首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.

Aim

Darwin's naturalization hypothesis states that dissimilarity to native species may benefit alien species establishment due to empty niches and reduced competition. We here add a new dimension to large‐scale tests of community invasibility, investigating the role that previously established alien species play in facilitating or hindering new invasions in plant communities.

Location

Permanent grasslands across France (including mainland and Corsica), as a receding ecosystem of great conservation importance.

Methods

Focusing on 121 alien plant species occurring in 7,215 vegetation plots, we quantified biotic similarity between new invaders and resident alien species (i.e., alien species with longer residence times) based on phylogenetic and trait distances. Additionally, we calculated distances to native species for each alien species and plot. Using multispecies distribution models, we analysed the influence of these biotic similarity measures and additional covariates on establishment success (presence/absence) of new invaders.

Results

We found that biotic similarity to resident alien species consistently increased establishment success of more recently introduced species. Phylogenetic relatedness to previous invaders had an equally strong positive effect as relatedness to native species. Conversely, trait similarity to natives hindered alien establishment as predicted by Darwin's naturalization hypothesis. These results highlight that various mechanisms may act simultaneously to determine alien establishment success.

Main conclusions

Our results suggest that, with greater similarity among alien species, invasion success increases. Such a pattern may arise either due to actual facilitation among invaders or as a result of weaker competitive interactions among invaders than between native and alien species, leading to an indirect facilitative effect. Alternatively, recent environmental changes (e.g., eutrophication, climate change) may have added new environmental filters. Determining how initial invasions might pave the road for subsequent invasions is crucial for effective multispecies management decisions and contributes a new aspect to our understanding of community assembly.
  相似文献   

2.

Aim

To identify traits related to the severity and type of environmental impacts generated by alien bird species, in order to improve our ability to predict which species may have the most damaging impacts.

Location

Global.

Methods

Information on traits hypothesized to influence the severity and type of alien bird impacts was collated for 113 bird species. These data were analysed using mixed effects models accounting for phylogenetic non‐independence of species.

Results

The severity and type of impacts generated by alien bird species are not randomly distributed with respect to their traits. Alien range size and habitat breadth were strongly associated with impact severity. Predation impacts were strongly associated with dietary preference, but also with alien range size, relative brain size and residence time. Impacts mediated by interactions with other alien species were related to alien range size and diet breadth.

Main conclusions

Widely distributed generalist alien birds have the most severe environmental impacts. This may be because these species have greater opportunity to cause environmental impacts through their sheer number and ubiquity, but this could also be because they are more likely to be identified and studied. Our study found little evidence for an effect of per capita impact on impact severity.
  相似文献   

3.

Aim

Many alien species experience a lag phase between arriving in a region and becoming invasive, which can provide a valuable window of opportunity for management. Our ability to predict which species are experiencing lags has major implications for management decisions that are worth billions of dollars and that may determine the survival of some native species. To date, timing and causes of lag and release have been identified post hoc, based on historical narratives.

Location

Global.

Methods

We use a simple but realistic simulation of population spread over a fragmented landscape. To break the invasion lag, we introduce a sudden, discrete change in dispersal.

Results

We show that the ability to predict invasion lags is minimal even under controlled circumstances. We also show a non‐negligible risk of falsely attributing lag breaks to mechanisms based on invasion trajectories and coincidences in timing.

Main conclusions

We suggest that post hoc narratives may lead us to erroneously believe we can predict lags and that a precautionary approach is the only sound management practice for most alien species.
  相似文献   

4.

Aim

To test whether native and non‐native species have similar diversity–area relationships (species–area relationships [SARs] and phylogenetic diversity–area relationships [PDARs]) and whether they respond similarly to environmental variables.

Location

United States.

Methods

Using lists of native and non‐native species as well as environmental variables for >250 US national parks, we compared SARs and PDARs of native and non‐native species to test whether they respond similarly to environmental conditions. We then used multiple regressions involving climate, land cover and anthropogenic variables to further explore underlying predictors of diversity for plants and birds in US national parks.

Results

Native and non‐native species had different slopes for SARs and PDARs, with significantly higher slopes for native species. Corroborating this pattern, multiple regressions showed that native and non‐native diversity of plants and birds responded differently to a greater number of environmental variables than expected by chance. For native species richness, park area and longitude were the most important variables while the number of park visitors, temperature and the percentage of natural area were among the most important ones for non‐native species richness. Interestingly, the most important predictor of native and non‐native plant phylogenetic diversity, temperature, had positive effects on non‐native plants but negative effects on natives.

Main conclusions

SARs, PDARs and multiple regressions all suggest that native and non‐native plants and birds responded differently to environmental factors that influence their diversity. The agreement between diversity–area relationships and multiple regressions with environmental variables suggests that SARs and PDARs can be both used as quick proxies of overall responses of species to environmental conditions. However, more importantly, our results suggest that global change will have different effects on native and non‐native species, making it inappropriate to apply the large body of knowledge on native species to understand patterns of community assembly of non‐native species.
  相似文献   

5.

Aim

Changing preferences regarding which species humans have transported to new regions can have major consequences for the potential distribution of alien taxa, but the mechanisms shaping these patterns are poorly understood. We assessed the extent to which changes in human preferences for transporting and introducing alien freshwater fishes have altered their biogeography.

Location

Australia.

Methods

We compiled an up‐to‐date database of alien freshwater fishes established in drainages in Australia before and after the number of established alien fish species doubled (pre‐1970 and post‐1970, respectively). Using metacommunity models, we analysed the influence of species traits and drainage features on the distribution of alien fishes that established pre‐ and post‐1970.

Results

Alien fishes in Australia were introduced via four main transport pathways: acclimatization, aquaculture, biocontrol and ornamental trade. The relative importance of each pathway changed substantially between the two periods, accompanied by changes in the distribution of alien fishes and the variables predicting their distribution. Pre‐1970, most species (64%) were introduced by acclimatization societies for purposes such as angling and biocontrol, and these fish have established in inland drainages more heavily impacted by human activities. In contrast, most of the post‐1970 introductions (69%) were ornamental fishes, with most species established in small, north‐eastern, tropical and subtropical coastal drainages.

Main conclusions

Substantial changes in introduction preferences and transport pathways over time have altered both the patterns and underlying processes shaping the biogeography of alien fishes in Australia. Our findings highlight the need for caution when using historical data to infer potential future distributions of alien species. The continuing spread of alien species means traditional biogeographical units may no longer be identifiable in the foreseeable future.
  相似文献   

6.

Aim

Urban floras are composed of species of different origin, both native and alien, and with various traits and niches. It is likely that these species will respond to the ongoing climate change in different ways, resulting in future species compositions with no analogues in current European cities. Our goal was to estimate potential shifts in plant species composition in European cities under different scenarios of climate change for the 21st century.

Location

Europe.

Methods

Potential changes in the distribution of 375 species currently growing in 60 large cities in Southern, Central and Western Europe were modelled using generalized linear models and four climate change projections for two future periods (2041–2060 and 2061–2080). These projections were based on two global climate models (CCSM4 and MIROC‐ESM) and two Representative Concentration Pathways (2.6 and 8.5).

Results

Results were similar across all climate projections, suggesting that the composition of urban plant communities will change considerably due to future climate change. However, even under the most severe climate change scenario, native and alien species will respond to climate change similarly. Many currently established species will decline and others, especially annuals currently restricted to Southern Europe, will spread to northern cities. In contrast, perennial herbs, woody plants and most species with temperate continental and oceanic distribution ranges will make up a smaller proportion of future European urban plant communities in comparison with the present communities.

Main conclusions

The projected 21st century climate change will lead to considerable changes in the species composition of urban floras. These changes will affect the structure and functioning of urban plant communities.
  相似文献   

7.

Aim

We present the first continental‐scale study of factors controlling the species richness of groundwater‐fed fens, comparing land snails, vascular plants and bryophytes. We separately analyse two ecologically distinct groups differing in conservation value and colonization/extinction dynamics, that is habitat specialists, and matrix‐derived species. Considering the island‐like nature of fen habitats, we hypothesize larger differences in the species richness–environment relationships between habitat specialists and matrix‐derived species than among the taxonomic entities.

Location

Seven European regions

Methods

Richness was counted at 373 well‐preserved fens with undisturbed hydrology using the same protocols. Relationships between the species richness and water pH, waterlogging, climate and geography were explored by GLMs.

Results

Land snail richness responded mainly to water pH, regardless of habitat specialization. Richness of vascular plant and bryophyte specialists was strongly driven by geographical location of the sites, while that of matrix‐derived species was driven by waterlogging and water pH. The richness of matrix‐derived species of all taxa significantly increased with the decreasing waterlogging. Residual richness of specialists of all taxa decreased towards southern Europe.

Main conclusions

In island‐like terrestrial habitats, differences between specialists and matrix‐derived species may outweigh differences among taxa, unless there is one strong physiological determinant of species richness such as pH in land snails. The richness of specialists seems to be strongly related to difficult‐to‐measure regional factors such as historical frequency and connectivity of fen habitats. The richness of matrix‐derived species depends mainly on local conditions, such as pH and waterlogging, determining the degree of habitat contrast against the surrounding matrix. Sufficient waterlogging maintains a high representation of habitat specialists in fen communities, and disturbance of water regime may cause the increase in the number of matrix‐derived species and potentially trigger successional shifts towards non‐fen communities.
  相似文献   

8.

Aim

We sought to identify direct and indirect effects of factors contributing to establishment and spread of 272 stream fish species.

Location

Two hundred and ninety‐seven watersheds in the eastern United States.

Methods

We modelled two variables: (1) whether a species had become established outside its native range (establishment) and (2) the number of watersheds in which species established outside their native range (spread). We estimated these variables by comparing historical distributions to a rich data set of contemporary sampling. We calculated metrics of human use (indexing propagule pressure), and gathered species trait data from an open‐access database. We then used piecewise path analysis to estimate direct and indirect effects of human use, native range size and species traits on the two metrics of species introductions.

Results

We identified a hierarchical causal structure in which native range size and fishing pressure were important direct determinants of introductions. Species traits had some direct effects, but played a more indirect role. Native range size was significantly affected by thermal tolerance and diet breadth. Likewise, fishing pressure was significantly affected by life history strategy: larger‐bodied, longer‐living and more fecund species were positively associated with fishing pressure.

Main conclusions

Functional traits can confer an advantage to some species during the establishment phase, but human use is important for subsequent dispersal throughout the non‐native range. However, human use is non‐random, and is largely a function of species traits. Considering both direct and indirect effects of traits across stages of the invasion process can help to elucidate the full role of traits in species invasions.
  相似文献   

9.

Aim

Ecological restoration is critical for recovering biodiversity and ecosystem services, yet designing interventions to achieve particular outcomes remains fraught with challenges. In the extensive regions where non‐native species are firmly established, it is unlikely that historical conditions can be fully reinstated. To what degree, and how rapidly, can human‐dominated areas be shifted via restoration into regimes that benefit target species, communities or processes?

Location

We explore this question in a >20‐year‐old reforestation effort underway at Hakalau Forest National Wildlife Refuge in montane Hawaii. This large‐scale planting of Acacia koa trees is designed to secure populations of globally threatened bird species by transitioning the site rapidly from pasture to native forest.

Methods

We surveyed all forest birds in multiple corridors of young planted trees, remnant corridors of mature trees along gulches and at sites within mature forest. Using a Bayesian hierarchical approach, we identified which factors (distance from forest, habitat type and surrounding tree cover) had the most important influence on native and exotic bird abundance in the reforestation area.

Results

We found that 90% of native and exotic bird species responded quickly, occupying corridors of native trees approximately a decade after planting. However, native and exotic forest birds responded to markedly different characteristics of the reforested area. Native bird abundance was strongly predicted by proximity to mature forest and remnant corridors; conversely, exotic bird abundance was best predicted by overall tree cover throughout the area reforested.

Main conclusions

Our results demonstrate that large‐scale tree planting in corridors adjacent to mature forest can catalyse rapid recovery (both increased abundance and expanded distribution) of forest birds and that it is possible to design reforestation to benefit native species in novel ecosystems.
  相似文献   

10.

Aim

As a result of their ecological traits, woodpeckers (Picidae, Aves) are highly sensitive to forest cover change. We explored the current land cover in areas of high species richness of woodpeckers to determinate regions where urgent conservation actions are needed. In addition, we identified woodpecker species that are sensitive to forest loss and that have high levels of human habitat modification and low levels of protection (through protected areas) in their distribution ranges.

Location

Global.

Methods

We joined available range maps for all extant 254 woodpecker species with information of their conservation status and tolerances to human habitat modifications and generated a richness map of woodpecker species worldwide. Then, we associated this information (the richness pattern and individual species’ maps) with land cover and protected areas (PAs) maps.

Result

We found that the foremost woodpecker species richness hotspot is in Southeast Asia and is highly modified. At the second species richness hotspot in the eastern Andes, we observed a front of deforestation at its southern extreme and a greater deforested area in its northern extreme but most of its area remains with forest coverage. At the species level, 17 species that are sensitive to forest modification experience extensive deforestation and have low extents of PAs in their ranges.

Main conclusions

The most diverse woodpecker hotspots are mostly occupied by human‐modified landscapes, and a large portion of the species there avoids anthropogenic environments. The level of representation of woodpecker species in PAs is low as a global general pattern, although slightly better in Asia. Our global analysis of threats to woodpecker from land use patterns reiterates the urgent conservation needs for Southeast Asian forests. Finally, based on our results, we recommend a re‐evaluation for inclusion in the Red List of five woodpecker species.
  相似文献   

11.

Aim

Floristic and faunal diversity fall within species assemblages that can be grouped into distinct biomes or ecoregions. Understanding the origins of such biogeographic assemblages helps illuminate the processes shaping present‐day diversity patterns and identifies regions with unique or distinct histories. While the fossil record is often sparse, dated phylogenies can provide a window into the evolutionary past of these regions. Here, we present a novel phylogenetic approach to investigate the evolutionary origins of present‐day biogeographic assemblages and highlight their conservation value.

Location

Southern Africa.

Methods

We evaluate the evolutionary turnover separating species clusters in space at different time slices to determine the phylogenetic depth at which the signal for their present‐day structure emerges. We suggest present‐day assemblages with distinct evolutionary histories might represent important units for conservation. We apply our method to the vegetation of southern Africa using a dated phylogeny of the woody flora of the region and explore how the evolutionary history of vegetation types compares to common conservation currencies, including species richness, endemism and threat.

Results

We show the differentiation of most present‐day vegetation types can be traced back to evolutionary splits in the Miocene. The woody flora of the Fynbos is the most evolutionarily distinct, and thus has deeper evolutionary roots, whereas the Savanna and Miombo Woodland show close phylogenetic affinities and likely represent a more recent separation. However, evolutionarily distinct phyloregions do not necessarily capture the most unique phylogenetic diversity, nor are they the most species‐rich or threatened.

Main conclusions

Our approach complements analyses of the fossil record and serves as a link to the history of diversification, migration and extinction of lineages within biogeographic assemblages that is separate from patterns of species richness and endemism. Our analysis reveals how phyloregions capture conservation value not represented by traditional biodiversity metrics.
  相似文献   

12.

Aim

Identify the optimal combination of sampling techniques to maximize the detection of diversity of cave‐dwelling arthropods.

Location

Central‐western New Mexico; north‐western Arizona; Rapa Nui, Chile.

Methods

From 26 caves across three geographically distinct areas in the Western Hemisphere, arthropods were sampled using opportunistic collecting, timed searches, and baited pitfall trapping in all caves, and direct intuitive searches and bait sampling at select caves. To elucidate the techniques or combination of techniques for maximizing sampling completeness and efficiency, we examined our sampling results using nonmetric multidimensional scaling (NMDS), analysis of similarity (ANOSIM), Wilcoxon signed‐rank tests, species richness estimators and species accumulation curves.

Results

To maximize the detection of cave‐dwelling arthropod species, one must apply multiple sampling techniques and specifically sample unique microhabitats. For example, by sampling cave deep zones and nutrient resource sites, we identified several undescribed cave‐adapted and/or cave‐restricted taxa in the south‐western United States and eight new species of presumed cave‐restricted arthropods on Rapa Nui that would otherwise have been missed. Sampling techniques differed in their detection of both management concern species (e.g., newly discovered cave‐adapted/restricted species, range expansions of cave‐restricted species and newly confirmed alien species) and specific taxonomic groups. Spiders were detected primarily with visual search techniques (direct intuitive searches, opportunistic collecting and timed searches), while most beetles were detected using pitfall traps. Each sampling technique uniquely identified species of management concern further strengthening the importance of a multi‐technique sampling approach.

Main conclusions

Multiple sampling techniques were required to best characterize cave arthropod diversity. For techniques applied uniformly across all caves, each technique uniquely detected between ~40% and 67% of the total species observed. Also, sampling cave deep zones and nutrient resource sites was critical for both increasing the number of species detected and maximizing the likelihood of detecting management concern species.
  相似文献   

13.

Aim

Past land use legacy effects—extinction debts and immigration credits—might be particularly pronounced in regions characterized by complex and dynamic landscape change. The aim of this study was to evaluate how current woody plant species distribution, composition and richness related to historical and present land uses.

Location

A smallholder farming landscape in south‐western Ethiopia.

Methods

We surveyed woody plants in 72 randomly selected 1‐ha sites in farmland and grouped them into forest specialist, generalist and pioneer species. First, we investigated woody plant composition and distribution using non‐metric multidimensional scaling. Second, we modelled species richness in response to historical and current distance from the forest edge. Third, we examined diameter class distributions of trees in recently converted vs. permanent farmland.

Results

Historical distance was a primary driver of woody plant composition and distribution. Generalist and pioneer species richness increased with historical distance. Forest specialists, however, did not respond to historical distance. Only few old individuals of forest specialist species remained in both recently converted and permanent farmlands.

Main conclusions

Our findings suggest that any possible extinction debt for forest specialist species in farmland at the landscape scale was rapidly paid off, possibly because farmers cleared large remnant trees. In contrast, we found substantial evidence of immigration credits in farmland for generalist and pioneer species. This suggests that long‐established farmland may have unrecognized conservation values, although apparently not for forest specialist species. We suggest that conservation policies in south‐western Ethiopia should recognize not only forests, but also the complementary value of the agricultural mosaic—similar to the case of European cultural landscapes. A possible future priority could be to better reintegrate forest species in the farmland mosaic.
  相似文献   

14.

Aim

Artificial coastal defence structures are proliferating in response to rising and stormier seas. These structures provide habitat for many species but generally support lower biodiversity than natural habitats. This is primarily due to the absence of environmental heterogeneity and water‐retaining features on artificial structures. We compared the epibiotic communities associated with artificial coastal defence structures and natural habitats to ask the following questions: (1) is species richness on emergent substrata greater in natural than artificial habitats and is the magnitude of this difference greater at mid than upper tidal levels; (2) is species richness greater in rock pools than emergent substrata and is the magnitude of this difference greater in artificial than natural habitats; and (3) in artificial habitats, is species richness in rock pools greater at mid than upper tidal levels?

Location

British Isles.

Methods

Standard non‐destructive random sampling compared the effect of habitat type and tidal height on epibiota on natural rocky shores and artificial coastal defence structures.

Results

Natural emergent substrata supported greater species richness than artificial substrata. Species richness was greater at mid than upper tidal levels, particularly in artificial habitats. Rock pools supported greater species richness than emergent substrata, and this difference was more pronounced in artificial than natural habitats. Rock pools in artificial habitats supported greater species richness at mid than upper tidal levels.

Main conclusions

Artificial structures support lower biodiversity than natural habitats. This is primarily due to the lack of habitat heterogeneity in artificial habitats. Artificial structures can be modified to provide rock pools that promote biodiversity. The effect of rock pool creation will be more pronounced at mid than upper tidal levels. The challenge now is to establish at what tidal height the effect of pools becomes negligible and to determine the rock pool dimensions for optimum habitat enhancement.
  相似文献   

15.

Aim

The risk climate change poses to biodiversity is often estimated by forecasting the areas that will be climatically suitable for species in the future and measuring the distance of the “range shifts” species would have to make to reach these areas. Species’ traits could indicate their capacity to undergo range shifts. However, it is not clear how range‐shift capacity influences risk. We used traits from a recent evidence review to measure the relative potential of species to track changing climatic conditions.

Location

Europe.

Time period

Baseline period (1961–1990) and forecast period (2035–2064).

Major taxa studied

62 mammal species.

Methods

We modelled species distributions using two general circulation models and two representative concentration pathways (RCPs) to calculate three metrics of “exposure” to climate change: range area gained, range area lost and distance moved by the range margin. We identified traits that could inform species’ range‐shift capacity (i.e., potential to establish new populations and proliferate, and thus undertake range shifts), from a recent evidence‐based framework. The traits represent ecological generalization and reproductive strategy. We ranked species according to each metric of exposure and range‐shift capacity, calculating sensitivity to ranking methods, and synthesized both exposure and range‐shift capacity into “risk syndromes.”

Results

Many species studied whose survival depends on colonizing new areas were relatively unlikely to undergo range shifts. Under the worst‐case scenario, 62% of species studied were relatively highly exposed. 47% were highly exposed and had relatively low range‐shift capacity. Only 14% of species faced both low exposure and high range‐shift capacity. Both range‐shift and exposure metrics had a greater effect on risk assessments than climate models.

Main conclusions

The degree to which species’ potential ranges will be altered by climate change often does not correspond to species’ range‐shift capacities. Both exposure and range‐shift capacity should be considered when evaluating biodiversity risk from climate change.
  相似文献   

16.

Aim

Natural range expansions and human‐mediated colonizations usually involve a small number of individuals that establish new populations in novel habitats. In both cases, founders carry only a fraction of the total genetic variation of the source populations. Here, we used native and non‐native populations of the green anole, Anolis carolinensis, to compare the current distribution of genetic variation in populations shaped by natural range expansion and human‐mediated colonization.

Location

North America, Hawaiian Islands, Western Pacific Islands.

Methods

We analysed 401 mtDNA haplotypes to infer the colonization history of A. carolinensis on nine islands in the Pacific Ocean. We then genotyped 576 individuals at seven microsatellite loci to assess the levels of genetic diversity and population genetic differentiation for both the native and non‐native ranges.

Results

Our findings support two separate introductions to the Hawaiian Islands and several western Pacific islands, with subsequent colonizations within each region following a stepping‐stone model. Genetic diversity at neutral markers was significantly lower in the non‐native range because of founder effects, which also contributed to the increased population genetic differentiation among the non‐native regions. In contrast, a steady reduction in genetic diversity with increasing distance from the ancestral population was observed in the native range following range expansion.

Main conclusions

Range expansions cause serial founder events that are the spatial analogue of genetic drift, producing a pattern of isolation‐by‐distance in the native range of the species. In human‐mediated colonizations, after an initial loss of genetic diversity, founder effects appear to persist, resulting in overall high genetic differentiation among non‐native regions but an absence of isolation‐by‐distance. Contrasting the processes influencing the amount and structuring of genetic variability during natural range expansion and human‐mediated biological invasions can shed new light on the fate of natural populations exposed to novel and changing environments.
  相似文献   

17.

Aim

Habitat loss and climate change constitute two of the greatest threats to biodiversity worldwide, and theory predicts that these factors may act synergistically to affect population trajectories. Recent evidence indicates that structurally complex old‐growth forest can be cooler than other forest types during spring and summer months, thereby offering potential to buffer populations from negative effects of warming. Old growth may also have higher food and nest‐site availability for certain species, which could have disproportionate fitness benefits as species approach their thermal limits.

Location

Pacific Northwestern United States.

Methods

We predicted that negative effects of climate change on 30‐year population trends of old‐growth‐associated birds should be dampened in landscapes with high proportions of old‐growth forest. We modelled population trends from Breeding Bird Survey data for 13 species as a function of temperature change and proportion old‐growth forest.

Results

We found a significant negative effect of summer warming on only two species. However, in both of these species, this relationship between warming and population decline was not only reduced but reversed, in old‐growth‐dominated landscapes. Across all 13 species, evidence for a buffering effect of old‐growth forest increased with the degree to which species were negatively influenced by summer warming.

Main conclusions

These findings suggest that old‐growth forests may buffer the negative effects of climate change for those species that are most sensitive to temperature increases. Our study highlights a mechanism whereby management strategies to curb degradation and loss of old‐growth forests—in addition to protecting habitat—could enhance biodiversity persistence in the face of climate warming.
  相似文献   

18.

Aim

We investigated changes in dung beetle β‐diversity components along a subtropical elevational gradient, to test whether turnover or nestedness‐related processes drive the dissimilarity of assemblages at spatial and temporal scales.

Location

An elevational gradient (200–1,600 m a.s.l.) of the Atlantic Forest in southern Brazil.

Methods

We investigated the extent to which β‐diversity varied along the elevational gradient (six elevations) at both spatial (among sites at different elevations) and temporal (different months at the same site) scales. We compared both the turnover and nestedness‐related dissimilarity of species and genera using multiple‐site or multiple‐month measures and tested whether these measurements were different from random expectations.

Results

A mid‐elevation peak in species richness along the elevational gradient was observed, and the lowest richness occurred at the highest elevations. We found two different groups of species, lowland and highland species, with a mixing of groups at intermediate elevations. The turnover component of β‐diversity was significantly higher for both spatial (i.e. elevational) and temporal changes in species composition. However, when the data for genera by site were considered, the elevational turnover value decreased in relative importance. Nestedness‐related processes are more important for temporal dissimilarity patterns at higher elevation sites.

Main conclusions

Spatial and temporal turnover of dung beetle species is the most important component of β‐diversity along the elevational gradient. High‐elevation assemblages are not subsets of assemblages that inhabit lower elevations, but this relationship ceases when β‐diversity is measured at the generic level. Environmental changes across elevations may be the cause of the differential establishment of distinctive species, but these species typically belong to the same higher taxonomic rank. Conservation strategies should consider elevational gradients in case‐specific scenarios as they may contain distinct species assemblages in lowlands vs. highlands.
  相似文献   

19.

Aim

Urbanization broadly affects the phylogenetic and functional diversity of natural communities through a variety of processes including habitat loss and the introduction of non‐native species. Due to the challenge of acquiring direct measurements, these effects have been studied primarily using “space‐for‐time” substitution where spatial urbanization gradients are used to infer the consequences of urbanization occurring across time. The ability of alternative sampling designs to replicate the findings derived using space‐for‐time substitution has not been tested.

Location

Global.

Methods

We contrasted the phylogenetic and functional diversity of breeding bird assemblages in 58 cities worldwide with the corresponding regional breeding bird assemblages estimated using geographic range maps.

Results

Compared to regional assemblages, urban assemblages contained lower phylogenetic diversity, lower phylogenetic beta diversity, a reduction in the least evolutionary distinct species and the loss of the most evolutionarily distinct species. We found no evidence that these effects were related to the presence of non‐native species. Urban assemblages contained fewer aquatic species and fewer aquatic foraging species. The distribution of body size and range size narrowed for urban assemblages with the loss of species at both tails of the distribution, especially large bodied and broadly distributed species. Urban assemblages contained a greater proportion of species classified as passerines, doves or pigeons; species identified as granivores; species that forage within vegetation or in the air; and species with more generalized associations with foraging strata.

Main conclusions

Urbanization is associated with the overall reduction and constriction of phylogenetic and functional diversity, results that largely replicate those generated using space‐for‐time substitution, increasing our confidence in the quality of the combined inferences. When direct measurements are unavailable, our findings emphasize the value of developing independent sampling methods that broaden and reinforce our understanding of the ecological implications of urbanization.
  相似文献   

20.

Aim

To collect and identify the issues that may affect the future global and local management of biological invasions in the next 20–50 years and provide guidance for the prioritization of actions and policies responding to the management challenges of the future.

Location

Global

Methods

We used an open online survey to poll specialists and stakeholders from around the world as to their opinion on the three most important future issues both globally and at their respective local working level.

Results

The 240 respondents identified 629 global issues that we categorized into topics. We summarized the highest rated topics into five broad thematic areas: (1) environmental change, particularly climate change, (2) the spread of species through trade, (3) public awareness, (4) the development of new technologies to enhance management and (5) the need to strengthen policies. The respondents also identified 596 issues at their respective local working levels. Management, early detection, prevention and funding‐related issues all ranked higher than at the global level. Our global audience of practitioners, policymakers and researchers also elicited topics not identified in horizon scanning exercises led by scientists including potential human health impacts, the need for better risk assessments and legislation, the role of human migration and water management.

Main conclusions

The topic areas identified in this horizon scan provide guidance where future policy priorities for invasive alien species should be set. First, to reduce the magnitude and speed of environmental change and its impacts on biological invasions; second, to restrict the movement of potentially invasive alien species via trade; third, to raise awareness with the general public and empower them to act; and finally, to invest in innovative technologies that can detect and mitigate adverse impacts of introduced species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号