in growth and reproductive traits increased from the newly colonized area to the areas of earlier colonization.

Main conclusions

The patterns observed in the two systems suggest a common invasion strategy independent of environmental conditions and highlight the dynamic nature of invasive populations’ life history behind the invasion front. Common energetic allocation strategies can be expected at the invasion front. Range expansion may be associated with population growth induced by rapid acclimation to biotic conditions associated with range shift.
  相似文献   

15.

Aim

The conversion of old‐growth tropical forests into human‐modified landscapes threatens biodiversity worldwide, but its impact on the phylogenetic dimension of remaining communities is still poorly known. Negative and neutral responses of tree phylogenetic diversity to land use change have been reported at local and landscape scales. Here, we hypothesized that such variable responses to disturbance depend on the regional context, being stronger in more degraded rain forest regions with a longer history of land use.

Location

Six regions in Mexico and Brazil.

Methods

We used a large vegetation database (6,923 trees from 686 species) recorded in 98 50‐ha landscapes distributed across two Brazilian and four Mexican regions, which exhibit different degrees of disturbance. In each region, we assessed whether phylogenetic alpha and beta diversities were related to landscape‐scale forest loss, the percentage of shade‐intolerant species (a proxy of local disturbance) and/or the relatedness of decreasing (losers) and increasing (winners) taxa.

Results

Contrary to our expectations, the percentage of forest cover and shade‐intolerant species were weakly related to phylogenetic alpha and beta diversities in all but one region. Loser species were generally as dispersed across the phylogeny as winner species, allowing more degraded, deforested and species‐poorer forests to sustain relatively high levels of evolutionary (phylogenetic) diversity.

Main conclusion

Our findings support previous evidence indicating that traits related to high susceptibility to forest disturbances are convergent or have low phylogenetic signal. More importantly, they reveal that the evolutionary value of disturbed forests is (at least in a phylogenetic sense) much greater than previously thought.
  相似文献   

16.

Aim

Spring wetlands in arid regions of Australia provide habitat for many highly endemic organisms, including fish, molluscs, crustaceans and plants, but these unique ecosystems have been under pressure since the arrival of Europeans about 250 years ago. Arguments over whether particular plant species are long‐term spring inhabitants or recent immigrants are confounding efforts to conserve spring flora. One such example is the swamp foxtail, Cenchrus purpurascens, a grass that is variably listed in the literature as being native to Australian wetlands or as being an introduced weedy species from Asia.

Location

Australia, China and Korea.

Methods

We use DNA sequences of the nuclear ITS and the chloroplast DNA regions trnL‐F and matK, complemented with newly designed simple sequence repeat (SSR) markers, to assess the native status of C. purpurascens in Australia and determine whether there is genetic differentiation among spring populations.

Results

We find that, although there has been gene flow between Asia and Australia in the geological past, the populations are now strongly differentiated: C. purpurascens has probably been present in Australia through the Pleistocene. In Australia, there is also strong genetic differentiation among populations from different springs, and between springs and non‐springs populations, indicating long‐term occupancy of some springs sites.

Main conclusions

Cenchrus purpurascens was present in Australia well before European colonization of the continent. The level of genetic differentiation among populations enhances the existing conservation values of Elizabeth Springs, Edgbaston, Doongmabulla and Carnarvon Gorge springs complexes within the Great Artesian Basin.
  相似文献   

17.

Aim

To test a method for rapidly and reliably collecting species distribution and abundance data over large tropical areas [known as Neotropical Biodiversity Mapping Initiative (NeoMaps)], explicitly seeking to improve cost‐ and time‐efficiencies over existing methods (i.e. museum collections, literature), while strengthening local capacity for data collection.

Location

Venezuela.

Methods

We placed a grid over Venezuela (0.5 × 0.5 degree cells) and applied a stratified sampling design to select a minimum set of 25 cells spanning environmental and biogeographical variation. We implemented standardized field sampling protocols for birds, butterflies and dung beetles, along transects on environmental gradients (‘gradsects’). We compared species richness estimates from our field surveys at national, bioregional and cell scales to those calculated from data compiled from museum collections and the literature. We estimated the variance in richness, composition, relative abundance and diversity between gradsects that could be explained by environmental and biogeographical variables. We also estimated total survey effort and cost.

Results

In one field season, we covered 8% of the country and recorded 66% of all known Venezuelan dung beetles, 52% of Pierid butterflies and 37% of birds. Environmental variables explained 27–60% of variation in richness for all groups and 13–43% of variation in abundance and diversity in dung beetles and birds. Bioregional and environmental variables explained 43–58% of the variation in the dissimilarity matrix between transects for all groups.

Main conclusions

NeoMaps provides reliable estimates of richness, composition and relative abundance, required for rigorous monitoring and spatial prediction. NeoMaps requires a substantial investment, but is highly efficient, achieving survey goals for each group with 1‐month fieldwork and about US$ 1–8 per km2. Future work should focus on other advantages of this type of survey, including the ability to monitor the changes in relative abundance and turnover in species composition, and thus overall diversity patterns.
  相似文献   

18.

Aim

Small geographic ranges make species especially prone to extinction from anthropogenic disturbances or natural stochastic events. We assemble and analyse a comprehensive dataset of all the world's lizard species and identify the species with the smallest ranges—those known only from their type localities. We compare them to wide‐ranging species to infer whether specific geographic regions or biological traits predispose species to have small ranges.

Location

Global.

Methods

We extensively surveyed museum collections, the primary literature and our own field records to identify all the species of lizards with a maximum linear geographic extent of <10 km. We compared their biogeography, key biological traits and threat status to those of all other lizards.

Results

One in seven lizards (927 of the 6,568 currently recognized species) are known only from their type localities. These include 213 species known only from a single specimen. Compared to more wide‐ranging taxa, they mostly inhabit relatively inaccessible regions at lower, mostly tropical, latitudes. Surprisingly, we found that burrowing lifestyle is a relatively unimportant driver of small range size. Geckos are especially prone to having tiny ranges, and skinks dominate lists of such species not seen for over 50 years, as well as of species known only from their holotype. Two‐thirds of these species have no IUCN assessments, and at least 20 are extinct.

Main conclusions

Fourteen per cent of lizard diversity is restricted to a single location, often in inaccessible regions. These species are elusive, usually poorly known and little studied. Many face severe extinction risk, but current knowledge is inadequate to properly assess this for all of them. We recommend that such species become the focus of taxonomic, ecological and survey efforts.
  相似文献   

19.

Aim

Mega hydroelectric dams have become one of the main drivers of biodiversity loss in the lowland tropics. In these reservoirs, vertebrate studies have focused on local (α) diversity measures, whereas between‐site (β) diversity remains poorly assessed despite its pivotal importance in understanding how species diversity is structured and maintained. Here, we unravel the patterns and ecological correlates of mammal β‐diversity, including both small (SM) and midsized to large mammal species (LM) across 23 islands and two continuous forest sites within a mega hydroelectric reservoir.

Location

Balbina Hydroelectric Dam, Central Brazilian Amazonia.

Methods

Small mammals were sampled using live and pitfall traps (48,350 trap‐nights), and larger mammals using camera traps (8,160 trap‐nights). β‐diversity was examined for each group using multiplicative diversity decomposition of Hill numbers, which considers the importance of rare, common and dominant species, and tested to what extent those were related to a set of environmental characteristics measured at different spatial scales.

Results

β‐diversity for both mammal groups was higher when considering species presence–absence. When considering species abundance, β‐diversity was significantly higher for SM than for LM assemblages. Habitat variables, such as differences in tree species richness and percentage of old‐growth trees, were strong correlates of β‐diversity for both SMs and LMs. Conversely, β‐diversity was weakly related to patch and landscape characteristics, except for LMs, for which β‐diversity was correlated with differences in island sizes.

Main conclusions

The lower β‐diversity of LMs between smaller islands suggests subtractive homogenization of this group. Although island size plays a major role in structuring mammal α‐diversity in several land‐bridge islands, local vegetation characteristics were additional key factors determining β‐diversity for both mammal groups. Maintaining the integrity of vegetation characteristics and preventing the formation of a large set of small islands within reservoirs should be considered in long‐term management plans in both existing and planned hydropower development in lowland tropical forests.
  相似文献   

20.

Aim

To identify traits related to the severity and type of environmental impacts generated by alien bird species, in order to improve our ability to predict which species may have the most damaging impacts.

Location

Global.

Methods

Information on traits hypothesized to influence the severity and type of alien bird impacts was collated for 113 bird species. These data were analysed using mixed effects models accounting for phylogenetic non‐independence of species.

Results

The severity and type of impacts generated by alien bird species are not randomly distributed with respect to their traits. Alien range size and habitat breadth were strongly associated with impact severity. Predation impacts were strongly associated with dietary preference, but also with alien range size, relative brain size and residence time. Impacts mediated by interactions with other alien species were related to alien range size and diet breadth.

Main conclusions

Widely distributed generalist alien birds have the most severe environmental impacts. This may be because these species have greater opportunity to cause environmental impacts through their sheer number and ubiquity, but this could also be because they are more likely to be identified and studied. Our study found little evidence for an effect of per capita impact on impact severity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号