首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
We present a dynamical model for receptor-mediated cell adhesion to surfaces in viscous shear flow when the surfaces are coated with ligand molecules complementary to receptors in the cell membrane. This model considers the contact area between the cell and the surface to be a small, homogeneous region that mediates the initial attachment of the cell to the surface. Using a phase plane analysis for a system of nonlinear ordinary differential equations that govern the changes in free receptor density and bond density within the contact area with time, we can predict the conditions for which adhesion between the cell and the surface will take place. Whether adhesion occurs depends on values of dimensionless quantities that characterize the interaction of the cell and its receptors with the surface and its ligand, such as the bond formation rate, the receptor-ligand affinity, the fluid mechanical force, the receptor mobility, and the contact area. A key result is that there are two regimes in which different chemical and physical forces dominate: a rate-controlled high affinity regime and an affinity-controlled low affinity regime. Many experimental observations, including the effects of temperature and receptor mobility on adhesiveness, can be explained by understanding which of these regimes is appropriate. We also provide simple approximate analytical solutions, relating adhesiveness to cell and surface properties as well as fluid forces, which allow convenient testing of model predictions by experiment.  相似文献   

2.
We investigated the role of receptor binding affinity in surface adhesion. A sensitive technique was developed to measure the surface energy of receptor-mediated adhesion. The experimental system involved a functionalized elastic agarose bead resting on a functionalized glass coverslip. Attractive intersurface forces pulled the two surfaces together, deforming the bead to produce an enlarged contact area. The Johnson-Kendall-Roberts (JKR) model was used to relate the surface energy of the interaction to the elasticity of the bead and the area of contact. The surface energies for different combinations of modified surfaces in solution were obtained from reflection interference contrast microscopy (RICM) measurements of the contact area formed by the bead and the coverslip. Studies with surfaces functionalized with ligand-receptor pairs showed that the relationship between surface energy and the association constant of the ligand binding has two regimes. At low binding affinity, surface energy increased linearly with the association constant, while surface energy increased logarithmically with the association constant in the high affinity regime.  相似文献   

3.
The kinetics of receptor-mediated cell adhesion to a ligand-coated surface play a key role in many physiological and biotechnology-related processes. We present a probabilistic model of receptor-ligand bond formation between a cell and surface to describe the probability of adhesion in a fluid shear field. Our model extends the deterministic model of Hammer and Lauffenburger (Hammer, D.A., and D.A. Lauffenburger. 1987. Biophys. J. 52:475-487) to a probabilistic framework, in which we calculate the probability that a certain number of bonds between a cell and surface exists at any given time. The probabilistic framework is used to account for deviations from ideal, deterministic behavior, inherent in chemical reactions involving relatively small numbers of reacting molecules. Two situations are investigated: first, cell attachment in the absence of fluid stress; and, second, cell detachment in the presence of fluid stress. In the attachment case, we examine the expected variance in bond formation as a function of attachment time; this also provides an initial condition for the detachment case. Focusing then on detachment, we predict transient behavior as a function of key system parameters, such as the distractive fluid force, the receptor-ligand bond affinity and rate constants, and the receptor and ligand densities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
D A Hammer 《Cell biophysics》1991,18(2):145-182
The adhesion of cells to ligand-coated surfaces in viscous shear flow is an important step in many physiological processes, such as the neutrophil-mediated inflammatory response, lymphocyte homing, and tumor cell metastasis. This article describes a calculational method that allows simulation of the interaction of a single cell with a ligand-coated surface. The cell is idealized as a microvilli-coated hard sphere covered with adhesive springs. The distribution of microvilli on the cell surface, the distribution of receptors on microvilli tips, and the forward and reverse reaction between receptor and ligand are all simulated using random number sampling of appropriate probability functions. The velocity of the cell at each time step in the simulation results from a balance of hydrodynamic, colloidal, and bonding forces; the bonding force is derived by summing the individual contributions of each receptor-ligand tether. The model can simulate the effect of many parameters on adhesion, such as the number of receptors on microvilli tips, the density of ligand, the rates of reaction between receptor and ligand, the stiffness of the springs, the response of springs to extension, and the magnitude of hydrodynamic stresses. By varying these parameters, the model can successfully recreate the entire range of expected and observed adhesive phenomena, from completely unencumbered motion, to rolling, to transient attachment, to firm adhesion. Also, the model can provide meaningful statistical measures of adhesion, including the mean and variance in velocity, rate constants for cell attachment and detachment, and the frequency of adhesion. We find a critical modulating parameter of adhesion is the fractional spring slippage, which relates the extension of a bond to its rate of breakage; the higher the slippage, the faster the breakage for the same extension. Changes in the fractional spring slippage can radically change the adhesive behavior of a cell. We show that stiffer springs will only serve to increase adhesion if the fractional slippage remains small. In addition, our simulations emphasize the importance of reaction rates between receptor and ligand, rather than affinity, as being the key determinant of adhesion under flow. These results suggest reaction rates and response to stress of adhesion molecules must be independently measured to understand how adhesion is controlled at the molecular level.  相似文献   

5.
The adhesion of cells to ligand-coated surfaces in viscous shear flow is an important step in many physiological processes, such as the neutrophil-mediated inflammatory response, lymphocyte homing, and tumor cell metastasis. This article describes a calculational method that allows simulation of the interaction of a single cell with a ligandcoated surface. The cell is idealized as a microvilli-coated hard sphere covered with adhesive springs. The distribution of microvilli on the cell surface, the distribution of receptors on microvilli tips, and the forward and reverse reaction between receptor and ligand are all simulated using random number sampling of appropriate probability functions. The velocity of the cell at each time step in the simulation results from a balance of hydrodynamic, colloidal, and bonding forces; the bonding force is derived by summing the individual contributions of each receptor-ligand tether. The model can simulate the effect of many parameters on adhesion, such as the number of receptors on microvilli tips, the density of ligand, the rates of reaction between receptor and ligand, the stiffness of the springs, the response of springs to extension, and the magnitude of hydrodynamic stresses. By varying these parameters, the model can successfully recreate the entire range of expected and observed adhesive phenomena, from completely unencumbered motion, to rolling, to transient attachment, to firm adhesion. Also, the model can provide meaningful statistical measures of adhesion, including the mean and variance in velocity, rate constants for ceil attachment and detachment, and the frequency of adhesion. We find a critical modulating parameter of adhesion is the fractional spring slippage, which relates the extension of a bond to its rate of breakage; the higher the slippage, the faster the breakage for the same extension. Changes in the fractional spring slippage can radically change the adhesive behavior of a cell. We show that stiffer springs will only serve to increase adhesion if the fractional slippage remains small. In addition, our simulations emphasize the importance of reaction rates between receptor and ligand, rather than affinity, as being the key determinant of adhesion under flow. These results suggest reaction rates and response to stress of adhesion molecules must be independently measured to understand how adhesion is controlled at the molecular level.  相似文献   

6.
Neutrophil capture and recruitment from the circulation requires the formation of specific receptor/ligand bonds under hydrodynamic forces. In the present study we examine bond formation between beta2-integrins on neutrophils and immobilized ICAM-1 while using micropipettes to control the force of contact between the cell and substrate. Magnesium was used to induce the high affinity conformation of the integrins, and bond formation was assessed by measuring the probability of adhesion during repeated contacts. Increasing the impingement force caused an increase in the contact area and led to a proportional increase in adhesion probability (from approximately 20 to 50%) over the range of forces tested (50-350 pN). In addition, different-sized beads were used to change the force per unit area in the contact zone (contact stress). We conclude that for a given contact stress, the rate of bond formation increases linearly with contact area, but that increasing contact stress results in higher intrinsic rates of bond formation.  相似文献   

7.
For many cell types, initial receptor-mediated attachment to a ligand-coated surface is followed by the formation of focal contacts - strong, specialized, discrete adhesive connections between cell and substrate in which receptors are clustered and simultaneously linked to extracellular ligand and cytoskeletal proteins. Since adhesion affects many aspects of cellular physiology including growth, differentiation, and motility, understanding the biochemical factors which regulate focal contact assembly should enhance our understanding of these phenomena. In this paper, we present a mathematical model to examine how receptor-ligand, receptor-cytoskeleton, and cytoskeleton-cytoskeleton interactions affect the formation of receptor clusters which serve as precursors to mature focal contacts. Receptor clustering is presumed to occur through self-recognition of cytoskeletal elements which induce the polymerization of ligand-receptor-cytoskeleton complexes. Polymerization only occurs when the ligand density is above a critical value and a decrease in the receptor-ligand affinity shifts the critical ligand density to higher values. While cytoskeletal protein expression and receptor-cytoskeleton affinity influence the concentration of monomeric complexes, the formation of polymeric ligand-receptor-cytoskeleton aggregates is most sensitive to changes in the self-association affinity between cytoskeletal proteins. We find that a 100-fold enhancement in the affinity between cytoskeletal elements can produce a substantial increase in the total fraction of adhesion receptors associated with focal contact precursors (from 5% to over 90%). Our results suggest that under physiological conditions, cellular control of focal contact assembly most likely occurs through modulation of specific cytoskeletal proteins to solidify cytoskeleton-cytoskeleton connections within precursor focal contact structures.  相似文献   

8.
The receptor-mediated adhesion of cells to ligand-coated surfaces in viscous shear flow is an important step in many physiological processes, such as the neutrophil-mediated inflammatory response, lymphocyte homing, and tumor cell metastasis. This paper describes a calculational method which simulates the interaction of a single cell with a ligand-coated surface under flow. The cell is idealized as a microvilli-coated hard sphere covered with adhesive springs. The distribution of microvilli on the cell surface, the distribution of receptors on microvilli tips, and the forward and reverse reaction between receptor and ligand are all simulated using random number sampling of appropriate probability functions. The velocity of the cell at each time step in the simulation results from a balance of hydrodynamic, colloidal and bonding forces; the bonding force is derived by summing the individual contributions of each receptor-ligand tether. The model can simulate the effect of many parameters on adhesion, such as the number of receptors on microvilli tips, the density of ligand, the rates of reaction between receptor and ligand, the stiffness of the resulting receptor-ligand springs, the response of springs to strain, and the magnitude of the bulk hydrodynamic stresses. The model can successfully recreate the entire range of expected and observed adhesive phenomena, from completely unencumbered motion, to rolling, to transient attachment, to firm adhesion. Also, the method can generate meaningful statistical measures of adhesion, including the mean and variance in velocity, rate constants for cell attachment and detachment, and the frequency of adhesion. We find a critical modulating parameter of adhesion is the fractional spring slippage, which relates the strain of a bond to its rate of breakage; the higher the slippage, the faster the breakage for the same strain. Our analysis of neutrophil adhesive behavior on selectin-coated (CD62-coated) surfaces in viscous shear flow reported by Lawrence and Springer (Lawrence, M.B., and T.A. Springer 1991. Cell. 65:859-874) shows the fractional spring slippage of the CD62-LECAM-1 bond is likely below 0.01. We conclude the unique ability of this selectin bond to cause neutrophil rolling under flow is a result of its unique response to strain. Furthermore, our model can successfully recreate data on neutrophil rolling as function of CD62 surface density.  相似文献   

9.
We examine the relationships of three variables (projected area, migration speed, and traction force) at various type I collagen surface densities in a population of fibroblasts. We observe that cell area is initially an increasing function of ligand density, but that above a certain transition level, increases in surface collagen cause cell area to decline. The threshold collagen density that separates these two qualitatively different regimes, approximately 160 molecules/ microm(2), is approximately equal to the cell surface density of integrin molecules. These results suggest a model in which collagen density induces a qualitative transition in the fundamental way that fibroblasts interact with the substrate. At low density, the availability of collagen binding sites is limiting and the cells simply try to flatten as much as possible by pulling on the few available sites as hard as they can. The force per bond under these conditions approaches 100 pN, approximately equal to the force required for rupture of integrin-peptide bonds. In contrast, at high collagen density adhesion, traction force and motility are limited by the availability of free integrins on the cell surface since so many of these receptors are bound to the surface ligand and the force per bond is very low.  相似文献   

10.
For many cell types, growth, differentiation, and motility are dependent on receptor-mediated adhesion to ligand-coated surfaces. Focal contacts are strong, specialized, adhesive connections between cell and substrate in which receptors aggregate and connect extracellular ligand to intracellular cytoskeletal molecules. In this paper, we present a mathematical model to examine how focal contact formation affects cellular adhesive strength. To calculate adhesive strength with and without focal contacts, we use a one-dimensional tape peeling analysis to determine the critical tension necessary to peel the membrane. Receptor-ligand bonds are modeled as adhesive springs. In the absence of focal contacts, we derive analytic expressions for the critical tension at low and high ligand densities and show how membrane morphology affects adhesion. Then, focal contacts are modeled as cytoplasmic nucleation centers which bind adhesion receptors. The extent of adhesive strengthening upon focal contact formation depends on the elastic rigidity of the cytoskeletal connections, which determines the structural integrity of the focal contact itself. We consider two limits to this elasticity, very weak and rigid. Rigid cytoskeletal connections give much greater attachment strengths. The dependence of attachment strength on measurable model parameters is quite different in these two limits, which suggests focal contact structure might be deduced from properly performed adhesion experiments. Finally, we compare our model to the adhesive strengthening response reported for glioma cell adhesion to fibronectin (Lotz et al., 1989. J. Cell Biol. 109:1795-1805). Our model successfully predicts the observed detachment forces at 4 degrees C and yields values for the number of fibronectin receptors per glioma cell and the density of cytoskeletal connection molecules (talin) involved in receptor clusters which are consistent with measurements for other cell types. Comparison of the model with data at 37 degrees C suggests that while cytoskeletal cross-linking and clustering of fibronectin receptors significantly increases adhesion strength, specific glioma cell-substratum attachment sites possess little mechanical rigidity and detach through a peeling mechanism, consistent with the view that these sites of < or = 15 nm cell-substrate separation are precursors to fully formed, elastically rigid focal contacts.  相似文献   

11.
Lee FH  Haskell C  Charo IF  Boettiger D 《Biochemistry》2004,43(22):7179-7186
Receptor-ligand binding analyses have generally used soluble components to measure thermodynamic binding constants. In their biological context, adhesion receptors bind to an immobile ligand and the binding reaction is confined to the cell-substrate contact zone. We have developed a new procedure based on the spinning disk technology to measure the number of receptor-ligand bonds in the contact zone. Application of this methodology to the CX3CR1-fractalkine and the CXCR1-IL-8 receptor-ligand systems demonstrated that the level of binding to an immobilized ligand is reduced by several orders of magnitude in comparison to solution binding. A comparison of the solution binding and contact zone binding constants shows that the effect of ligand immobilization was similar for each system. In contrast, although the CXCR1-IL-8 bond had the higher affinity, the average bond strength was only 10% of that for the CX3CR1 bond. Because fractalkine can be expressed as a cell surface-bound protein, CX3CR1 has been proposed to function as an adhesion receptor. The higher bond strength suggests that the bond architecture has also evolved to serve an adhesion function.  相似文献   

12.
Analyses of receptor-ligand interactions are important to the understanding of cellular adhesion. Traditional methods of measuring the three-dimensional (3D) dissociation constant (Kd) require at least one of the molecular species in solution and hence cannot be directly applied to the case of cell adhesion. We describe a novel method of measuring 2D binding characteristics of receptors and ligands that are attached to surfaces and whose bonds are subjected to forces. The method utilizes a common centrifugation assay to quantify adhesion. A model for the experiment has been formulated, solved exactly, and tested carefully. The model is stochastically based and couples the bond force to the binding affinity. The method was applied to examine tumor cell adherence to recombinant E-selectin. Satisfactory agreement was found between predictions and data. The estimated zero-force 2D Kd for E-selectin/carbohydrate ligand binding was approximately 5 x 10(3) microm(-2), and the bond interaction range was subangstrom. Our results also suggest that the number of bonds mediating adhesion was small (<5).  相似文献   

13.
To understand the adhesion–fragmentation dynamics of bacterial aggregates (i.e., flocs), we model the aggregates as two ligand-covered rigid spheres. We develop and investigate a model for the attachment/detachment dynamics in a fluid subject to a homogeneous planar shear-flow. The binding ligands on the surface of the flocs experience attractive and repulsive surface forces in an ionic medium and exhibit finite resistance to rotation (via bond tilting). For certain range of material and fluid parameters, our results predict a nonlinear or hysteretic relationship between the binding/unbinding of the floc surface and the net floc velocity (translational plus rotational velocity). We show that the surface adhesion is promoted by increased fluid flow until a critical value, beyond which the bonds starts to yield. Moreover, adhesion is not promoted in a medium with low ionic strength, or flocs with bigger size or higher binder stiffness. The numerical simulations of floc-aggregate number density studies support these findings.  相似文献   

14.
Zocchi G 《Biophysical journal》2001,81(5):2946-2953
We introduce a new method to apply controlled forces on single molecules. The motion of a micron-sized bead attached to a solid surface through a single molecular contact is tracked by evanescent wave microscopy as a force is exerted through a flow. We report measurements of the streptavidin-biotin bond rupture force obtained with this technique. We also obtain detailed measurements of the balance of forces involved in detaching an adhering bead with a flow. A small lateral force translates into a much bigger normal force on the attachment point. This effect is relevant for the interpretation of common cell adhesion assays.  相似文献   

15.
The physiological function of many cells is dependent on their ability to adhere via receptors to ligand-coated surfaces under fluid flow. We have developed a model experimental system to measure cell adhesion as a function of cell and surface chemistry and fluid flow. Using a parallel-plate flow chamber, we measured the binding of rat basophilic leukemia cells preincubated with anti-dinitrophenol IgE antibody to polyacrylamide gels covalently derivatized with 2,4-dinitrophenol. The rat basophilic leukemia cells' binding behavior is binary: cells are either adherent or continue to travel at their hydrodynamic velocity, and the transition between these two states is abrupt. The spatial location of adherent cells shows cells can adhere many cell diameters down the length of the gel, suggesting that adhesion is a probabilistic process. The majority of experiments were performed in the excess ligand limit in which adhesion depends strongly on the number of receptors but weakly on ligand density. Only 5-fold changes in IgE surface density or in shear rate were necessary to change adhesion from complete to indistinguishable from negative control. Adhesion showed a hyperbolic dependence on shear rate. By performing experiments with two IgE-antigen configurations in which the kinetic rates of receptor-ligand binding are different, we demonstrate that the forward rate of reaction of the receptor-ligand pair is more important than its thermodynamic affinity in the regulation of binding under hydrodynamic flow. In fact, adhesion increases with increasing receptor-ligand reaction rate or decreasing shear rate, and scales with a single dimensionless parameter which compares the relative rates of reaction to fluid shear.  相似文献   

16.
The objective of this study was to determine the effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Linear and cyclic forms of the fibronectin (Fn) cell-binding domain peptide Arg-Gly-Asp (RGD) were covalently immobilized to glass, and Fn was adsorbed onto glass slides. Bovine aortic endothelial cells attached to the surfaces for 15 min. The critical wall shear stress at which 50% of the cells detached increased nonlinearly with ligand density and was greater with immobilized cyclic RGD than with immobilized linear RGD or adsorbed Fn. To directly compare results for the different ligand densities, the receptor-ligand dissociation constant and force per bond were estimated from data for the critical shear stress and contact area. Total internal reflection fluorescence microscopy was used to measure the contact area as a function of separation distance. Contact area increased with increasing ligand density. Contact areas were similar for the immobilized peptides but were greater on surfaces with adsorbed Fn. The dissociation constant was determined by nonlinear regression of the net force on the cells to models that assumed that bonds were either uniformly stressed or that only bonds on the periphery of the contact region were stressed (peeling model). Both models provided equally good fits for cells attached to immobilized peptides whereas the peeling model produced a better fit of data for cells attached to adsorbed Fn. Cyclic RGD and linear RGD both bind to the integrin alpha v beta 3, but immobilized cyclic RGD exhibited a greater affinity than did linear RGD. Receptor affinities of Fn adsorbed to glycophase glass and Fn adsorbed to glass were similar. The number of bonds was calculated assuming binding equilibrium. The peeling model produced good linear fits between bond force and number of bonds. Results of this study indicate that 1) bovine aortic endothelial cells are more adherent on immobilized cyclic RGD peptide than linear RGD or adsorbed Fn, 2) increased adhesion is due to a greater affinity between cyclic RGD and its receptor, and 3) the affinity of RGD peptides and adsorbed Fn for their receptors is increased after immobilization.  相似文献   

17.
The regulation of cell integrin receptors involves modulation of membrane expression, shift between different affinity states, and topographical redistribution on the cell membrane. Here we attempted to assess quantitatively the functional importance of receptor clustering. We studied beta-1 integrin-mediated attachment of THP-1 cells to fibronectin-coated surfaces under low shear flow. Cells displayed multiple binding events with a half-life of the order of 1 s. The duration of binding events after the first second after arrest was quantitatively accounted for by a model assuming the existence of a short-time intermediate binding state with 3.6 s(-1) dissociation rate and 1.3 s(-1) transition frequency toward a more stable state. Cell binding to surfaces coated with lower fibronectin densities was concluded to be mediated by single molecular interactions, whereas multiple bonds were formed <1 s after contact with higher fibronectin surface densities. Cell treatment with microfilament inhibitors or a neutral antiintegrin antibody decreased bond number without changing aforementioned kinetic parameters whereas a function enhancing antibody increased the rate of bond formation and/or the lifetime of intermediate state. Receptor aggregation was induced by treating cells with neutral antiintegrin antibody and antiimmunoglobulin antibodies. A semiquantitative confocal microscopy study suggested that this treatment increased between 40% and 100% the average number of integrin receptors located in a volume of approximately 0.045 microm(3) surrounding each integrin. This aggregation induced up to 2.7-fold increase of the average number of bonds. Flow cytometric analysis of fluorescent ligand binding showed that THP-1 cells displayed low-affinity beta-1 integrins with a dissociation constant in the micromolar range. It is concluded that the initial step of cell adhesion was mediated by multiple incomplete bonds rather than a single equilibrium-state ligand receptor association. This interpretation accounts for the functional importance of integrin clustering.  相似文献   

18.
Brownian adhesive dynamics (BRAD) is a new method for simulating the attachment of viruses to cell surfaces. In BRAD, the motion of the virus is subject to stochastic bond formation and breakage, and thermal motion owing to collisions from the solvent. In the model, the virus is approximated as a rigid sphere and the cell surface is approximated as a rigid plane coated with receptors. In this article, we extend BRAD to allow for the mobility of receptors in the plane of the membrane, both before and after they are ligated by viral attachment proteins. Allowing the proteins to move within the membrane produced several differences in behavior from when the receptors are immobilized. First, the mean steady-state bond number is unaffected by changes in cellular receptor density because proteins are now free to diffuse into the contact area, and the extent of binding is dictated by the availability of viral attachment proteins. Second, the time required to reach steady-state binding increases as both the cellular receptor number decreases and the receptor mobility decreases. This is because receptor diffusion is a slower process than the binding kinetics of the proteins. Decreasing the rate of protein binding was found to decrease the fraction of viruses bound to steady state, but not the extent of binding for those viruses that were bound. Increasing the binding rate increased the fraction of viruses bound, until no further viruses could bind. Alterations in receptor binding kinetics had no discernable effect on the mean steady-state bond number between virus and cell, because interactions were of sufficiently high affinity that all available receptor-viral attachment proteins were destined to bind at steady state.  相似文献   

19.
The impingement of a submerged, liquid jet onto a cell-covered surface allows assessing cell attachment on surfaces in a straightforward and quantitative manner and in real time, yielding valuable information on cell adhesion. However, this approach is insufficiently characterized for reliable and routine use. In this work, we both model and measure the shear stress exerted by the jet on the impingement surface in the micrometer-domain, and subsequently correlate this to jet-induced cell detachment. The measured and numerically calculated shear stress data are in good agreement with each other, and with previously published values. Real-time monitoring of the cell detachment reveals the creation of a circular cell-free area upon jet impingement, with two successive detachment regimes: 1), a dynamic regime, during which the cell-free area grows as a function of both the maximum shear stress exerted by the jet and the jet diameter; followed by 2), a stationary regime, with no further evolution of the cell-free area. For the latter regime, which is relevant for cell adhesion strength assessment, a relationship between the jet Reynolds number, the cell-free area, and the cell adhesion strength is proposed. To illustrate the capability of the technique, the adhesion strength of HeLa cervical cancer cells is determined ((34 ± 14) N/m2). Real-time visualization of cell detachment in the dynamic regime shows that cells detach either cell-by-cell or by collectively (for which intact parts of the monolayer detach as cell sheets). This process is dictated by the cell monolayer density, with a typical threshold of (1.8 ± 0.2) × 109 cells/m2, above which the collective behavior is mostly observed. The jet impingement method presents great promises for the field of tissue engineering, as the influence of both the shear stress and the surface characteristics on cell adhesion can be systematically studied.  相似文献   

20.
Receptor-ligand couples in the cell-cell contact interface between a T cell and an antigen-presenting cell form distinct geometric patterns and undergo spatial rearrangement within the contact interface. Spatial segregation of the antigen and adhesion receptors occurs within seconds of contact, central aggregation of the antigen receptor then occurring over 1-5 min. This structure, called the immunological synapse, is becoming a paradigm for localized signaling. However, the mechanisms driving its formation, in particular spatial segregation, are currently not understood. With a reaction diffusion model incorporating thermodynamics, elasticity, and reaction kinetics, we examine the hypothesis that differing bond lengths (extracellular domain size) is the driving force behind molecular segregation. We derive two key conditions necessary for segregation: a thermodynamic criterion on the effective bond elasticity and a requirement for the seeding/nucleation of domains. Domains have a minimum length scale and will only spontaneously coalesce/aggregate if the contact area is small or the membrane relaxation distance large. Otherwise, differential attachment of receptors to the cytoskeleton is required for central aggregation. Our analysis indicates that differential bond lengths have a significant effect on synapse dynamics, i.e., there is a significant contribution to the free energy of the interaction, suggesting that segregation by differential bond length is important in cell-cell contact interfaces and the immunological synapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号