首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Increased intracellular calcium concentration ([Ca2+]i) is required for smooth muscle contraction. In tracheal and other tonic smooth muscles, contraction and elevated [Ca2+]i are maintained as long as an agonist is present. To evaluate the physiological role of steady-state increases in Ca2+ on tension maintenance, [Ca2+]i was elevated using ionomycin, a Ca2+ ionophore or charybdotoxin, a large-conductance calcium-activated potassium channel (KCa) blocker prior to or during exposure of tracheal smooth muscle strips to Ach (10–9 to 10–4 M). Ionomycin (5 µM) in resting muscles induced increases in [Ca2+]i to 500±230 nM and small increases in force of 2.6±2.3 N/cm2. This tension is only 10% of the maximal tension induced by ACh. Charybdotoxin had no effect on [Ca2+]i or tension in resting muscle. After pretreatment of muscle with ionomycin, the concentration-response relationship for ACh-induced changes in tension shifted to the left (EC50=0.07±0.05 µM ionomycin; 0.17±0.07 µM, control, p<0.05). When applied to the muscles during steady-state responses to submaximal concentrations of ACh, both ionomycin and charybdotoxin induced further increases in tension. The same magnitude increase in tension occurs after ionomycin and charybdotoxin treatment, even though the increase in [Ca2+]i induced by charybdotoxin is much smaller than that induced by ionomycin. We conclude that the resting muscle is much less sensitive to elevation of [Ca2+]i when compared to muscles stimulated with ACh. Steady-state [Ca2+]i limits tension development induced by submaximal concentrations of ACh. The activity of KCa moderates the response of the muscle to ACh at concentrations less than 1 µM.  相似文献   

2.
Cyclic ADP-ribose (cADPR), a universal calcium releaser, is generated from NAD(+) by an ADP-ribosyl cyclase and is degraded to ADP-ribose by a cADPR hydrolase. In mammals, both activities are expressed as ectoenzymes by the transmembrane glycoprotein CD38. CD38 was identified in both epithelial cells and smooth myocytes isolated from bovine trachea. Intact tracheal smooth myocytes (TSMs) responded to extracellular cADPR (100 microM) with an increase in intracellular calcium concentration ([Ca(2+)](i)) both at baseline and after acetylcholine (ACh) stimulation. The nonhydrolyzable analog 3-deaza-cADPR (10 nM) elicited the same effects as cADPR, whereas the cADPR antagonist 8-NH(2)-cADPR (10 microM) inhibited both basal and ACh-stimulated [Ca(2+)](i) levels. Extracellular cADPR or 3-deaza-cADPR caused a significant increase of ACh-induced contraction in tracheal smooth muscle strips, whereas 8-NH(2)-cADPR decreased it. Tracheal mucosa strips, by releasing NAD(+), enhanced [Ca(2+)](i) in isolated TSMs, and this increase was abrogated by either NAD(+)-ase or 8-NH(2)-cADPR. These data suggest the existence of a paracrine mechanism whereby mucosa-released extracellular NAD(+) plays a hormonelike function and cADPR behaves as second messenger regulating calcium-related contractility in TSMs.  相似文献   

3.
It has been shown in the experiments carried out on a fraction of inverted vesicles of myometrium sarcolemma that ATP-dependent Ca2+ transport system prevents dissipation of the calcium gradient directed from the intervesicular space outward with subsequent establishment of the stationary level of cation content inside the membrane vesicles (a blocker of electro-controlled calcium channels diltiasems was present in the incubation medium). Ortovanadatean inhibitor of the sarcolemma calcium pump suppressed Ca2+ stationary exchange in the vesicles fraction. The value of calcium stationary content in the vesicle membrane was regulated both by a change of the calcium pump activity (by varying Mg2+ concentration in the ATP-containing incubation medium), and by modification of calcium permeability of the vesicles (by varying concentration of ionophore A-23187 in this medium). In the presence of diltiasem and ortovanadate the Ca2+ basal current entering the myocytes from hyperpotassium washing solution activated the smooth muscle tonic contraction. In the absence of ortovanadate no contractile response was observed. On the basis of the evidence obtained a mechanism of calcium control of myometrium tonic contraction is proposed. According to this mechanism the Ca2+ current entering the unexcited myocytes under physiological conditions is efficiently compensated by the calcium pump of the sarcolemma. The inhibition of the latter (or an increase of the sarcolemma basal calcium permeability) provides further slow transition of the stationary value of Ca2+ concentration in the myoplasm to a new higher level and activation of the smooth muscle contraction accordingly.  相似文献   

4.
This study evaluated the relationship between regional elevation in intracellular calcium concentration ([Ca2+]i) induced by acetylcholine (ACh) and the global cellular responses in porcine tracheal smooth muscle (TSM) cells. Regional (approximately 1.5 microm3) and global (whole cell) changes in [Ca2+]i were measured in fluo-3 loaded TSM cells using real-time confocal microscopy. Regional responses appeared as propagating [Ca2+]i oscillations whereas global responses reflected the spatiotemporal integration of these regional responses. Within a region, [Ca2+]i oscillations were 'biphasic' with initial higher frequencies, followed by slower steady-state oscillations. With increasing ACh concentration, the peak (maximum value relative to 0 nM) of regional [Ca2+]i oscillations remained relatively constant, whereas both frequency and propagation velocity increased. In contrast, the global spatiotemporal integration of the regional oscillatory responses appeared as a concentration-dependent increase in peak as well as mean cellular [Ca2+]i. We conclude that the significance of ACh-induced [Ca2+]i oscillations lies in the establishment of mean [Ca2+]i level for slower Ca2+-dependent physiological processes via modulation of oscillation frequency and propagation velocity.  相似文献   

5.
Vanadate (10(-4)-10(-3) M) effectively blocks Mg2+, ATP-dependent Ca2+ transport in sarcolemmal vesicles and induces a slowly tonic contraction of the smooth muscle. This contraction was observed both with and without nifedipine (10(-5) M) evoking complete inhibition of hyperpotassium contracture, the Ca2+ removal from the solution washing the muscular preparation stimulating the tone decrease. There is a close correlation between the dose-dependent effects of vanadate on the Ca pump activity and tension. It is concluded that in smooth muscles, at least in myometrium, the sarcolemmal Ca-pump is involved into the control of the tonic tension.  相似文献   

6.
7.
Intracellular calcium and smooth muscle contraction   总被引:7,自引:0,他引:7  
Excitation-contraction coupling in smooth muscle involves many processes, some of which are outlined in this article. The total amount of Ca2+ released on excitation is considerably in excess of the free Ca2+ concentration and this implies a high capacity, high affinity Ca2+ buffer system. The two major Ca2+-binding proteins are calmodulin and myosin. Only calmodulin has the appropriate binding affinity to act as a component of the Ca2+-buffer system. The Ca2+-calmodulin complex activates myosin light chain kinase and thus is involved in the regulation of contractile activity. Phosphorylation of myosin stabilizes an active conformation and promotes cross bridge cycling and is essential for the initiation of contraction. During the initial contractile response phosphorylation correlates to tension development and velocity of shortening. However, as contraction continues the extent of myosin phosphorylation and velocity often decreases but tension is maintained. In general, the Ca2+ transient is reflected by the extent of phosphorylation that in turn correlates with shortening velocity. Maintenance of tension at low phosphorylation levels is not accounted for within our understanding of the phosphorylation theory and thus alternative regulatory mechanisms have been implicated. Some of the possibilities are discussed.  相似文献   

8.
The effects of isoproterenol on isometric force, unloaded shortening velocity, and myosin phosphorylation were examined in thin muscle bundles (0.1-0.2 mm diam) dissected from lamb tracheal smooth muscle. Methacholine (10(-6) M) induced rapid increases in isometric force and in phosphorylation of the 20,000-Da myosin light chain. Myosin phosphorylation remained elevated during steady-state maintenance of isometric force. The shortening velocity peaked at 15 s after stimulation with methacholine and then declined to approximately 45% of the maximal value by 3 min. Isoproterenol pretreatment inhibited methacholine-stimulated myosin light chain phosphorylation, shortening velocity, and force during the early stages of force generation. However, the inhibitory effect of isoproterenol on force and myosin phosphorylation is proportionally greater than that on shortening velocity. Isoproterenol pretreatment also caused a rightward non-parallel shift in the methacholine dose-response curves for both isometric tension and myosin light chain phosphorylation. These data demonstrate that isoproterenol attenuates the contractile properties of airway smooth muscles by affecting the rate and extent of myosin light chain phosphorylation, perhaps through a mechanism that involves the synergistic interaction of myosin light chain kinase phosphorylation and Ca2+ metabolism.  相似文献   

9.
Na(+)-K+ ATPase activity of the canine tracheal smooth muscle membrane is responsible for the electrogenic pumping of Na+ and K+ ions. It has been shown that this activity results in muscle relaxation. Based on the results of the current study, we suggest that prolonged electrical stimulation induces increased Na(+)-K+ ATPase activity in isolated tracheal smooth muscle. Tracheal smooth muscle pretreated with prolonged electrical stimulation developed graded mechanical activity when subsequently treated with histamine, serotonin, acetylcholine, or 80 mM K+. This increased isometric tension was interrupted by rhythmic activity, which was elicited by histamine or serotonin but not by acetylcholine or 80 mM K+ stimulation. The spontaneous phasic activity was not inhibited by atropine or propranolol but was totally inhibited by 10(-6) M ouabain. These results suggested that the relaxation phase of rhythmic contraction in response to histamine and serotonin stimulation could be the result of stimulated Na(+)-K+ ATPase activity.  相似文献   

10.
Cooling of isolated guinea pig tracheal smooth muscle from 38 to 28 degrees C over 2.25 min produced a transient contraction followed by sustained relaxation. The cooling-induced contraction was blocked either by pretreatment with ouabain at concentrations of 10(-5) M or greater or by substitution of normal physiological salt solution with K-free solution. In contrast, the contractile response to cooling was not inhibited by pretreatment with phentolamine (10(-5) M), atropine (10(-5) M), tetrodotoxin (3 X 10(-7) M), diphenhydramine (10(-5) M), cromolyn sodium (10(-3) M), indomethacin (3 X 10(-7) M), nifedipine (10(-7) M), or verapamil (3 X 10(-6) M). Addition of NaHCO3 to the bath during cooling, preventing a change in pH of the physiological salt solution, did not affect the cooling-induced contraction. It is concluded that cooling of isolated guinea pig trachea produces a transient ouabain-sensitive contraction, and that the data suggest the contraction is mediated by inhibition of Na-K-ATPase in the smooth muscle rather than through neuronal stimulation or chemical mediator release.  相似文献   

11.
Fluctuations in intracellular calcium concentration ([Ca2+]i) constitute the main link in excitation-contraction coupling (E-C coupling) in airway smooth muscle cells (ASMC). It has recently been reported that ACh induces asynchronous recurring Ca2+ waves in intact ASMC of murine bronchioles. With the use of a novel technique allowing us to simultaneously measure subcellular [Ca2+]i and force generation in ASMC located within an intact tracheal muscle bundle, we examined a similar pattern of Ca2+ signaling in the trachea. We found that application of ACh resulted in the generation of recurring intracellular Ca2+ waves progressing along the longitudinal axis of the ribbon-shaped intact ASMC. These Ca2+ waves were not synchronized between neighboring cells, and induction of wave-like [Ca2+]i oscillations was temporally associated with development of force by the tracheal muscle bundle. By comparing the concentration dependence of force generation and the parameters characterizing the [Ca2+]i oscillations, we found that the concentration-dependent increase in ACh-induced force development by the tracheal smooth muscle bundle is achieved by differential recruitment of intact ASMC to initiate Ca2+ waves and by enhancement in the frequency of [Ca2+]i oscillations and elevation of interspike [Ca2+]i once the cells are recruited. Our findings demonstrate that asynchronous recurring Ca2+ waves underlie E-C coupling in ACh-induced contraction of the intact tracheal smooth muscle bundle. Furthermore, in contrast to what was reported in enzymatically dissociated ASMC, Ca2+ influx through the L-type voltage-gated Ca2+ channel was not an obligatory requirement for the generation of [Ca2+]i oscillations and development of force in ACh-stimulated intact ASMC.  相似文献   

12.
13.
Inositol trisphosphate, calcium and muscle contraction   总被引:13,自引:0,他引:13  
The identity of organelles storing intracellular calcium and the role of Ins(1,4,5)P3 in muscle have been explored with, respectively, electron probe X-ray microanalysis (EPMA) and laser photolysis of 'caged' compounds. The participation of G-protein(s) in the release of intracellular Ca2+ was determined in saponin-permeabilized smooth muscle. The sarcoplasmic reticulum (SR) is identified as the major source of activator Ca2+ in both smooth and striated muscle; similar (EPMA) studies suggest that the endoplasmic reticulum is the major Ca2+ storage site in non-muscle cells. In none of the cell types did mitochondria play a significant, physiological role in the regulation of cytoplasmic Ca2+. The latency of guinea pig portal vein smooth muscle contraction following photolytic release of phenylephrine, an alpha 1-agonist, is 1.5 +/- 0.26 s at 20 degrees C and 0.6 +/- 0.18 s at 30 degrees C; the latency of contraction after photolytic release of Ins(1,4,5)P3 from caged Ins(1,4,5)P3 is 0.5 +/- 0.12 s at 20 degrees C. The long latency of alpha 1-adrenergic Ca2+ release and its temperature dependence are consistent with a process mediated by G-protein-coupled activation of phosphatidylinositol 4,5 bisphosphate (PtdIns(4,5)P2) hydrolysis. GTP gamma S, a non-hydrolysable analogue of GTP, causes Ca2+ release and contraction in permeabilized smooth muscle. Ins(1,4,5)P3 has an additive effect during the late, but not the early, phase of GTP gamma S action, and GTP gamma S can cause Ca2+ release and contraction of permeabilized smooth muscles refractory to Ins(1,4,5)P3. These results suggest that activation of G protein(s) can release Ca2+ by, at least, two G-protein-regulated mechanisms: one mediated by Ins(1,4,5)P3 and the other Ins(1,4,5)P3-independent. The low Ins(1,4,5)P3 5-phosphatase activity and the slow time-course (seconds) of the contractile response to Ins(1,4,5)P3 released with laser flash photolysis from caged Ins(1,4,5)P3 in frog skeletal muscle suggest that Ins(1,4,5)P3 is unlikely to be the physiological messenger of excitation-contraction coupling of striated muscle. In contrast, in smooth muscle the high Ins(1,4,5)P3-5-phosphatase activity and the rate of force development after photolytic release of Ins(1,4,5)P3 are compatible with a physiological role of Ins(1,4,5)P3 as a messenger of pharmacomechanical coupling.  相似文献   

14.
15.
We studied the role of endogenous prostaglandins in modulating the histamine response of canine tracheal smooth muscle (TSM) in vitro. Indomethacin (INDO) (10(-7) - 10(-5) M), a cyclooxygenase and prostaglandin synthesis inhibitor, significantly increased maximum histamine-induced tension (Tmax) and decreased the concentration of histamine required to produce 50% of Tmax (EC50). Acetylsalicylic acid (10(-5) -5 X 10(-4) M), another less potent cyclooxygenase inhibitor, also decreased EC50. Neither the lipoxygenase inhibitor nordihydroguaiaretic acid nor the leukotriene antagonist FPL 55712 had any effect on histamine-induced tension in INDO-pretreated TSM. INDO reduced the standard deviation of EC50 from 0.47 in control TSM (n = 51) to 0.26 in INDO-pretreated TSM (n = 31) (P less than 0.02). High-pressure liquid chromatography established prostacyclin (PGI2), through its degradation product 6-oxo-PGF1 alpha, as the predominant prostaglandin produced by canine TSM. Exogenous PGI2 caused a concentration-dependent relaxation of histamine-contracted TSM. In the tissue bath, spontaneous efflux of 6-oxo-PGF1 alpha from TSM, as measured by radioimmunoassay, averaged 4.7 ng . g muscle-1 . min-1 and increased to 10 ng/g muscle (n = 10, P less than 0.001) with administration of histamine. The isometric tension produced by histamine (10(-4) M) was inversely linearly correlated with the log concentration of endogenous 6-oxo-PGF1 alpha (r = 0.81, P less than 0.01). Our results are consistent with an important role for endogenous bronchodilating prostaglandins, probably prostacyclin, in determining both the histamine sensitivity of canine TSM in vitro and its variability among individual animals.  相似文献   

16.
17.
18.
Smooth muscles are divided into slowly contracting tonic and relatively fast phasic muscles. In both cases Ca2+ is a key mediator of the contractile response. However, the appearance of a tonic component during sphincter or arterial muscle contraction and its absence in contracting visceral smooth muscle is characteristic of their difference. We have found that in chicken tissues phorbol 12,13-dibutyrate (PDBu) induces a sustained contraction in carotid arterial muscle, but provokes no contraction in phasic gizzard smooth muscle. Next we were aimed to find differences in PDBu-induced phosphorylation of the key proteins involved in regulation of smooth muscle contraction, i.e. caldesmon, myosin light chain kinase (MLCK), and the myosin light chain kinase-related protein (KRP, also known as telokin). Two correlative differences were observed. 1. PDBu stimulated phosphorylation of MLCK in tonic smooth muscle and had no effect on the level of MLCK phosphorylation in phasic muscle. Phosphopeptide mapping suggests the involvement of mitogen-activated protein (MAP) kinases in phosphorylation of MLCK in situ. 2. PDBu induced phosphorylation of MAP-kinase sites in caldesmon in both types of smooth muscle, but this phosphorylation had no significant effect on caldesmon functional activity in vitro. For the first time we have shown that in gizzard PDBu also stimulates a yet unknown transitory caldesmon-kinase different from protein kinase, C, Ca2+/calmodulin-dependent kinase II and casein kinase CK2. 3. No significant difference was found in the kinetics of PDBu-dependent phosphorylation of KRP in tonic and phasic smooth muscles. KRP was also demonstrated to be a major phosphoprotein in smooth muscle phosphorylated in vivo at several sites located within its N-terminal sequence. Protein kinases able to phosphorylate these sites were identified in vitro. Among them, MAP-kinase was suggested to phosphorylate a serine residue homologous to that phosphorylated in MLCK. 4. p42erk2 and p38 MAP-kinases were found in phasic and tonic smooth muscles. Both were responsive to PDBu in cultured chicken aortic smooth muscle cells, and their role in phosphorylation of MLCK and low molecular weight isoform of caldesmon was evaluated.  相似文献   

19.
The bundle of tonic fibres situated at the proximal end of the locust metathoracic extensor tibialis muscle is innervated by the dorsal unpaired median neurone (DUMETi) as well as by the slow excitatory (SETi)) and common inhibitor (CI) neurones. It is not innervated by the fast excitatory neurone (FETi).These fibres contract spontaneously and rhythmically. The myogenic rhythm can be modified by neural stimulation.Spontaneous slow depolarizing potentials resembling the pacemaker potentials of insect cardiac muscle were demonstrated in these fibres.The actions of glutamate on the tonic muscle fibres are not compatible with its being a specific excitatory transmitter. Glutamate can stimulate weak contractions of the muscle, but this action is inhibited when chloride ions are removed from the saline.10?6 M Octapamine hyperpolarizes the tonic fibre membrane. Octopamine, GABA and glutamate all inhibit the myogenic contractions and reduce the force of the neurally evoked contractions.The tonic muscle is very responsive to proctolin. At 5 × 10?11 M proctolin enhances the force and increases the frequency of myogenic contractions. At 10?9 M it depolarizes the muscle membrane potential, and at that and higher concentrations it causes the muscle to contract. At 2 × 10?7 M proctolin induces contractures which resemble those evoked by sustained high-frequency neural stimulation. Iontophoretic experiments show that proctolin receptors occur at localized sites on the tonic fibre membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号