首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The SecY protein is a membrane-bound factor required for bacterial protein export and embedded in the cytoplasmic membrane by its 10 transmembrane segments. We previously proposed a topology model for this protein by adapting the Manoil-Beckwith TnphoA approach, a genetic method to assign local disposition of a membrane protein from the enzymatic activity of the alkaline phosphatase (PhoA) mature sequence attached to the various regions. SecY-PhoA hybrid proteins with the PhoA domain exported to the periplasmic side of the membrane have been obtained at the five putative periplasmic domains of the SecY sequence. We now extended this method to apply it to follow export of the newly synthesized PhoA domain. Trypsin treatment of detergent-solubilized cell extracts digested the internalized (unfolded) PhoA domain but not those exported and correctly folded. One of the hybrid proteins was cleaved in vivo after export to the periplasm, providing a convenient indication for the export. Results of these analyses indicate that export of the PhoA domain attached to different periplasmic regions of SecY occurs rapidly and requires the normal functioning of the secY gene supplied in trans. Thus, this membrane protein with multiple transmembrane segments contains multiple export signals which can promote rapid and secY-dependent export of the PhoA mature sequence attached to the carboxyl-terminal sides.  相似文献   

2.
The tetracycline resistance gene of pBR322 encodes a 41-kDa inner membrane protein (TetA) that acts as a tetracycline/H+ antiporter. Based on hydrophobicity profiles, we identified 12 potential transmembrane segments in TetA. We used oligonucleotide deletion mutagenesis to fuse alkaline phosphatase (PhoA) to the C-terminal edge of each of the predicted periplasmic and cytoplasmic segments of TetA. In general, the PhoA activities of the TetA-PhoA fusions support a TetA topology model consisting of 12 transmembrane segments with the N and C termini in the cytoplasm. However, several TetA-PhoA fusions have unexpected properties. One PhoA fusion to a predicted cytoplasmic segment (C6) has high activity. However, previous protease accessibility studies on the related Tn10 TetA protein indicated that C6 is cytoplasmically localized as predicted (Eckert, B., and Beck, C. F. (1989) J. Biol. Chem. 264, 11663-11670). PhoA fusions to three predicted periplasmic segments (P1, P2, and P5) have low to intermediate activity. In each case, the preceding transmembrane segment (TM1, TM3, and TM9) contains an aspartate (Asp17, Asp86, and Asp287). We show that these aspartates act like signal sequence mutations for PhoA export: (i) Asp----Ala mutations increase the PhoA activity of fusions to P1, P2, and P5. (ii) The signal sequence mutation suppressor prlA402 increases the PhoA activity of these same fusions. We also show that the aspartates in TM1, TM3, and TM9 are critical for wild-type TetA function; they are conserved in related TetA proteins and Asp----Ala mutations reduce or eliminate tetracycline resistance. The properties of the anomalous TetA-PhoA fusions suggest that TetA sequences C-terminal to some cytoplasmic and periplasmic segments are required for the proper localization of those segments, i.e. long range interactions may be more important in determining the membrane topology of TetA than suggested in some general models.  相似文献   

3.
The Escherichia coli serine chemoreceptor takes on a simple membrane topology with two transmembrane segments separating cytoplasmically disposed N and C termini from a central periplasmic domain. We investigated the role of the small N-terminal cytoplasmic domain in membrane insertion using alkaline phosphatase gene fusions. Mutations eliminating the positive charge of the domain altered insertion dramatically, with reciprocal effects on hybrids with periplasmic and C-terminal cytoplasmic fusion junctions. Efficient export of the normally cytoplasmic C-terminal domain required that, in addition to the N-terminal changes, a short amphiphatic sequence at the beginning of the C-terminal domain be also absent. These findings document the importance of the positive character of the N-terminal domain in chemoreceptor membrane insertion and imply that partially redundant sequence information controls the orientation of the second transmembrane segment.  相似文献   

4.
A topology of the Escherichia coli leader peptidase has been previously proposed on the basis of proteolytic studies. Here, a collection of alkaline phosphatase fusions to leader peptidase is described. Fusions to the periplasmic domain of this protein exhibit high alkaline phosphatase activity, while fusions to the cytoplasmic domain exhibit low activity. Elements within the cytoplasmic domain are necessary to stably anchor alkaline phosphatase in the cytoplasm. The amino-terminal hydrophobic segment of leader peptidase acts as a weak export signal for alkaline phosphatase. However, when this segment is preceded by four lysines, it acts as a highly efficient export signal. The coherence of in vitro studies with alkaline phosphatase fusion analysis of the topology of leader peptidase further indicates the utility of this genetic approach to membrane protein structure and insertion.  相似文献   

5.
The topology of integral cytoplasmic membrane proteins can be analyzed using alkaline phosphatase fusions by determining which constructs have low and which have high specific activity. We show that in all cases the enzymatic activity is due to the fraction of the alkaline phosphatase moiety of the fusion protein localized to the periplasm. We present evidence that these fusions can also be used to analyze the process of assembly of cytoplasmic proteins into the membrane. The rate of acquisition of protease resistance of the alkaline phosphatase moiety of such hybrid proteins is compared for fusions to periplasmic and cytoplasmic domains. We show that this process, which is assumed to be representative of export of alkaline phosphatase, is significantly slower for fusions to cytoplasmic and certain periplasmic domains than for most periplasmic domains. These results are discussed in the context of the normal assembly of integral membrane proteins.  相似文献   

6.
The amino acid sequence of the sodium ion-dependent citrate transporter CitS of K. pneumoniae contains 12 hydrophobic stretches that could form membrane-spanning segments. A previous analysis of the membrane topology in Escherichia coli using the PhoA gene fusion technique indicated that only nine of these hydrophobic segments span the membrane, while three segments, Vb, VIII and IX, were predicted to have a periplasmic location (Van Geest, M., and Lolkema, J. S. (1996) J. Biol. Chem. 271, 25582-25589). A topology study of C-terminally truncated CitS molecules in dog pancreas microsomes revealed that the protein traverses the endoplasmic reticulum membrane 11 times. In agreement with the PhoA fusion data, segment Vb was predicted to have a periplasmic location, but, in contrast, segments VIII and IX were found to be membrane-spanning (Van Geest, M., Nilsson, I., von Heijne, G., and Lolkema, J. S. (1999) J. Biol. Chem. 274, 2816-2823). In the present study, using site-directed Cys labeling, the topology of segments VIII and IX in the full-length CitS protein was determined in the E. coli membrane. Engineered cysteine residues in the loop between the two segments were accessible to a membrane-impermeable thiol reagent exclusively from the cytoplasmic side of the membrane, demonstrating that transmembrane segments (TMSs) VIII and IX are both membrane-spanning. It follows that the folding of CitS in the E. coli and endoplasmic reticulum membrane is the same. Cysteine accessibility studies of CitS-PhoA fusion molecules demonstrated that in the E. coli membrane segment VIII is exported to the periplasm in the absence of the C-terminal CitS sequences, thus explaining why the PhoA fusions do not correctly predict the topology. An engineered cysteine residue downstream of TMS VIII moved from a periplasmic to a cytoplasmic location when the fusion protein containing TMSs I-VIII was extended with segment IX. Thus, downstream segment IX is both essential and sufficient for the insertion of segment VIII of CitS in the E. coli membrane.  相似文献   

7.
P Jockel  M Di Berardino  P Dimroth 《Biochemistry》1999,38(41):13461-13472
The topology of the beta-subunit of the oxaloacetate Na+ pump (OadB) was probed with the alkaline phosphatase (PhoA) and beta-galactosidase (lacZ) fusion technique. Additional evidence for the topology was derived from amino acid alignments and comparative hydropathy profiles of OadB with related proteins. Consistent results were obtained for the three N-terminal and the six C-terminal membrane-spanning alpha-helices. However, the two additional helices that were predicted by hydropathy analyses between the N-terminal and C-terminal blocks did not conform with the fusion results. The analyses were therefore extended by probing the sideness of various engineered cysteine residues with the membrane-impermeant reagent 4-acetamido-4'-maleimidylstilbene-2, 2'-disulfonate. The results were in accord with those of the fusion analyses, suggesting that the protein folds within the membrane by a block of three N-terminal transmembrane segments and another one with six C-terminal transmembrane segments. The mainly hydrophobic connecting segment is predicted not to traverse the membrane fully, but to insert in an undefined manner from the periplasmic face. According to our model, the N-terminus is at the cytoplasmic face and the C-terminus is at the periplasmic face of the membrane.  相似文献   

8.
Basic amino acid residues were introduced into an extracellular (periplasmic) domain, preceding a membrane-spanning hydrophobic domain, of SecY, an integral cytoplasmic membrane protein. The localization of the domain was monitored as to the alkaline phosphatase activity of TnPhoA fused adjacent to the domain. The alkaline phosphatase activity of such Escherichia coli cells drastically decreased when positive charges were introduced, indicating that on the introduction the SecY domain showed a change in localization from the periplasm to the cytoplasm. In another experiment, positive charges were introduced to the same periplasmic domain of another SecY-PhoA fusion protein, in which PhoA is fused to the cytoplasmic domain of SecY following the particular hydrophobic domain. The alkaline phosphatase activity increased drastically when positive charges were introduced, indicating that the SecY domain fused to PhoA showed a change in localization from the cytoplasm to the periplasm. In both experiments, the removal of a large amino-terminal portion of the SecY domain did not alter the effect of the positive charge introduction. Changes in localization of SecY domains thus demonstrated were also supported by a protease accessibility test on spheroplasts. It is proposed that a positively charged region adjacent to a membrane-embedded hydrophobic region tends to be stabilized on the cytoplasmic surface of the membrane, which in turn endows the hydrophobic region with the ability to act as a stop-transfer sequence or a signal sequence and consequently determines the orientation of the hydrophobic region in the membrane.  相似文献   

9.
The Pseudomonas oleovorans alkane hydroxylase is an integral cytoplasmic membrane protein that is expressed and active in both Escherichia coli and P. oleovorans. Its primary sequence contains eight hydrophobic stretches that could span the membrane as alpha-helices. The topology of alkane hydroxylase was studied in E. coli using protein fusions linking different amino-terminal fragments of the alkane hydroxylase (AlkB) to alkaline phosphatase (PhoA) and to beta-galactosidase (LacZ). Four AlkB-PhoA fusions were constructed using transposon TnphoA. Site-directed mutagenesis was used to create PstI sites at 12 positions in AlkB. These sites were used to create AlkB-PhoA and AlkB-LacZ fusions. With respect to alkaline phosphatase and beta-galactosidase activity each set of AlkB-PhoA and AlkB-LacZ fusions revealed the expected complementary activities. At three positions, PhoA fusions were highly active, whereas the corresponding LacZ fusions were the least active. At all other positions the PhoA fusions were almost completely inactive, but the corresponding LacZ fusions were highly active. These data predict a model for alkane hydroxylase containing six transmembrane segments. In this model the amino terminus, two hydrophilic loops, and a large carboxyl-terminal domain are located in the cytoplasm. Only three very short loops near amino acid positions 52, 112, and 251 are exposed to the periplasm.  相似文献   

10.
K Uhland  R Ehrle  T Zander    M Ehrmann 《Journal of bacteriology》1994,176(15):4565-4571
Periplasmic domains of cytoplasmic membrane proteins require export signals for proper translocation. These signals were studied by using a MalF-alkaline phosphatase fusion in a genetic selection that allowed the isolation of mislocalization mutants. In the original construct, alkaline phosphatase is fused to the second periplasmic domain of the membrane protein, and its activity is thus confined exclusively to the periplasm. Mutants that no longer translocated alkaline phosphatase were selected by complementation of a serB mutation. A total of 11 deletions in the amino terminus were isolated, all of which spanned at least the third transmembrane segment. This domain immediately precedes the periplasmic domain to which alkaline phosphatase was fused. Our results obtained in vivo support the model that amino-terminal membrane-spanning segments are required for translocation of large periplasmic domains. In addition, we found that the inability to export the alkaline phosphatase domain could be suppressed by a mutation, prlA4, in the secretion apparatus.  相似文献   

11.
Neisseria gonorrhoeae prepilin export studied in Escherichia coli.   总被引:7,自引:5,他引:2       下载免费PDF全文
The pilE gene of Neisseria gonorrhoeae MS11 and a series of pilE-phoA gene fusions were expressed in Escherichia coli. The PhoA hybrid proteins were shown to be located in the membrane fraction of the cells, and the prepilin product of the pilE gene was shown to be located exclusively in the cytoplasmic membrane. Analysis of the prepilin-PhoA hybrids showed that the first 20 residues of prepilin can function as an efficient export (signal) sequence. This segment of prepilin includes an unbroken sequence of 8 hydrophobic or neutral residues that form the N-terminal half of a 16-residue hydrophobic region of prepilin. Neither prepilin nor the prepilin-PhoA hybrids were processed by E. coli leader peptidase despite the presence of two consensus cleavage sites for this enzyme just after this hydrophobic region. Comparisons of the specific molecular activities of the four prepilin-PhoA hybrids and analysis of their susceptibility to proteolysis by trypsin and proteinase K in spheroplasts allow us to propose two models for the topology of prepilin in the E. coli cytoplasmic membrane. The bulk of the evidence supports the simplest of the two models, in which prepilin is anchored in the membrane solely by the N-terminal hydrophobic domain, with the extreme N terminus facing the cytoplasm and the longer C terminus facing the periplasm.  相似文献   

12.
The Escherichia coli ProU system is a member of the ATP-binding cassette (ABC) superfamily of transporters. ProU consists of three components (ProV, ProW, and ProX) and functions as a high-affinity, binding protein-dependent transport system for the osmoprotectants glycine betaine and proline betaine. The ProW protein is the integral inner membrane component of the ProU system. Its hydropathy profile predicts seven transmembrane spans and a hydrophilic amino terminus of approximately 100 residues, and it suggests the presence of an amphiphilic alpha-helix (L-61 to F-97) in close proximity to the first strongly hydrophobic segment of ProW. We have studied the membrane topology of the ProW protein by the phoA and lacZ gene fusion approach. A collection of 10 different proW-phoA fusions with alkaline phosphatase activity and 8 different proW-lacZ fusions with beta-galactosidase activity were isolated in vivo after TnphoAB and TnlacZ mutagenesis of a plasmid-encoded proW gene. The recovery of both enzymatically active ProW-PhoA and ProW-LacZ hybrid proteins indicates that segments of ProW are exposed on both sides of the cytoplasmic membrane. To compare the enzymatic activities of each of the indicator proteins joined at a particular site in ProW, we switched the phoA and lacZ reporter genes in vitro in each of the originally in vivo-isolated gene fusions. A mirror-like pattern in the enzyme activity of the resulting new ProW-PhoA and ProW-LacZ hybrid proteins emerged, thus providing positive signals for the location of both periplasmic and cytoplasmic domains in ProW. The protease kallikrein digests the amino-terminal tail of a ProW-LacZ hybrid protein in spheroplasts, suggesting that the amino terminus of ProW is located on the periplasmic side of the cytoplasmic membrane. From these data, a two-dimensional model for ProW was constructed; this model consists of seven transmembrane alpha-helices and an unusual amino-terminal tail of approximately 100 amino acid residues that protrudes into the periplasmic space.  相似文献   

13.
The Tsr protein of Escherichia coli is a chemosensory transducer that mediates taxis toward serine and away from certain repellents. Like other bacterial transducers, Tsr spans the cytoplasmic membrane twice, forming a periplasmic domain of about 150 amino acids and a cytoplasmic domain of about 300 amino acids. The 32 N-terminal amino acids of Tsr resemble the consensus signal sequence of secreted proteins, but they are not removed from the mature protein. To investigate the function of this N-terminal sequence in the assembly process, we isolated translational fusions between tsr and the phoA and lacZ genes, which code for the periplasmic enzyme alkaline phosphatase and the cytoplasmic enzyme beta-galactosidase, respectively. All tsr-phoA fusions isolated code for proteins whose fusion joints are within the periplasmic loop of Tsr, and all of these hybrid proteins have high alkaline phosphatase activity. The most N-terminal fusion joint is at amino acid 19 of Tsr. Tsr-lacZ fusions were found throughout the tsr gene. The beta-galactosidase activity of the LacZ-fusion proteins varies greatly, depending on the location of the fusion joint. Fusions with low activity have fusion joints within the periplasmic loop of Tsr. The expression of these fusions is most likely reduced at the level of translation. In addition, one of these fusions markedly reduces the export and processing of the periplasmic maltose-binding protein and the outer membrane protein OmpA, but not of intact PhoA or of the outer membrane protein LamB. A temperature-sensitive secA mutation, causing defective protein secretion, stops expression of new alkaline phosphatase activity coded by a tsr-phoA fusion upon shifting to the nonpermissive temperature. The same secA mutation, even at the permissive temperature, increases the activity and the level of expression of LacZ fused to the periplasmic loop of Tsr relative to a secA+ strain. We conclude that the assembly of Tsr into the cytoplasmic membrane is mediated by the machinery responsible for the secretion of a subset of periplasmic and outer membrane proteins. Moreover, assembly of the Tsr protein seems to be closely coupled to its synthesis.  相似文献   

14.
This report describes a new transposon designed to facilitate the combined use of beta-galactosidase and alkaline phosphatase gene fusions in the analysis of protein localization. The transposon, called TnlacZ, is a Tn5 derivative that permits the generation of gene fusions encoding hybrid proteins carrying beta-galactosidase at their C termini. In tests with plasmids, TnlacZ insertions that led to high cellular beta-galactosidase activity were restricted to sequences encoding either cytoplasmic proteins or cytoplasmic segments of a membrane protein. The fusion characteristics of TnlacZ are thus complementary to those of TnphoA, a transposon able to generate alkaline phosphatase fusions whose high-activity insertion sites generally correspond to periplasmic sequences. The structure of TnlacZ allows the conversion of a TnlacZ fusion into the corresponding TnphoA fusion (and vice versa) through recombination or in vitro manipulation in a process called fusion switching. Fusion switching was used to generate the following two types of fusions with unusual properties: a low-specific-activity beta-galactosidase-alkaline phosphatase gene fusion and two toxic periplasmic-domain serine chemoreceptor-beta-galactosidase gene fusions. The generation of both beta-galactosidase and alkaline phosphatase fusions at exactly the same site in a protein permits a comparison of the two enzyme activities in evaluating the subcellular location of the site, such as in studies of membrane protein topology. In addition, fusion switching makes it possible to generate gene fusions whose properties should facilitate the isolation of mutants defective in the export or membrane anchoring of different cell envelope proteins.  相似文献   

15.
Y Akiyama  K Ito 《The EMBO journal》1987,6(11):3465-3470
The secY (prlA) gene product is an essential component of the Escherichia coli cytoplasmic membrane, and its function is required for the translocation of exocytoplasmic proteins across the membrane. We have analyzed the orientation of the SecY protein in the membrane by examining the hydropathic character of its amino acid sequence, by testing its susceptibility to proteases added to each side of the membrane, and by characterizing SecY-PhoA (alkaline phosphatase) hybrid proteins constructed by TnphoA transpositions. The orientation of the PhoA portion of the hybrid protein with respect to the membrane was inferred from its enzymatic activity as well as sensitivity to external proteases. The results suggest that SecY contains 10 transmembrane segments, five periplasmically exposed parts, and six cytoplasmic regions including the amino- and carboxyterminal regions.  相似文献   

16.
Anchored periplasmic expression (APEx) technology aims to express and localize proteins or peptides in the Escherichia coli periplasm. Some reports have suggested that transmembrane segments of integral membrane proteins can be used as membrane anchors in the APEx system. In this study, a series of hydrophobic anchors derived from the first putative transmembrane helix of a Bacillus subtilis integral membrane protein, MrpF, and its truncated forms were investigated for anchored periplasmic expression of alkaline phosphatase (PhoA) in E. coli. Anchoring efficiency of hydrophobic anchors was evaluated by monitoring the expression and activity of anchored PhoA. The length of hydrophobic anchors was found to be critical for anchoring proteins to cell membranes. This study may open new avenues for applying transmembrane segments derived from native membrane proteins as membrane anchors in the APEx system.  相似文献   

17.
Escherichia coli lac permease is a polytopic integral membrane protein with six translocated (periplasmic) domains. Individual N-terminal cytoplasmic regions and membrane-spanning segments adjacent to each of the periplasmic domains acted as export signals for an attached sensor protein (alkaline phosphatase). However, the export activity of one of the spanning segments was considerably lower than that of the others, and was limited by the presence of a positively charged residue (Arg302). These observations are compatible with models of membrane protein insertion in which hydrophilic domains are translocated independently. However, the results suggest that efficient translocation may sometimes require interaction between individual spanning segments.  相似文献   

18.
Y Akiyama  T Inada  Y Nakamura    K Ito 《Journal of bacteriology》1990,172(6):2888-2893
SecY is an Escherichia coli integral membrane protein required for efficient translocation of other proteins across the cytoplasmic membrane; it is embedded in this membrane by the 10 transmembrane segments. Among several SecY-alkaline phosphatase (PhoA) fusion proteins that we constructed previously, SecY-PhoA fusion 3-3, in which PhoA is fused to the third periplasmic region of SecY just after the fifth transmembrane segment, was found to be subject to rapid proteolytic processing in vivo. Both the SecY and PhoA products of this cleavage have been identified immunologically. In contrast, cleavage of SecY-PhoA 3-3 was barely observed in a lep mutant with a temperature-sensitive leader peptidase. The full-length fusion protein accumulated in this mutant was cleaved in vitro by the purified leader peptidase. A sequence Ala-202-Ile-Ala located near the proposed interface between transmembrane segment 5 and periplasmic domain 3 of SecY was found to be responsible for the recognition and cleavage by the leader peptidase, since a mutated fusion protein with Phe-Ile-Phe at this position was no longer cleaved even in the wild-type cells. These results indicate that SecY contains a potential leader peptidase cleavage site that undergoes cleavage if the PhoA sequence is attached carboxy terminally. Thus, transmembrane segment 5 of SecY can fulfill both of the two important functions of the signal peptide, translocation and cleavage, although the latter function is cryptic in the normal SecY protein.  相似文献   

19.
Enteropathogenic Escherichia coli (EPEC) produces the bundle-forming pilus (BFP), a type IV fimbria that has been implicated in virulence, autoaggregation, and localized adherence to epithelial cells. The bfpE gene is one of a cluster of bfp genes previously shown to encode functions that direct BFP biosynthesis. Here, we show that an EPEC strain carrying a nonpolar mutation in bfpE fails to autoaggregate, adhere to HEp-2 cells, or form BFP, thereby demonstrating that BfpE is required for BFP biogenesis. BfpE is a cytoplasmic membrane protein of the GspF family. To determine the membrane topology of BfpE, we fused bfpE derivatives containing 3' truncations and/or internal deletions to alkaline phosphatase and/or beta-galactosidase reporter genes, whose products are active only when localized to the periplasm or cytoplasm, respectively. In addition, we constructed BfpE sandwich fusions using a dual alkaline phosphatase/beta-galactosidase reporter cassette and analyzed BfpE deletion derivatives by sucrose density flotation gradient fractionation. The data from these analyses support a topology in which BfpE contains four hydrophobic transmembrane (TM) segments, a large cytoplasmic segment at its N terminus, and a large periplasmic segment near its C terminus. This topology is dramatically different from that of OutF, another member of the GspF family, which has three TM segments and is predominantly cytoplasmic. These findings provide a structural basis for predicting protein-protein interactions required for assembly of the BFP biogenesis machinery.  相似文献   

20.
The fhuA gene of Escherichia coli K-12 encodes an outer membrane protein that acts as the ferrichrome-iron(III) receptor. To determine the export signals and sorting information within FhuA, gene fusions of fhuA'-'lacZ and fhuA'-'phoA were constructed. Although a FhuA'-'LacZ hybrid protein was detected in the Triton X-100-insoluble fraction of the cell envelope, direct immunoelectron microscopic observation showed that this protein remained in the cytoplasm. FhuA'-'PhoA hybrid proteins were all exported across the cytoplasmic membrane. Those hybrids containing up to 88 amino acids of FhuA (FhuA88) fused to PhoA were released along with other periplasmic proteins. Hybrids containing 180 or more amino acids of FhuA (FhuA180) fused to PhoA were associated with the outer membrane. It is proposed that some information inherent in the sequences between FhuA88 and FhuA180 confers stable association with the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号