首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmid pMT-trp was constructed by digestion of RSF2124-trp with restriction endonuclease PstI and ligation with T4 ligase. In pMT-trp about 78% of the DNA of transposon TnA from RSF2124-trp was deleted, and hence the gene for ampicillin resistance was lost. All Trp- segregants from pMT-trp carriers in Escherichia coli W3110 and its derivatives were found to have lost the entire plasmid. On the other hand, deletion plasmids which had lost the trp operon were found among Trp- segregants from RSF2124-trp carriers, particularly from the mutant strain trpAE1 trpR tnaA. The experimental fact that deletion occurred exclusively in RSF2124-trp suggests that the presence of TnA in the plasmid (RSF2124-trp) was responsible for the deletion.  相似文献   

2.
A RSF1010-trp hybrid plasmid which contained the tryptophan operon of Escherichia coli was introduced into Pseudomonas aeruginosa trp cells by transformation. From the Trp+ transformants several deletion plasmids were obtained, and their physical maps with restriction endonucleases were constructed. P. aeruginosa trp cells with these plasmids showed at first more than 100 times higher levels of tryptophan synthetase beta activity over that of the control P. aeruginosa wild-type cells, but these levels were drastically decreased by 1 week of successive transfers of cultures. This decrease in enzyme activity was found to be due to the change on the plasmids but not to the host cells. The production of E. coli tryptophan synthetase beta enzyme in P. aeruginosa cells was proved by immunological test.  相似文献   

3.
For the first time the possibility of the genetic transformation of L. pneumophila and L. bozemanii strains with the use of purified DNA of plasmids pUC19, pUC4K, pSC101 and RSF1010-pBR322 was shown. The frequency of transformation varied from 5.2 x 10(-6) to 5.8 x 10(-7), depending on the strain used in the experiment and plasmid DNA. In some of the transformants obtained in this investigation plasmid DNA whose molecular weight was similar to that of the plasmid DNA used for transformation was detected. The relatively stable preservation of plasmids pSC101 and RSF1010 in Legionella strains and the loss of plasmids pUC19, pUC4K and pBR322 in 80% of transformants during storage were shown.  相似文献   

4.
The components for the mobilization function of a plasmid DNA during conjugation include a cis-acting sequence (the origin of transfer, oriT) and a transacting sequence coding for mobilization (Mob) proteins. By genetic and deletion analysis, we have located the mobilization region of pTF1, a cryptic plasmid previously isolated from a Thiobacillus ferrooxidans strain. Within a 2797 bse-pair sequenced region, several open reading frames (ORFs) were predicted; two of the ORFs are divergently transcribed and they encode proteins of calculated molecular masses, 42.6kD (ORF2) and 11.4kD (ORF6). Surprisingly, these protein sequences are substantially similar to two of the previously characterized mobilization proteins of the Escherichia coli IncQ plasmid, RSF1010. Moreover, the pTF1 ORF2 (now designated MobL) sequence is also found to be similar to a presumed mobilization protein of plasmid pSC101. Regions of sequence identity of plasmids pTF1, RSF1010 and pSC101 include their oriT sites. By alkaline agarose gel electrophoresis and DNA sequencing, we have established the location of the relaxation complex nick site within the oriT of pTF1. An identical nick site, which is adjacent to a characteristic 10 base-pair inverted repeat sequence, is also found for plasmid RSF1010. A recombinant plasmid containing a 42 base-pair synthetic piece of DNA encompassing the pTF1 inverted repeat and nick sequence was shown to be oriT-active.  相似文献   

5.
A nick-labeling method has been used to localize the relaxation complex nick sites in three plasmids (pSC101, RSF1010, and R6K) that differ markedly in their host range, deoxyribonucleic acid replication, and conjugal transfer properties. Single specific relaxation sites were located in pSC101 and RSF1010, but surprisingly two distinct sites could be identified in the bi-origin plasmid R6K. In all cases, relaxation nick sites, which are thought to be origins of plasmid conjugal transfer, were shown to be located near origins of vegetative replication. This result suggests a functional interaction between these two types of deoxyribonucleic acid loci, and we speculate here that application events initiated at origins of replication may constitute an integral part of the process of conjugal transfer of small plasmids among bacteria. Consistent with this proposal is the finding that inhibition of vegetative replication of the pSC101 and ColE1 plasmids results in a severe inhibition of their conjugal transfer ability.  相似文献   

6.
Summary The relationship between replication control and plasmid incompatibility has been investigated using a composite replicon, pPM1, which consists of the pSC101 plasmid ligated to another small multicopy plasmid, RSF1050. Since pPM1 can utilise the replication system of either of the two functionally distinct components, propagation of the composite plasmid can occur in the presence of a mutation of one of its moieties. Such mutants are detected by their inability to rescue the composite plasmid under conditions not permissive for replication of the other moiety. Mutations in incompatibility functions can be detected by the failure of the composite replicon to exclude co-existing plasmids carrying a replication system identical to the one on pPM1.The inability of the composite plasmid to replicate at 42° in a host synthesizing temperature-sensitive DNA polymerase I, which is required by the RSF1050 replication system, was used to isolate pPM1 mutants defective in replication of the pSC101 component. Mutants defective in the incompatibility functions of pSC101 were obtained by selecting derivatives that allow the stable coexistence of a second pSC101 replicon in the same cell. Analysis of these two classes of mutants indicates that plasmids selected for defective pSC101 replication ability nevertheless retain pSC101 incompatibility. In contrast, plasmid mutants that have lost incompatibility functions were found always to be defective in replication ability.  相似文献   

7.
For the purpose of studying the production of L-tryptophan by Escherichia coli, the deletion mutants of the trp operon (trpAE1) were transformed with mutant plasmids carrying the trp operon whose anthranilate synthase and phosphoribosyl anthranilate transferase (anthranilate aggregate), respectively, had been desensitized to tryptophan inhibition. In addition to release of the anthranilate aggregate from the feedback inhibition required for plasmids such as pSC101 trp.I15, the properties of trp repression (trpR) and tryptophanase deficiency (tnaA) were both indispensable for host strains such as strain Tna (trpAE1 trpR tnaA). The gene dosage effects on tryptophan synthase activities and on production of tryptophan were assessed. A moderate plasmid copy number, approximately five per chromosome, was optimal for tryptophan production. Similarly, an appropriate release of the anthranilate aggregate from feedback inhibition was also a necessary step to ward off the metabolic anomaly. If the mutant plasmid pSC101 trp-I15 was further mutagenized (pSC101 trp.I15.14) and then transferred to Tna cells, an effective enhancement of tryptophan production was achieved. Although further improvement of the host-plasmid system is needed before commercial production of tryptophan can be realized by this means, a promising step toward this goal has been established.  相似文献   

8.
The cells of Pseudomonas pseudomallei and Pseudomonas mallei have been shown to serve as recipients for the plasmid RSF1010 and its recombinant derivatives pVA1 and pVA4. The conjugative plasmids RP1 and pTH10 of the incompatibility group P1 are able to mobilize the nontransmissive vector plasmids for conjugation transfer into Pseudomonas pseudomallei and Pseudomonas mallei strains. The SmR determinant of the plasmid RSF1010 is expressed in the latter strains. These data makes the mentioned vector plasmids the candidates for DNA cloning in these strains.  相似文献   

9.
Replication of plasmids in gram-negative bacteria.   总被引:29,自引:1,他引:28       下载免费PDF全文
Replication of plasmid deoxyribonucleic acid (DNA) is dependent on three stages: initiation, elongation, and termination. The first stage, initiation, depends on plasmid-encoded properties such as the replication origin and, in most cases, the replication initiation protein (Rep protein). In recent years the understanding of initiation and regulation of plasmid replication in Escherichia coli has increased considerably, but it is only for the ColE1-type plasmids that significant biochemical data about the initial priming reaction of DNA synthesis exist. Detailed models have been developed for the initiation and regulation of ColE1 replication. For other plasmids, such as pSC101, some hypotheses for priming mechanisms and replication initiation are presented. These hypotheses are based on experimental evidence and speculative comparisons with other systems, e.g., the chromosomal origin of E. coli. In most cases, knowledge concerning plasmid replication is limited to regulation mechanisms. These mechanisms coordinate plasmid replication to the host cell cycle, and they also seem to determine the host range of a plasmid. Most plasmids studied exhibit a narrow host range, limited to E. coli and related bacteria. In contrast, some others, such as the IncP plasmid RK2 and the IncQ plasmid RSF1010, are able to replicate in nearly all gram-negative bacteria. This broad host range may depend on the correct expression of the essential rep genes, which may be mediated by a complex regulatory mechanism (RK2) or by the use of different promoters (RSF1010). Alternatively or additionally, owing to the structure of their origin and/or to different forms of their replication initiation proteins, broad-host-range plasmids may adapt better to the host enzymes that participate in initiation. Furthermore, a broad host range can result when replication initiation is independent of host proteins, as is found in the priming reaction of RSF1010.  相似文献   

10.
The binding between par+ and par plasmid DNA to different membrane fractions of Escherichia coli was investigated. Membrane material from cells carrying different Par+ and Par- derivatives of plasmids R1 and pSC101 was isolated and fractionated into an outer and a cytoplasmic membrane fraction. The presence of plasmid DNA in the two membrane fractions was measured either by nick-translation of the membrane-bound DNA, followed by filter-hybridization to homologous DNA, or by filter-hybridization of the membrane-bound DNA to nick-translated homologous purified plasmid DNA. The DNA of par derivatives of plasmids R1 and pSC101 could be detected only in the cytoplasmic membrane fraction, whereas the corresponding par+ plasmid DNA also appeared in the outer membrane material, indicating a specific binding between the R1 and pSC101 partition loci and the bacterial outer membrane. The experiment was then modified by fractionation of the membrane material from cells carrying hybrids between the vector pSF2124 and the par region or the basic replicon region of plasmid R1. The DNA of the membrane fractions were filter-hybridized to nick-translated probes. Again, the par+ region caused hybridization to the outer membrane material. Therefore, we may conclude that controlled partitioning involves binding of DNA to membrane material that has the same density as the outer membrane of the host bacteria. This finding offers a biochemical 'assay' for studies of the molecular biology of plasmid partitioning.  相似文献   

11.
A composite plasmid has been constructed in vitro from colicin E1 factor (mass of 4.2 megadaltons [Md]) and nontransmissible resistance factor RSF 1010 (mass, 5.5. Md) deoxyribonucleic acids (DNAs) by the sequential action of Escherichia coli endonuclease (RI (Eco RI) and T4 phage DNA ligase on the covalently closed circular forms of the constituents. The composite plasmid was selected and amplified in vivo by sequential transformation of E. coli C600 with the ligated mixture and selection of transformants in medium containing streptomycin plus colicin E1, followed by amplification in the presence of chloramphenicol and purification of the extracted plasmid by dye-buoyant density gradient centrifugation in ethidium bromide-cesium chloride solution. Treatment of the composite plasmid with Eco RI yielded two fragments with mobilities corresponding to the linear forms of the parental plasmids, whereas Serratia marscesens endonuclease R (SmaR), which introduces a single scission in the colicin E1 factor but not in RSF 1010, convErted the composite plasmid to a single linear molecule (mass, 9.7 Md). Sequential degradation of colicin E1 factor with Sma R and Eco RI produced two fragments with masses of 3.5 and 0.7 Md; sequential degradation of RSF 1010 produced only one fragment (due to the cleavage with Eco RI), and sequential degradation of the composite plasmid produced the expected three fragments--an RSF 1010 Eco RI linear and the two expected products from the colicin E1 factor moiety. The composite plasmid conferred on the host cell resistance to streptomycin, sulfonamides, and colicin E1, but colicin E1 itself was not synthesized. In contrast, colicin E1 was synthesized by cells containing simultaneously both colicin E1 factor and RSF 1010 as separate entities. In the presence of chloramphenicol, the composite plasmid continued to replicate for 6 h. whereas replication of RSF 1010 and chromosomal DNA stopped within 2 h. Continued replication in the presence of chloramphenicol suggests that the replicator of the colicin E1 factor is functional in the composite plasmid.  相似文献   

12.
Deletions within E. coli plasmids carrying yeast rDNA.   总被引:4,自引:0,他引:4  
A Cohen  D Ram 《Gene》1978,3(2):135-147
Deletions occur in recombinant DNA plasmids that contain yeast ribosomal DNA (rDNA) inserted into the E. coli plasmids pSC101 and pMB9. Deletions within a pMB9 plasmid containing an insert longer than one tandem rDNA repeat apparently are due to homologous recombination because (1) all of the independently derived deletion products of this plasmid lost one complete rDNA repeat (8.6 kb) and retained only a single copy of the segment repeated at the ends of the original insert and (2) deletions were detected only when the insert had terminal redundancy. Deletions also occur within a pSC101 plasmid containing a tandem duplication of a segment (4.7 kb) including both pSC101 DNA and rDNA. Once again these deletions appear to be due to the presence of a duplicated region because all deletion products have lost one complete repeat. Deletions within both of these plasmids took place in both rec+ and recA- host cells, but occurred more frequently in rec+ cells. Oligomerization of the deletion products also occurred in both hosts and was more frequent in rec+ cells.  相似文献   

13.
Second-site mutations that allow stable inheritance of partition-defective pSC101 plasmids mapped to seven distinct sites in the 5' half of the plasmid repA gene. While the mutations also elevated pSC101 copy number, there was no correlation between copy number increase and plasmid stability. Combinations of mutations enabled pSC101 DNA replication in the absence of integration host factor and also stabilized par-deleted plasmids in cells deficient in DNA gyrase or defective in DnaA binding. Our findings suggest that repA mutations compensate for par deletion by enabling the origin region RepA-DNA-DnaA complex to form under suboptimal conditions. They also provide evidence that this complex has a role in partitioning that is separate from its known ability to promote plasmid DNA replication.  相似文献   

14.
Conjugation experiments were performed in which the donor was Escherichia coli K-12 strain KP245 containing either R plasmid NR1 plus an ampicillin-resistant derivative of ColE1 (*ColE1::Tn3, called RSF2124) or NR1 plus RSF2124 carrying a cloned EcoRI fragment of NR1. The recipient was the polA amber mutant JG112, in which RSF2124 cannot replicate. Ampicillin-resistant transconjugants can arise only when the genes for ampicillin resistance are linked to NR1 or are transposed to the host chromosome. When EcoRI fragment A of NR1 (20.5 kilobases) was cloned to RSF2124, the frequency of cotransfer of ampicillin resistance with tetracycline resistance was 25 to 60%. Plasmid DNA from these ampicillin-resistant transconjugant cells was analyzed by gel electrophoresis and was shown to be a cointegrate of NR1 and the RSF2124 derivative. Analysis of plasmid DNA isolated from donor cultures showed that the cointegrates were present before conjugation, which indicates that the mating does not stimulate cointegrate formation. When the cloned fragment was EcoRI fragment H of NR1 (4.8 kilobases), the frequency of cotransfer of ampicillin resistance with tetracycline resistance was about 4%, and the majority of the ampicillin-resistant transconjugants were found to contain cointegrate plasmids. When the donor contained NR1 and RSF2124, the frequency of cotransfer of ampicillin resistance was less than 0.1%, and analysis of plasmid DNA from the ampicillin-resistant transconjugants showed that Tn3 had been transposed onto NR1. These data suggest that plasmids which share homology may exist in cointegrate form to a high degree within a host cell.  相似文献   

15.
Antibiotic resistance in Neisseria gonorrhoeae has been associated with the acquisition of R plasmids from heterologous organisms. The broad-host-range plasmids of incompatibility groups P (IncP) and Q (IncQ) have played a role in this genetic exchange in nature. We have utilized derivatives of RSF1010 (IncQ) and RP1 (IncP) to demonstrate that the plethora of restriction barriers associated with the gonococci markedly reduces mobilization of plasmids from Escherichia coli into strains F62 and PGH 3-2. Partially purified restriction endonucleases from these gonococcal strains can digest RSF1010 in vitro. Protection of RSF1010-km from digestion by gonococcal enzymes purified from strain F62 is observed when the plasmid is isolated from E. coli containing a coresident plasmid, pCAL7. Plasmid pCAL7 produces a 5'-MECG-3' cytosine methylase (M.SssI). The M.SssI methylase only partially protects RSF1010-km from digestion by restriction enzymes from strain PGH 3-2. Total protection of RSF1010-km from PGH 3-2 restriction requires both pCAL7 and a second coresident plasmid, pFnuDI, which produces a 5'-GGMECC-3' cytosine methylase. When both F62 and PGH 3-2 are utilized as recipients in heterospecific matings with E. coli, mobilization of RSF1010 from strains containing the appropriate methylases into the gonococci occurs at frequencies 4 orders of magnitude higher than from strains without the methylases. Thus, protection of RSF1010 from gonococcal restriction enzymes in vitro correlates with an increase in the conjugal frequency. These data indicate that restriction is a major barrier against efficient conjugal transfer between N. gonorrhoeae and heterologous hosts.  相似文献   

16.
We identified a gene ( dpiA destabilizer of plasmid inheritance) which, when overexpressed in Escherichia coli , destabilizes the inheritance of pSC101 and other iteron-containing plasmids as disparate as mini-F and RK6 but not the inheritance of P1, RSF1010 and ColD. These effects of DpiA, which functions like an effector protein for a previously undescribed two-component signal transduction system, were reduced by mutations known to promote pSC101 replication and partitioning. dpiB , a gene encoding the putative histidine kinase of this two-component system, is located immediately 5' to dpiA and adjacent to a DpiA-induced target promoter that transcribes genes having homology to citrate lyase operon genes, citC , citD and citE , of Klebsiella pneumoniae . Disruption of dpiB reversed or reduced the effect of DpiA overproduction on pSC101 inheritance. A second DpiA target, the promoter for a gene ( appY ) implicated in E. coli's response to anaerobiosis, is repressed by DpiA. A mutation in dpiA at a site commonly conserved and phosphorylated in two-component system effector proteins abolished the effects of DpiA overproduction on pSC101 inheritance and negative regulation of appY expression. Our findings suggest a possible mechanism by which environmental and/or cellular stimuli may influence plasmid inheritance.  相似文献   

17.
RepA, a plasmid-encoded gene product required for pSC101 replication in Escherichia coli, is shown here to inhibit the replication of pSC101 in vivo when overproduced 4- to 20-fold in trans. Unlike plasmids whose replication is prevented by mutations in the repA gene, plasmids prevented from replicating by overproduction of the RepA protein were lost rapidly from the cell population instead of being partitioned evenly between daughter cells. Removal of the partition (par) locus increased the inhibitory effect of excess RepA on replication, while host and plasmid mutations that compensate for the absence of par, or overproduction of the E. coli DnaA protein, diminished it. A repA mutation (repA46) that elevates pSC101 copy number almost entirely eliminated the inhibitory effect of RepA at high concentration and stimulated replication when the protein was moderately overproduced. As the RepA protein can exist in both monomer and dimer forms, we suggest that overproduction promotes RepA dimerization, reducing the formation of replication initiation complexes that require the RepA monomer and DnaA; we propose that the repA46 mutation alters the ability of the mutant protein to dimerize. Our discovery that an elevated intracellular concentration of RepA specifically impedes plasmid partitioning implies that the RepA-containing complexes initiating pSC101 DNA replication participate also in the distribution of plasmids at cell division.  相似文献   

18.
Ti plasmids of Agrobacterium tumefaciens are conjugal elements whose transfer is induced by certain opines secreted from crown galls. On transmissible plasmids, DNA transfer initiates within a cis-acting site, the origin of conjugal transfer, or oriT. We have localized an oriT on the A. tumefaciens plasmid pTiC58 to a region containing the conjugal transfer loci traI and traII and acc, which is the locus encoding catabolism of the two conjugal opines, agrocinopines A and B. The smallest functional oriT clone, a 65-bp BamHI-ApaI fragment in the recombinant plasmid pDCBA60-11, mapped within the traII locus. The nucleotide sequence for a 665-bp KpnI-EcoRI fragment with oriT activity was determined. DNA sequence alignments showed identities between the pTiC58 oriT and the transfer origins of RSF1010, pTF1, and RK2/RP4 and with the pTiC58 T-region borders. The RSF1010-like sequence on pTiC58 is located in the smallest active oriT clone of pTiC58, while the sequence showing identities with the oriT regions of RK2/RP4 and with T-region borders maps outside this region. Despite their sequence similarities, pTiC58 oriT clones were not mobilized by RP4; nor could vectors containing the RK2/RP4 oriT region or the oriT-mob region from RSF1010 be mobilized by pTiC58. In contrast, other Ti plasmids and a conjugally active Agrobacterium opine catabolic plasmid, pAtK84b, efficiently mobilized pTiC58 oriT clones. In addition, the RSF1010 derivative, pDSK519, was mobilized at moderate frequencies by an Agrobacterium strain harboring only the cryptic plasmid pAtC58 and at very low frequencies by an Agrobacterium host that does not contain any detectable plasmids.  相似文献   

19.
The abilities of three Escherichia coli strains with thermosensitive dnaG alleles to maintain plasmids pSC101 or pBR322 or an RP4 derivative were studied at elevated growth temperatures. Under these conditions, pSC101 segregated from cells to a greater extent than did pBR322. No segregation of the primase-encoding RP4 derivative was observed.  相似文献   

20.
A conjugative plasmid, ESF0041 was isolated from an enterotoxigenic strain of Escherichia coli from calves. ESF0041 was found to be 65 x 10(6) daltons in mass of a member of the F incompatibility complex. Acquisition of ESF0041 by E. coli K-12 was invariably associated with the capacity to produce heat-stable (ST) enterotoxin. ESF0041 and pSC101 deoxyribonucleic acids were cleaved with EcoRI, and the fragments were ligated with polynucleotide ligase. Transformation of E. coli K-12 with the ligation mixture led to the isolation of an ST+ clone. Further analysis of the plasmid deoxyribonucleic acid from this clone showed that a structural gene(s) associated with ST biosynthesis had been isolated as a 5.7 x 10(6)-dalton ESF0041 fragment in pSC101. In turn, 5.7 x 10(6)-dalton fragment was ligated to a multicopy COLE1 derivative, RSF2124, so that toxin synthesis was amplified about threefold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号