首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—Eight male monkeys (Macaca nemestrina) aged 6–9 months were divided into two groups and fed either an adequate protein diet (20% casein) or a protein deficient diet (2% casein). After 3- 5 months of receiving the low protein diet, the malnourished monkeys showed extensive fatty metamorphosis of the liver cells, distorted patterns of plasma and hepatic free amino acid pools, and other features consistent with the diagnosis of protein-calorie malnutrition. Examination of the cerebrum, cerebellum and brain stem in the malnourished animals revealed profound accumulation of 3-methylhistidine, histidine and homocarnosine in all three regions. For histidine, the cerebral, cerebellar and brain stem levels in the protein deficient animals increased by 145, 104 and 101 per cent over levels observed in corresponding regions of the brain in well-fed monkeys. Similarly, there were significant elevations in homocarnosine contents of the cerebrum (+ 99 per cent), cerebellum (+ 140 per cent) and brain stem (+ 146 per cent) in comparison to levels in control animals. In contrast, the levels of valine, serine and aspartic acid were markedly reduced in all three brain areas in the malnourished animals. Protein-calorie deficiency also produced reductions in the brain levels of taurine, glutamic acid, isoleucine, leucine and threonine which varied in magnitude in the three major regions of the brain examined. These biochemical alterations which may in part underlie some of the psychomotor changes often observed in protein-calorie malnutrition, were discussed not only in relation to the role of amino acids as precursors for the synthesis of neuroregulatory substances but also with due regard to the possibility that some of these ninhydrin-positive substances such as GABA, homocarnosine, glycine and the dicarboxylic amino acids may possess neuroexcitatory or inhibitory properties in various parts of the central nervous system.  相似文献   

2.
Abstract: Male infant nonhuman primates (M. nemes-trina) born in captivity were used in the study. They were divided into three groups. The first group of three animals was fed a 20% casein diet and the second group of six monkeys received a 2.0% casein diet. The third group of four monkeys received a 20% casein diet totally devoid of ascorbic acid for 3.5 weeks before the diet was supplemented with ascorbic acid (20 mg/kg diet). All the diets were given to the animals in two daily rations of 100 g/animal. The monkeys fed a 2% casein diet failed to grow, and after about 3.5 months showed variable degrees of edema, hypoalbuminemia, evidence of psychomotor disturbance, depressed plasma levels of many essential amino acids, and other features consistent with the diagnosis of protein-energy malnutrition. Examination of the brains revealed significant alterations in the levels of histidine (+ 172%) and homocarnosine (+ 146%) in comparison with the control well-fed monkeys. Associated with the increase in brain histidine was a marked elevation of brain histamine level. Protein deficiency also led to poor brain retention of ascorbic acid but not to the same degree observed in the ascorbic acid-deficient animals. The latter group of animals, after receiving their diet for about 8 months, demonstrated a modest elevation in the plasma levels of most amino acids in comparison with controls. Ascorbic acid deficiency elicited a significant reduction (p < 0.01) in brain level of histidine, with hardly any change in homocarnosine level. In addition, vitamin C deficiency produced elevation of brain histamine level comparable to findings in the protein-energy-deficient monkeys. The results suggested that protein deficiency raised brain histamine level mainly through increased availability of the precursor amino acid histidine, while defective degradation might account for the increased brain level of this amine in ascorbic acid-deficient monkeys. Histamine has been proposed to have a predominantly depressant action on relevant neurons, and has also been shown to participate with other neuro-transmitters in influencing the function of the pituitary gland by regulating release of the hypothalamic hormones into the portal vessels. The relevance of the findings of marked increases in brain histamine in experimental protein and ascorbic acid deficiencies to the behavioral and extensive endocrinological alterations seen in human malnutrition deserves some intensive investigation.  相似文献   

3.
—Male rats of the Sprague-Dawley strain (80–250 g body wt) were fed either an adequate protein diet (18% lactalbumin) or a protein-deficient diet (0.5% lactalbumin). After 5–8 weeks of receiving the low protein diet, some of the malnourished rats were rehabilitated with an adequate protein diet. The malnourished rats exhibited significant elevations in brain levels of histidine (+415%) and homocarnosine (+100%) in comparison to findings in the control animals of similar age. Associated with the elevated brain levels of histidine in malnutrition was a prominent increase in brain content of histamine (+ 150-+ 238%). The mean brain histamine levels (ng/g) in the control rats varied from 45.96 to 56.15 in several experiments. In the protein-deficient rats, values ranged from 115 to 190. Refeeding the malnourished rats with adequate protein diet elicited reversal of histidine and histamine levels to near normal values within 1 week. The increased brain content of histamine in malnutrition was attributed to enhanced rate of production resulting from increased availability of the precursor amino acid, a conclusion consistent with elevation also of the brain content of homocarnosine (γ-aminobutyryl-l -histidine) which is another major route of disposal of histidine in the brain. The relevance of these neurochemical alterations to the behavioural changes often associated with protein malnutrition, deserves some intensive examination.  相似文献   

4.
Male rats aged 45, 85, 145 and 270 days (daily body mass increments on an optimal diet containing casein were 6.73, 2.88, 0.53 and 0.31 g respectively) were fed 15 days ad libitum on a diet with a nutrient content physiological for their age, in which the protein source was milk casein (ratio of essential to nonessential amino acids E/N = 0.79, compensation coefficient K = 14) or wheat gluten (E/N = 0.30, K = -8). In the case of gluten, net protein utilization (NPU) fell markedly in rapidly growing animals aged 45 and 85 days (33 and 30% more than with casein), indicating that without essential amino acid compensation, gluten is inadequate for animals of this age, whose organism requires fully ensured proteosynthesis for growth and development. In adolescence and adulthood (145 and 270 days), the utilization of proteins is not dependent on their quality (the decrease in NPU 13 and 12%--is nonsignificant). That means that a smaller amount of essential amino acids, including the limiting amino acid in uncompensated protein, is sufficient for the maintenance and renewal of organs and tissues, i.e. for proteosynthesis. The activation of gluconeogenesis (phosphoenolpyruvate carboxykinase activity in the liver) after the intake of plant protein confirms the effect of proteins on catabolic processes.  相似文献   

5.
Weanling (23-day-old) rats were fed on either a low-protein diet (6% casein) or a diet containing an adequate amount of protein (18% casein) for 28 days. Hepatic cells from animals fed on the deficient diet were characterized by markedly lower concentrations of protein and RNA in all cellular fractions as compared with cells from control rats. The bound rRNA fraction was decreased to the greatest degree, whereas the free ribosomal concentrations were only slightly less than in control animals. A good correlation was observed between the rate of hepatic protein synthesis in vivo and the cellular protein content of the liver. Rates of protein synthesis both in vivo and in vitro were directly correlated with the hepatic concentration of individual free amino acids that are essential for protein synthesis. The decreased protein-synthetic ability of the ribosomes from the liver of protein-deprived rats was related to a decrease in the number of active ribosomes and heavy polyribosomes. The lower ribosomal content of the hepatocytes was correlated with the decreased concentration of essential free amino acids. In the protein-deprived rats, the rate of accumulation of newly synthesized cytoplasmic rRNA was markedly decreased compared with control animals. From these results it was concluded that amino acids regulate protein synthesis (1) by affecting the number of ribosomes that actively synthesize protein and (2) by inhibiting the rate of synthesis of new ribosomes. Both of these processes may involve the synthesis of proteins with a rapid rate of turnover.  相似文献   

6.
Newly-weaned male guinea pigs were fed an ascorbic acid-deficient diet ad libitum and compared with control animals pair-fed an adequate diet for a similar duration. The ascorbic acid-deficient animals demonstrated prominent elevations in serum concentrations of tyrosine (+427%), phenylalanine (+36%) and arginine (+21 %) with concomitant depressions in levels of glycine (–57 %), histidine (–39 %), ethanolamine (–38%) and glutamic acid (–22 %). With few exceptions, the alterations in the liver amino acid profiles were in the same directions as those observed in the serum. The scorbutic brains showed 28–36 per cent of the retention of total ascorbic acid found in control animals and were characterized by marked elevation (+83%) in tyrosine content, hardly any alteration in phenylalanine (–9%), and depressed levels of histidine (–33 %), arginine (–25%), phosphoserine (–50%) and GABA (–12%). The implications of such abnormal changes in free amino acid patterns were evaluated in the light of the role of some of these amino acids as precursors for the synthesis of neuroregulatory substances. No difference was observed in the brain polysomal profiles as isolated from the two groups of animals. Incubation of polysomes from ascorbic acid-deficient brains with autologous pH 5 enzyme derived from cell sap not passed through Sephadex G-25 revealed low uptake of [14C]phenylalanine in comparison to that for a similar system from control animals. Use of pH 5 enzymes prepared from Sephadex-treated and dialysed cell saps eliminated the difference in specific activities of the two groups of ribosomes, an observation suggesting that ascorbic acid deficiency either intensified the activity of the inhibitory components or reduced the low molecular weight stimulatory substances present under normal conditions in the brain postmicrosomal fraction.  相似文献   

7.
Summary The objective of these experiments was to examine short- and long-term (7 d) effects of arginine-deficient diets on free amino acid concentrations in hindlimb muscle of rats. In rats fed the control diet containing arginine (+Arg), muscle alanine and methionine concentrations were higher 1 and 2h after feeding compared to food-deprived rats, whereas branched-chain amino acids, arginine and asparagine concentrations were lower postprandially. In Experiment 1, rats were fed an arginine-deficient (–Arg) diet with glutamate (+Glu) substituted for arginine; alanine (+Ala), ornithine (+Orn) or citrulline (+Cit) were substituted for arginine in Experiment 2. In Experiment 1, arginine concentrations decreased in blood but not in muscle. This contrasts with rats fed –Arg/+Ala or –Arg/+Orn diets which had muscle arginine concentrations less than half the concentrations in controls or in rats fed the –Arg/+Cit diet. Muscle essential amino acids in Experiment 2 did not differ by diet, but muscle branched-chain amino acids were elevated relative to controls in the rats fed –Arg/+Ala or –Arg/+Orn diets; however, rats fed the –Arg/+Cit diet had levels similar to the controls. Also, muscle branched-chain amino acids were correlated with glutamine concentrations in both blood and muscle. The measurements in the post-meal period suggest that muscle amino acid concentrations may more closely reflect dietary amino acid patterns than do blood amino concentrations.Abbreviations BCAA branched-chain amino acids - BCKADH branched-chain ketoacid dehydrogenase - EAA essential amino acids - LNAA large neutral amino acids - NEAA nonessential amino acids - PDV portal-drained viscera - SELSM standard error of least squares means - SSA 5-sulfosalicylic acid - TAA total amino acids Mention of a trade name, proprietary product or specific equipment does not constitute a guarantee by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

8.
Abstract— From the third day of pregnancy rats were fed a diet containing either 7% casein (experimental) or 24% casein (control). During lactation the control dams were fed the 24% casein diet and the experimental dams a 12% casein diet. From 25 to 50 days of age the experimental and control progeny were fed diets containing 7 and 24% casein, respectively. Between 50 and 120 days both groups were fed a diet containing 24% crude protein. Several indications of brain maturation in two brain areas were examined at various stages of development. In addition to retardation of brain growth, protein restriction led to myelin of an immature composition at 25 and 50 days of age. The immature composition was indicated by a low plasmalogen content at 25 days and by a high phospholipid and low galactolipid and plasmalogen contents at 50 days of age. The activity of the myelin marker enzyme, 2′3′-cyclic nucleotide 3′-phosphohydrolase (CNP), was significantly lower in the brains (excluding the cerebella) of malnourished rats at 21, 30 and 50 days. At all ages except at 50 days the activity of CNP in the cerebellum was higher in protein-deprived animals than in controls. The activity of glutamic acid decarboxylase (GAD) in the brains (excluding the cerebella) of protein-deprived rats was significantly lower at 21, 25 and 30 days but not at 50 and 65 days of age. As indicated by brain/body ratios, myelin composition and GAD activity, nutritional rehabilitation led to almost complete recovery of brain maturity, but the activity of CNP remained lower in the experimental group after rehabilitation.  相似文献   

9.
The contents of glycogen, lipid, urea and amino acids, and some enzyme activities in plasma, liver muscle and urine were determined with rats fed 10 to 12 g of 100 g body weight per day of the 10% casein diet (control) and 10% casein diets containing 7% glycine with or without 1.4% l-arginine HC1 and l-methionine for 7 days.

Nine hours after the final feeding, the amount of liver glycogen was high in the order of rats fed 10% casein diet containing 7% glycine, 10% casein diet containing 7% glycine with l-arginine and l-methionine, and the control. The amount of muscle glycogen was decreased only in those fed the control diet. The amount of liver lipid was increased by the addition of l-arginine and l-methionine to the excess glycine diet. Plasma and urinary urea was increased in animals given the excess glycine diets with or without both amino acids. In plasma liver, and muscle of animals given either of both the excess glycine diets 3 and 9 hr after the feeding, in general, glycine and serine were increased, and threonine and alanine were decreased as compared with those of rats given the control diet. However, the increase of glycine in plasma, liver and muscle detected at 9 hr after feeding the excess glycine diet was slightly prevented by the supplementation of both amino acids to the excess glycine diet. The activities of liver glycine oxidase and ornithine δ-aminotransferase of rats given the excess glycine diet with both amino acids were higher than those of other dietary groups. Liver serine dehydratase and glutamate-oxalacetate transaminase activities were high in the order of the animals fed the control, the excess glycine diet and the excess glycine diet containing both amino acids. Glutamate-pyruvate transaminase activity in the liver of rats fed the excess glycine diets with or without both amino acids were markedly higher than that of those fed the control. The activities of phosphopyruvate carboxylase and aconitase in the liver of animals given the excess glycine diet were higher than those of other dietary groups. Liver pyruvate kinase and glutamate dehydrogenase activities were similar among those dietary groups.  相似文献   

10.
Abstract— Studies were carried out to identify the minimum levels of protein (casein) needed in the diet in order to prevent or reverse the deficits in brain enzymes previously found with protein deficiency. Groups of weanling albino rats were fed diets containing variable amounts of protein (5, 8, 10, 15 or 20 per cent in experiment I, and 5, 6, 7, 8 or 20 per cent in experiment II) for 5 or 10 weeks. Deficits in brain wt and brain glutamate dehydrogenase and decarboxylase were found to be prevented by a diet containing 8 per cent or more of protein, although for optimum growth 15 per cent protein in the diet was found to be necessary. Groups of rats were fed a 5 or 20% protein diet for 10 weeks after which the 5% protein animals were either continued on the diet for another 10 weeks or changed to one containing 8, 10, 15 or 20% protein. The brain enzyme deficits found with the 5% protein diet were found to be fully reversed by feeding a 10% protein diet during rehabilitation.  相似文献   

11.
A diet containing adequate amounts of protein rapidly suppresses myofibrillar protein degradation in rats and mice. This study determined whether dietary amino acids inhibit postprandial protein degradation in rat skeletal muscle. When rats fed on a 20% casein diet for 1 h after 18 h starvation, the rate of myofibrillar protein degradation measured by N(tau)-methylhistidine release from the isolated extensor digitorum longus muscle was significantly (p < 0.05) decreased at 4 h after refeeding. A diet containing an amino acid mixture which is the same composition as casein also reduced myofibrillar protein degradation at 4 h after refeeding (p < 0.05). An essential amino acid mixture (15.1%, corresponding to casein composition) and a leucine (2.9%) diets reduced the rate of myofibrillar protein degradation after refeeding (p < 0.05), whereas a protein free diet did not. Administration of leucine alone (0.135 g/100 g body weight) by a feeding tube induced a decrease in the rate of myofibrillar protein degradation at 2 h after administration (p < 0.05), whereas the serum insulin concentration was constant after leucine administration. These results suggested that leucine is one of regulating factors of myofibrillar protein degradation after refeeding of a protein diet.  相似文献   

12.
The activities of all urea cycle enzymes (carbamyl phosphate synthetase, ornithine trans- carbamylase, argininosuccinate synthetase, argininosuccinase and arginase) have been determined in the liver of rats forcibly fed diets lacking in individual essential amino acids from amino acid mixture simulating to a casein. In general, these enzyme activities (units/g liver and total units/body wt) in rats fed the single essential amino acid-devoid diet decreased as compared with those activities in animals fed complete diet, but their decreases were not as large as those observed in group of all amino acid-devoid diet. The degree of decrease in these enzyme activities differed somewhat from each other in individual enzymes and each essential amino acie-devoid groups. In contrast, in rats fed the arginine devoid diet, the activities (total units/body wt) of all enzymes expect the case of arginase increased more than those in the group of complete diet.  相似文献   

13.
Weanling (23-day-old) rats were fed either on an amino acid-deficient diet (6% of casein, which in effect represents an `amino acid-deficient' diet) or on a diet containing an adequate amount of protein (18% of casein) for 28 days. The hepatic cells from the animals fed on the low-protein diet were characterized by low amino acid content, almost complete inhibition of cell proliferation and a marked decrease in cell volume, protein content and concentration of cytoplasmic RNA compared with cells from control rats. The lower concentration of cytoplasmic RNA was correlated with a decreased ribosomal-RNA content, of which a larger proportion was in the form of free ribosomes. The protein-synthetic competence and messenger-RNA content of isolated ribosomes from liver cells of protein-deprived animals were 40–50% of those noted in controls. At 1hr. after an injection of radioactive uridine, the specific radioactivity of liver total RNA was greater in the group fed on the low-protein diet, but the amount of label that was associated with cytoplasmic RNA or ribosomes was significantly less than that noted in control animals. From these data it was concluded that dietary amino acids regulate hepatic protein synthesis (1) by affecting the ability of polyribosomes to synthesize protein and (2) by influencing the concentration of cytoplasmic ribosomes. It is also tentatively hypothesized that the former process may be directly related to the concentration of cellular free amino acids, whereas the latter could be correlated with the ability of newly synthesized ribosomal sub-units to leave the nucleus.  相似文献   

14.
The effect of the supplementation of sulfur amino acids to a low casein or soy protein isolate diet on tissue lipid metabolism was investigated. Supplementation of methionine to a 8% casein diet produced a fatty liver in rats, however, supplementation of methionine to a 8.8% soy protein diet (corresponding to a 8% casein diet as to sulfur amino acids content) did not produce a fatty liver. At the level of 8% or less of soy protein in the diet, the accumulation of liver lipids and serum triglyceride was observed. An amino acid mixture simulating the composition of soy protein isolate caused significant accumulation of liver lipids, but serum triglyceride was not changed. Serum cholesterol in rats fed the soy protein diet was lower than that in rats fed the casein diet, but on feeding the amino acid mixtures simulating these protein diets, there was no difference between the two groups. The small differences between soy protein isolate and casein as to lipid metabolism might be due to the small differences in the contents of sulfur amino acids or the specific nature of the soy protein or casein. The supplemental effect of methionine and cystine was also studied. About 60% of total sulfur amino acids could be substituted by cystine for maximum growth.  相似文献   

15.
The influence of protein quality on the growth-depressing effect of excessive amount of 12 individual essential and semiessential amino acids was examined. Growing rats were fed for 3 weeks diets containing either 10.5% egg albumin or 11.6% wheat gluten (equivalent to the protein content of a 10% casein diet) supplemented with 5% of each of the l-amino acids. In general, the pattern of growth depression produced by the addition of excess amino acids to the egg albumin or the wheat gluten diet was similar to that of the case of casein diet obtained previously under the same experimental conditions. However, the extent of these effects was dependent not only upon the kind of amino acid supplemented with but also upon the source of protein used, and the depressing effect of each of excess amino acids added to the wheat gluten diet was usually severer than those added to casein and egg albumin diets. No evidence was noted of any striking changes in the liver protein and nucleic acid concentrations by either diets, but total liver protein, RNA and DNA contents were decreased in some amino acid groups of the egg albumin diet and in all amino acid groups of the wheat gluten diet except the lysine addition. The free amino acid level in plasma generally showed extreme elevation for the amino acid supplemented in excess in the diet, and in most cases the extent of the elevation was correlated with the growth depression.  相似文献   

16.
Male Sprague-Dawley rats (70-80 g) were fed ad libitum a standard control diet (22% casein, 5% lard), or a high lipid diet (30% lard) or a low protein diet (6% casein) or a standard diet containing 50 ppm phenoclor DP6. After 6 weeks on these diets, the cytochrome P-450 microsomal content, the benzo[a]pyrene monooxygenase (BaP-MO) and the epoxide hydrolase (EH) were assayed. The formation of mutagenic B(a)P metabolites which covalently bind with DNA was compared. The activity of BaP-MO and of EH were increased by the high lipid diet (+27% and 106% respectively) and by the phenoclor DP6 treatment (+63% and 400% respectively), compared to the standard diet. In animals fed a low protein diet the BaP-MO was decreased (-34%) and the EH activity was strongly increased (+262%) compared to those fed a standard diet. All experimental diets increased both the activation of BaP to metabolites able to bind DNA and the mutagenicity of BaP versus TA98 Salmonella typhimurium strain. It was concluded that dietary imbalances can be considered as a factor in chemical carcinogenesis.  相似文献   

17.
Summary Mice were starved for 2 days and then fed on either a protein-free diet or a 25 per cent casein diet for 7 days and then sacrificed. The former group, in contrast to the latter, decreased in weight during these 7 days and showed significantly lower weight absolute and relative (g/100 g initial body weight) of kidneys, liver and spleen. In the animals deprived of protein, the ratio between total liver nucleolar volume per nucleus and the nuclear volume was larger, than in the casein fed animals. The results suggest that the liver nucleolar apparatus reacts to a protein-free diet in principally the same way in mice as in rats.The investigation was supported by a grant from the Swedish Medical Research Foundation.  相似文献   

18.
Abstract— The incorporation in vivo of [3H]leucine into protein from subcellular fractions was determined in rats chronically ingesting 15 per cent ethanol for 8 months. Mitochondrial, microsomal and cell sap fractions from cerebellum, cortex cerebri and liver were investigated. The results showed a minor over-all depression of protein synthesis in cerebellum and cortex cerebri and a slight stimulation of the incorporation of leucine into protein from liver subcellular fractions. If the animals were abstinent 24 h before injection of the isotope, the incorporation of labelled amino acids into protein was markedly increased in cerebellum and cerebral cortex but not in liver.  相似文献   

19.
The effects of the addition of individual amino acids on methionine-induced hypercholesterolemia (experiment 1), and the interacting effects of dietary protein level and sulfur-containing amino acids and glycine on plasma cholesterol concentration (experiment 2) were studied in growing rats fed on a high cholesterol diet. In experiment 1, rats were fed on a 25% casein-0.75% methionine (25CM) diet containing 2.5% of individual amino acids for 2 weeks. Methionine-induced hypercholesterolemia was prevented by the concurrent addition of glycine or serine, but the other amino acids tested (alanine, threonine, leucine, phenylalanine, lysine, arginine, and glutamic acid) had no effect. Histidine rather enhanced the hypercholesterolemia. In experiment 2, rats were fed on a 10%, 25%, or 50% casein diet containing 0.75% methionine, 0.60% cystine, 0.63% taurine, 2.5% glycine, or 0.75% methionine +2.5% glycine for 3 weeks. Dietary addition of 0.75% methionine increased the plasma cholesterol concentration for the 25% and 50% casein diets, but it decreased the plasma cholesterol for the 10% casein diet. When the addition level of methionine was doubled in the 10% casein diet, the plasma cholesterol concentration was significantly higher for the 1.5% methionine-added diet than for the 0.75% methionine-added diet. Cystine and taurine lowered plasma cholesterol for all dietary casein levels. Methionine-induced hypercholesterolemia with 25% and 50% casein diets was prevented by the glycine supplementation. These data suggest that sulfur-containing amino acids and glycine are important in plasma cholesterol regulation.  相似文献   

20.
Summary. The purpose of the present study was to determine whether the regulation of brain protein synthesis was mediated through changes in the plasma concentrations of insulin and growth hormone (GH), and whether the concentrations of amino acids in the brain and plasma regulate the brain protein synthesis when the quantity and quality of dietary protein is manipulated. Two experiments were done on three groups of aged rats given diets containing 20% casein, 5% casein or 0% casein (Experiment 1), and 20% casein, 20% gluten, or 20% gelatin (Experiment 2) for 1 d (only one 5-h period) after all rats were fed the 20% casein diet for 10 d (only 5-h feeding per day). The aggregation of brain ribosomes, the concentration in plasma GH, and the branched chain amino acids in the plasma and cerebral cortex declined with a decrease of quantity and quality of dietary protein. The concentration of plasma insulin did not differ among groups. The results suggest that the ingestion of a higher quantity and quality of dietary protein increases the concentrations of GH and several amino acids in aged rats, and that the concentrations of GH and amino acids are at least partly related to the mechanism by which the dietary protein affects brain protein synthesis in aged rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号