首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The effects of turbulence velocity on Egeria densa Planchon was studied for 12 weeks using mechanically oscillating grid-generated turbulence without mean flow. The root-mean-square of the turbulence velocity fluctuations (u′) ranged from 1.62 ± 0.44 to 2.86 ± 0.8 cm s−1 (high turbulence), 1.36 ± 0.2 to 1.86 ± 0.78 cm s−1 (medium turbulence) and 0.67 ± 0.12 to 0.81 ± 0.16 cm s−1 (low turbulence). The control was subjected to gentle manual mixing once a day. Shoot elongation was significantly reduced with increasing turbulence intensity, and the endogenous indole acetic acid (IAA) concentration was significantly decreased with increasing turbulence intensity and exposure time. The plants exposed to high turbulence showed a 64.6% decrease in endogenous IAA concentration compared to the control, while it was decreased only 26.9% in plants exposed to low turbulence. IAA and cytokinin catabolism was increased, and there was an increase in the hydrogen peroxide concentration of the tissues, which triggered peroxidase activity. The total chlorophyll and chlorophyll a content decreased with the time of exposure. Although the flow turbulence negatively affected plant growth and metabolism, all of the plants survived for the experimental period.  相似文献   

2.
3.
We studied the effect of food concentration on the feeding and growth rates of different larval developmental stages of the spionid polychaete Polydora ciliata. We estimated larval feeding rates as a function of food abundance by incubation experiments with two different preys, presented separately, the cryptophyte Rhodomonas salina (ESD = 9.7 µm) and the diatom T.weissflogii (ESD = 12.9 µm). Additionally, we determined larval growth rates and gross growth efficiencies (GGE) as a function of R. salina concentration.P.ciliata larvae exhibited a type II functional response. Clearance rates decreased continuously with increasing food concentration, and ingestion rates increased up to a food saturation concentration above which ingestion remained fairly constant. The food concentration at which feeding became saturated varied depending on the food type, from ca. 2 µg C mL− 1 when feeding on T. weissflogii to ca. 5 µg C mL− 1 when feeding on R. salina. The maximum carbon specific ingestion rates were very similar for both prey types and decreased with increasing larval size/age, from 0.67 d− 1 for early larvae to 0.45 d− 1 for late stage larvae. Growth rates as a function of food concentration (R. salina) followed a saturation curve; the maximum specific growth rate decreased slightly during larval development from 0.22 to 0.17 d− 1. Maximum growth rates were reached at food concentrations ranging from 2.5 to 1.4 µg C mL− 1 depending on larval size. The GGE, estimated as the slope of the regression equations relating specific growth rates versus specific ingestion rates, were 0.29 and 0.16 for early and intermediate larvae, respectively. The GGE, calculated specifically for each food level, decreased as the food concentration increased, from 0.53 to 0.33 for early larvae and from 0.27 to 0.20 for intermediate larval stages.From an ecological perspective, we suggest that there is a trade-off between larval feeding/growth kinetics and larval dispersal. Natural selection may favor that some meroplanktonic larvae, such as P.ciliata, present low filtration efficiency and low growth rates despite inhabiting environments with high food availability. This larval performance allows a planktonic development sufficiently long to ensure efficient larval dispersion.  相似文献   

4.
Most studies on behavioural contributions to dispersal and recruitment during early life history stages of fishes have focused on coral reef species. For cold ocean environments, high variation in seasonal temperature and development times suggest that parallel studies on active behaviour are needed for cold-water species. Thus, we examined the critical swimming speed (Ucrit) of marine fish larvae from 2 contrasting species: Gadus morhua (Atlantic cod) and Myoxocephalus scorpius (shorthorn sculpin), a pelagic and bottom spawner respectively. Within-species comparisons showed that sculpin reared at 6 °C had lower initial Ucrit values, but a faster Ucrit increase through development compared with 3 °C conspecifics, ultimately resulting in faster critical swimming speeds at metamorphosis (10.5 vs. 9.1 cm·s− 1). In contrast, although cod larvae reared at 10 °C were faster swimmers at first feeding than 6 °C fish, temperature differences were absent after the first week. These results show that temperature influences the trajectory of larval critical swimming speed development, but that the relationship is species-specific. Although 6 °C sculpin and cod of similar length had equivalent Ucrit values, the smaller size of cod at hatch (5.3 vs. 10.8 mm for sculpin) resulted in much lower age-specific Ucrit values for cod. These data have significant implications for how swimming activity of the two species might affect dispersal, particularly in the first few weeks post-hatch. Overall, our data suggest that temperature during larval development influences the swimming capacity of cold-water marine fishes, and has important ramifications for biophysical models of dispersal.  相似文献   

5.
The main objectives of this study were: 1) to determine the influence of water currents on the suspension feeding rate of cockles (Cerastoderma edule); 2) to quantify the interaction between cockle feeding and flow on algal cell depletion in the overlying water column, and 3) to measure the effect of flow on resuspension of their pseudofaeces and faeces. Flume experiments demonstrated that suspension feeding rate (i.e. clearance rate) of C. edule was not significantly affected by increasing current speed, at least between 5 and 35 cm s− 1. Measurement of vertical profiles in algal cell concentrations within the water column showed a marked depletion above the bed, and the size of this was inversely related to currents' speeds below 5 cm s− 1. At 2 cm s− 1 the algal cell depletion was maximum immediately above the bed. However, below currents of 1 cm s− 1 the maximum depletion was at 10 cm above the bed. This was a result of the exhalent jet of the cockle pumping filtered water (i.e. algal free) vertically into the water column and above the intake level of the inhalant siphon. Such stratification of the water column would appear to be beneficial to the cockle because it reduces the degree of re-filtration of algal cell depleted water at times of low flow, when there is poor mixing and thus poor replenishment of phytoplankton to the boundary layer. Critical erosion thresholds for cockle biodeposits, produced from a diet of silt and unicellular algae, were recorded at current velocities of 15 and 25 cm s− 1, or shear velocities of 0.6 and 1.0 cm s− 1, for pseudofaeces and faeces respectively.  相似文献   

6.
The effects of ontogeny (larval size), light and turbulence on the attack rate and swimming activity (proportion of time swimming and duration of swimming bout) of herring larvae (15-28 mm TL) have been investigated. Emphasis was put on the experimental design in order to create a set-up where the turbulence intensity distribution could be accurately measured as well as controlled in the entire experimental tank.Both larval size (ontogeny) and light had a significant positive effect on prey attack rate. Likewise, an intermediate increase in turbulence had a positive effect on prey attack rate, but this effect was dependent of light intensity and larval size.At low light (1.5 μE m2 s−1) intermediate turbulence increased the prey attack rate significantly for larger larvae (26 and 28 mm), while at high light (18 μE m2 s−1) intermediate turbulence had only a significant positive effect on the attack rate of smaller larvae 20 and 23 mm.In general, our data show a dome-shaped response of turbulence on attack rate and a U-shaped response of turbulence on swimming activity.For herring larvae >20 mm, the maximum (attack rate) and minimum (swimming activity) response of turbulence were found at intermediate turbulence intensities (energy dissipation rates between 7∗10−8 and 1∗10−6 W/kg). The highest turbulence level tested (8∗10−6 W/kg) showed only negative effects, as attack rates where at the lowest and swimming activity at the highest.Swimming activity increased with larval size or light, and decreased at intermediate turbulence. Compared to turbulent intensities under natural conditions this implies that larger herring larvae at 10 m depth have to be exposed to wind speeds of more than 17 m/s before negative effects on attack rate and swimming activity occurs.  相似文献   

7.
The energetics and behavior of the parapodial-swimming Aplysia brasiliana were investigated in order to compare net cost of transport (COTnet) between swimming and crawling, and to compare transport costs with other swimmers. Oxygen consumption (VO2) increased with increasing animal mass for resting, crawling, and swimming animals. Slopes of the regressions of log VO2 on log mass were 0.90, 0.91, and 0.89 for resting, crawling, and swimming, respectively. The regression for resting VO2 on mass was significantly lower than regressions of crawling and swimming on mass, which fell into a statistically homogenous subgroup. During 4-h swimming bouts, parapodial beat frequency dropped by less than 10% of starting values after 2 h and then stabilized for the remainder of the trial, whereas velocity steadily decreased to about 70% of starting values over the 4-h period. Initial beat frequency (at the start of a swimming bout) was negatively related to body mass, varying from 1.1 beat s− 1 for a 34 g individual to 0.7 beats s− 1 for a 500 g individual. Final beat frequency (at the end of a swimming bout) was also negatively related to body mass, but had a significantly lower intercept than initial beat frequency. Neither initial swimming velocity nor final swimming velocity was related to mass, but final velocity was significantly lower than initial velocity. A 250 g A. brasiliana swam at 345 m h− 1 and crawled at 7 m h− 1. Swimming COTnet (0.1 ml O2 kg− 1 m− 1) for a 250 g A. brasiliana was 50 times less than crawling COTnet (5.3 ml O2 kg− 1 m− 1). While the crawling COTnet for A. brasiliana fell within the range of other marine gastropods, swimming COTnet was less than that of swimming crustaceans, and much less than another gastropod, Melibe leonina, that uses lateral bending to swim.  相似文献   

8.
Direct observations on foraging behaviour of scavenging lysianassid amphipods have been limited, and no previous study has examined the effect of food odour quantitatively on the behaviour. The present study recorded the swimming behaviour of the amphipod Scopelocheirus onagawae using videographic techniques before and after the introduction of food odour (amino acid solution). S. onagawae showed consistent nocturnal activity swimming at a high speed (16.8 cm s− 1) with an approximately straight trajectory in various directions before and after the introduction of odour in which the amino acid concentration was below the behavioural threshold concentration for this species (1.0 × 10− 7 mol l− 1). High speed multidirectional linear swimming is thought to be advantageous for these amphipods, enabling them to survey across a broad area. After the first encounter with the odour plume above the behavioural threshold concentration, the amphipods slowed down their swimming speed (ca. 9.7 cm s− 1) with a short time-lag (ca. 0.42 s), and thereafter they frequently turned so that they remained within the odour plume. Once moved out of the odour plume, the amphipods quickly returned to the plume with a shorter response time (ca. 0.1 s) than that in the first detection of the odour plume, suggesting that the sensory adaptation is involved with the tracking of the odour. Our study demonstrated that chemoreception is a major factor causing behavioural change in scavenging amphipods at the edge of the odour plume.  相似文献   

9.
We examined the maximum sustainable swimming speed of late-stage larvae of nine species of tropical reef fishes from around Lizard Island, Great Barrier Reef, Australia. Larvae were captured in light traps and were swum in flumes at different experimental swimming speeds (of 5 cm s−1 intervals) continuously for 24 h. Logistic regression was used to determine the speed at which 90% of larvae were able to maintain swimming, and this was used to indicate the maximum sustainable swimming speed for each species. Maximum sustainable swimming speeds varied among the species examined, with the lethrinid maintaining the fastest sustainable swimming speed (24 cm s−1), followed by the Pomacentridae (10-20 cm s−1) and the Apogonidae (8-12 cm s−1). U-crit (maximum speed) explained 64% of the variation in sustainable speed among species, whereas total length only explained 33% of the variation in sustained swimming. A regression fitted across species suggests that 50% U-crit is a good approximation of the speed able to be maintained by these larvae for 24 h. A model based on a cubic relationship between sustained swimming time and speed was found to be more successful than either length or U-crit as a method of estimating sustainable swimming speed for most of the species examined. Overall, we found that swimming speed is an important factor when considering the potential for active swimming behaviour to influence dispersal patterns, recruitment success and levels of self-recruitment in reef fish larvae and needs to be carefully considered in models of larval dispersal.  相似文献   

10.
External chemical signals used by scleractinian corals to recognize suitable substrata for larval settlement and metamorphosis were identified from crustose coralline red algae (CCA). A fragment of coral rubble with CCA induced larval metamorphosis of the scleractinian coral Pseudosiderastrea tayamai. A natural inducer and compounds that enhanced its effect in larval metamorphosis were isolated from the methanol extracts of coral rubble with CCA. A bromotyrosine derivative, 11-deoxyfistularin-3 (10− 7 M) isolated from the CCA, induced the metamorphosis of P. tayamai larvae (27.5 ± 24.0%). In the presence of fucoxanthinol (10− 9 M) and fucoxanthin (10− 9 M), the percentage of metamorphosis induced by the bromotyrosine derivative was further enhanced to 87.8 ± 13.0 and 88.4 ± 17.8%, respectively. Both carotenoids are also found in the coral rubble with CCA. These results suggest that bromotyrosine derivative and carotenoids have a synergistic effect in the metamorphosis of P. tayamai larvae. The synergistic effect provides a higher selectivity for recruitment than a single-component natural inducer for recognizing suitable substrata for larval metamorphosis. Thus, the effect might offer a survival advantage for benthic marine invertebrates.  相似文献   

11.
Most fish populations are declining worldwide and their management would benefit from a better estimation of recruitment. In glass eels, field studies suggest that estuarine migratory glass eels are sensitive enough to light to change their vertical location according to factors such as water turbidity and/or moon brightness. The response of glass eel (Anguilla anguilla L.) to light was tested in the laboratory using boxes where fish could choose between a lit and an unlit side. Responses were quantified as the proportion of glass eels remaining in the unlit chamber. Decreasing light levels were used and tested on different “age” glass eels (“age” in days since capture). In addition, measures of light at different depths of the water column were carried out in the Adour estuary (43°30′ N, 1°30′ W). The glass eel light avoidance level was lower in non-pigmented glass eel (less than 10 − 10 W cm − 2), than in pigmented ones (10 −9-10 − 8 W cm − 2). These results and field data on the measurement of light energy in the water column of Adour estuary are compared with previously published data on the estuarine migration of glass eel.  相似文献   

12.
We present novel microfluidic experiments to quantify population-scale transport parameters (chemotactic sensitivity χ0 and random motility μ) of a population of bacteria. Previously, transport parameters have been derived theoretically from single-cell swimming behavior using probabilistic models, yet the mechanistic foundations of this upscaling process have not been verified experimentally. We designed a microfluidic capillary assay to generate and accurately measure gradients of chemoattractant (α-methylaspartate) while simultaneously capturing the swimming trajectories of individual Escherichia coli bacteria using videomicroscopy and cell tracking. By measuring swimming speed and bias in the swimming direction of single cells for a range of chemoattractant concentrations and concentration gradients, we directly computed the chemotactic velocity VC and the associated chemotactic sensitivity χ0. We then show how μ can also be readily determined using microfluidics but that a population-scale microfluidic approach is experimentally more convenient than a single-cell analysis in this case. Measured values of both χ0 [(12.4 ± 2.0) × 10−4 cm2 s−1] and μ [(3.3 ± 0.8) × 10−6 cm2 s−1] are comparable to literature results. This microscale approach to bacterial chemotaxis lends experimental support to theoretical derivations of population-scale transport parameters from single-cell behavior. Furthermore, this study shows that microfluidic platforms can go beyond traditional chemotaxis assays and enable the quantification of bacterial transport parameters.  相似文献   

13.
The productivity of a vertical outdoor photobioreactor was quantitatively assessed and compared to a horizontal reactor. Daily light cycles in southern Spain were simulated and applied to grow the microalgae Chlorella sorokiniana in a flat panel photobioreactor.The maximal irradiance around noon differs from 400 μmol photons m−2 s−1 in the vertical position to 1800 μmol photons m−2 s−1 in the horizontal position. The highest volumetric productivity was achieved in the simulated horizontal position, 4 g kg culture−1 d−1. The highest photosynthetic efficiency was found for the vertical simulation, 1.3 g of biomass produced per mol of PAR photons supplied, which compares favorably to the horizontal position (0.85 g mol−1) and to the theoretical maximal yield (1.8 g mol−1). These results prove that productivity per unit of ground area could be greatly enhanced by placing the photobioreactors vertically.  相似文献   

14.
The American horseshoe crab, Limulus polyphemus (Linnaeus), typically inhabits estuaries and coastal areas with pronounced semi-diurnal and diurnal tides that are used to synchronize the timing of spawning, larval hatching, and emergence. Horseshoe crabs spawn in the intertidal zone of sandy beaches and larval emergence occurs when the larvae exit the sediments and enter the plankton. However, L. polyphemus populations also occur in areas that lack significant tidal changes and associated synchronization cues. Endogenous activity rhythms that match predictable environmental cycles may enable larval horseshoe crabs to time swimming activity to prevent stranding on the beach. To determine if L. polyphemus larvae possess a circatidal rhythm in vertical swimming, larvae collected from beach nests and the plankton were placed under constant conditions and their activity monitored for 72 h. Time-series analyses of the activity records revealed a circatidal rhythm with a free-running period of ≈ 12.5 h. Maximum swimming activity consistently occurred during the time of expected falling tides, which may serve to reduce the chance of larvae being stranded on the beach and aid in seaward transport by ebb currents (i.e., ebb-tide transport). To determine if agitation serves as the entrainment cue, larvae were shaken on a 12.4 h cycle to simulate conditions during high tide in areas with semi-diurnal tides. When placed under constant conditions, larval swimming increased near the expected times of agitation. Thus, endogenous rhythms of swimming activity of L. polyphemus larvae in both tidal and nontidal systems may help synchronize swimming activity with periods of high water and inundation.  相似文献   

15.
We report an integrated platelet translocation analysis system that measures complex dynamic platelet-protein surface interactions in microliter volumes of unmodified anticoagulated whole blood under controlled fluid shear conditions. The integrated system combines customized platelet-tracking image analysis with a custom-designed microfluidic parallel plate flow chamber and defined von Willebrand factor surfaces to assess platelet trajectories. Using a position-based probability function that accounts for image noise and preference for downstream movement, outputs include instantaneous and mean platelet velocities, periods of motion and stasis, and bond dissociation kinetics. Whole blood flow data from healthy donors at an arterial shear rate (1500 s−1) show mean platelet velocities from 8.9 ± 1.0 to 12 ± 4 μm s−1. Platelets in blood treated with the antiplatelet agent c7E-Fab fragment spend more than twice as much time in motion as platelets from untreated control blood; the bond dissociation rate constant (koff) increases 1.3-fold, whereas mean translocation velocities do not differ. Blood from healthy unmedicated donors was used to assess flow assay reproducibility, donor variability, and the effects of antiplatelet treatment. This integrated system enables reliable, rapid populational quantification of platelet translocation under pathophysiological vascular fluid shear using as little as 150 μl of blood.  相似文献   

16.
The Lesser Mulberry Pyralid, Glyphodes pyloalis, is an important pest of mulberry. This pest feeds on mulberry leaves, and causes some problems for the silk industries in the north of Iran. The study of digestive enzymes is highly imperative to identify and apply new pest management technologies. Glucosidases have an important role in the final stages of carbohydrate digestion. Some enzymatic properties of α- and β-glucosidases from midgut and salivary glands of G. pyloalis larvae were determined. The activities of α- and β-glucosidase in the midgut and salivary glands of 5th instar larvae were obtained as 0.195, 1.07, 0.194 and 0.072 μmol−1 min−1 mg protein−1, respectively. Activity of α- and β-glucosidase from whole body of larval stages was also determined. Data showed that the highest activity of α- and β-glucosidase was observed in the 5th larval stage, 0.168 and 0.645 μmol−1 min−1 mg protein−1, respectively and the lowest activity in the 2nd larval stage, 0.042 and 0.164 μmol−1 min−1 mg protein−1, respectively. Results showed that the optimal pH for α- and β-glucosidase activity in midgut and salivary glands were 7.5, 5.5, 8-9 and 8-9 respectively. Also, the optimal temperature for α- and β-glucosidase activity in the midgut was obtained as 45 °C. The addition of CaCl2 (40 mM) decreased midgut β-glucosidase activity whereas α-glucosidase activity was significantly increased at this concentration. The α-glucosidase activity, in contrast to β-glucosidase, was enhanced with increasing in concentration of EDTA. Urea (4 mM) and SDS (8 mM) significantly decreased digestive β-glucosidase activity. Characterization studies of insect glucosidases are not only of interest for comparative investigations, but also understanding of their function is essential when developing methods of insect control such as the use of enzyme inhibitors and transgenic plants to control insect pest.  相似文献   

17.
In order for cryopreservation to become a practical tool for aquaculture, optimized protocols must be developed for each species and cell type. Knowledge of a cell’s osmotic tolerance and membrane permeability characteristics can assist in optimized protocol development. In this study, these characteristics were determined for Pacific oyster oocytes and modified methods for loading and unloading ethylene glycol (EG) were tested. Oocytes were found to behave as ideal osmometers and their osmotically inactive fraction (Vb) was calculated to be 0.48. Oocytes exposed to NaCl solutions of 0.6 to 2.3 Osm fertilized at rates equivalent to oocytes left in seawater. This corresponds to volume changes of +27.3 and −38.1 ± 1.2%. The permeability of the oocytes to water (Lp) was determined to be 3.8 ± 0.4 × 10−2, 5.7 ± 0.8 × 10−2, and 13.2 ± 1.3 × 10−2 μm min−1 atm−1, when measured at temperatures of 5, 10 and 20 °C. The respective EG permeability values (Ps) were 9.5 ± 0.1 × 10−5, 14.6 ± 1.2 × 10−5, and 41.7 ± 2.4 × 10−5 cm min−1. The activation energies for Lp and Ps were determined to be 14.5 and 17.5 kcal mol−1, respectively. Different models for EG loading and unloading from oocytes were developed and tested. Post-thaw fertilization did not differ significantly between a published step addition method and single step addition at 20 °C. This represents a considerable reduction in handling. The results of this study demonstrate that the cryobiological characteristics of a given cell type should be taken into account when developing cryopreservation methods.  相似文献   

18.
Marine brachyuran and anomuran crustaceans are completely absent from the extremely cold (− 1.8 °C) Antarctic continental shelf, but caridean shrimps are abundant. This has at least partly been attributed to low capacities for magnesium excretion in brachyuran and anomuran lithodid crabs ([Mg2+]HL = 20-50 mmol L− 1) compared to caridean shrimp species ([Mg2+]HL = 5-12 mmol L− 1). Magnesium has an anaesthetizing effect and reduces cold tolerance and activity of adult brachyuran crabs. We investigated whether the capacity for magnesium regulation is a factor that influences temperature-dependent activity of early ontogenetic stages of the Sub-Antarctic lithodid crab Paralomis granulosa. Ion composition (Na+, Mg2+, Ca2+, Cl, SO42−) was measured in haemolymph withdrawn from larval stages, the first and second juvenile instars (crabs I and II) and adult males and females. Magnesium excretion improved during ontogeny, but haemolymph sulphate concentration was lowest in the zoeal stages. Neither haemolymph magnesium concentrations nor Ca2+:Mg2+ ratios paralleled activity levels of the life stages. Long-term (3 week) cold exposure of crab I to 1 °C caused a significant rise of haemolymph sulphate concentration and a decrease in magnesium and calcium concentrations compared to control temperature (9 °C). Spontaneous swimming activity of the zoeal stages was determined at 1, 4 and 9 °C in natural sea water (NSW, [Mg2+] = 51 mmol L− 1) and in sea water enriched with magnesium (NSW + Mg2+, [Mg2+] = 97 mmol L− 1). It declined significantly with temperature but only insignificantly with increased magnesium concentration. Spontaneous velocities were low, reflecting the demersal life style of the zoeae. Heart rate, scaphognathite beat rate and forced swimming activity (maxilliped beat rate, zoea I) or antennule beat rate (crab I) were investigated in response to acute temperature change (9, 6, 3, 1, − 1 °C) in NSW or NSW + Mg2+. High magnesium concentration reduced heart rates in both stages. The temperature-frequency curve of the maxilliped beat (maximum: 9.6 beats s− 1 at 6.6 °C in NSW) of zoea I was depressed and shifted towards warmer temperatures by 2 °C in NSW + Mg2+, but antennule beat rate of crab I was not affected. Magnesium may therefore influence cold tolerance of highly active larvae, but it remains questionable whether the slow-moving lithodid crabs with demersal larvae would benefit from an enhanced magnesium excretion in nature.  相似文献   

19.
The ocean is a nutritionally heterogeneous environment. For feeding larval forms, food variability has significant consequences for growth and later recruitment success. In this study, the physiological and biochemical responses to a range of different food concentrations (unfed, 4, 20, and 40 algal cells μl− 1) were examined in larvae of the asteroid, Asterina miniata. Measurements of growth, protein synthesis rates, and the energetic cost of protein synthesis were made. Under conditions of rapid growth, protein comprised a larger percent (66%) of a larva's organic biomass compared to similar-aged, slower-growing larvae (26%). Larvae fed at the highest food concentration tested (40 algal cells μl− 1) had a protein depositional efficiency of 80% (± 16%), a value 3-fold higher than larvae fed 20 algal cells μl− 1 (28% ± 11%). Also, faster-growing larvae required 3-fold less energy per unit mass of protein growth. Larvae fed 40 algal cells μl− 1 deposited protein at a respiratory cost of 65 ± 11 pmol O2 h− 1 (μg protein)− 1; larvae fed 20 algal cells μl− 1 had a cost of 192 ± 47 pmol O2 h− 1 (μg protein)− 1. While there were differences in the cost to deposit protein (i.e., protein growth, the balance of synthesis and degradation), there were no differences in the energetic cost of protein synthesis for all food concentrations tested. The energetic cost of protein synthesis was fixed at 13.8 (± 0.92) Joules (mg protein synthesized)− 1 and was independent of developmental stage, growth rates, and large changes (58-fold) in protein synthesis rates. A major conclusion from this study is that larvae grown in high-food environments not only grew faster, but did so for considerably less energy. Defining the complex relationships of food availability and metabolic efficiency will provide more accurate predictions of larval growth under variable food conditions in the ocean.  相似文献   

20.
This study reports temperature effects on paralarvae from a benthic octopus species, Octopus huttoni, found throughout New Zealand and temperate Australia. We quantified the thermal tolerance, thermal preference and temperature-dependent respiration rates in 1-5 days old paralarvae. Thermal stress (1 °C increase h−1) and thermal selection (∼10-24 °C vertical gradient) experiments were conducted with paralarvae reared for 4 days at 16 °C. In addition, measurement of oxygen consumption at 10, 15, 20 and 25 °C was made for paralarvae aged 1, 4 and 5 days using microrespirometry. Onset of spasms, rigour (CTmax) and mortality (upper lethal limit) occurred for 50% of experimental animals at, respectively, 26.0±0.2 °C, 27.8±0.2 °C and 31.4±0.1 °C. The upper, 23.1±0.2 °C, and lower, 15.0±1.7 °C, temperatures actively avoided by paralarvae correspond with the temperature range over which normal behaviours were observed in the thermal stress experiments. Over the temperature range of 10 °C-25 °C, respiration rates, standardized for an individual larva, increased with age, from 54.0 to 165.2 nmol larvae−1 h−1 in one-day old larvae to 40.1-99.4 nmol h−1 at five days. Older larvae showed a lesser response to increased temperature: the effect of increasing temperature from 20 to 25 °C (Q10) on 5 days old larvae (Q10=1.35) was lower when compared with the 1 day old larvae (Q10=1.68). The lower Q10 in older larvae may reflect age-related changes in metabolic processes or a greater scope of older larvae to respond to thermal stress such as by reducing activity. Collectively, our data indicate that temperatures >25 °C may be a critical temperature. Further studies on the population-level variation in thermal tolerance in this species are warranted to predict how continued increases in ocean temperature will limit O. huttoni at early larval stages across the range of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号