首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several members of the FGF gene family have been shown to intervene from various tissue sources to direct otic placode induction and otic vesicle formation. In this study we define the roles of FGF8, found in different expression domains during this process, in mice and chickens. By conditional inactivation of Fgf8 in distinct tissue compartments we demonstrate that Fgf8 is required in the mesoderm and endoderm during early inner ear development. In the chicken embryo, overexpression of Fgf8 from various tissue sources during otic specification leads to a loss of otic tissue. In contrast ectopic overexpression of Fgf10, a major player during murine otic induction, does not influence otic vesicle formation in chicken embryos but results in the formation of ectopic structures with a non-otic character. This study underlines the crucial role of a defined Fgf8 expression pattern controlling inner ear formation in vertebrates.  相似文献   

2.
The vertebrate inner ear develops from initially 'simple' ectodermal placode and vesicle stages into the complex three-dimensional structure which is necessary for the senses of hearing and equilibrium. Although the main morphological events in vertebrate inner ear development are known, the genetic mechanisms controlling them are scarcely understood. Previous studies have suggested that the otic placode is induced by signals from the chordamesoderm and the hindbrain, notably by fibroblast growth factors (Fgfs) and Wnt proteins. Here we study the role of Fgf8 as a bona-fide hindbrain-derived signal that acts in conjunction with Fgf3 during placode induction, maintenance and otic vesicle patterning. Acerebellar (ace) is a mutant in the fgf8 gene that results in a non-functional Fgf8 product. Homozygous mutants for acerebellar (ace) have smaller ears that typically have only one otolith, abnormal semi-circular canals, and behavioral defects. Using gene expression markers for the otic placode, we find that ace/fgf8 and Fgf-signaling are required for normal otic placode formation and maintenance. Conversely, misexpression of fgf8 or Fgf8-coated beads implanted into the vicinity of the otic placode can increase ear size and marker gene expression, although competence to respond to the induction appears restricted. Cell transplantation experiments and expression analysis suggest that Fgf8 is required in the hindbrain in the rhombomere 4-6 area to restore normal placode development in ace mutants, in close neighbourhood to the forming placode, but not in mesodermal tissues. Fgf3 and Fgf8 are expressed in hindbrain rhombomere 4 during the stages that are critical for placode induction. Joint inactivation of Fgf3 and Fgf8 by mutation or antisense-morpholino injection causes failure of placode formation and results in ear-less embryos, mimicking the phenotype we observe after pharmacological inhibition of Fgf-signaling. Fgf8 and Fgf3 together therefore act during induction and differentiation of the ear placode. In addition to the early requirement for Fgf signaling, the abnormal differentiation of inner ear structures and mechanosensory hair cells in ace mutants, pharmacological inhibition of Fgf signaling, and the expression of fgf8 and fgf3 in the otic vesicle demonstrate independent Fgf function(s) during later development of the otic vesicle and lateral line organ. We furthermore addressed a potential role of endomesomerm by studying mzoep mutant embryos that are depleted of head endomesodermal tissue, including chordamesoderm, due to a lack of Nodal-pathway signaling. In these embryos, early placode induction proceeds largely normally, but the ear placode extends abnormally to midline levels at later stages, suggesting a role for the midline in restricting placode development to dorsolateral levels. We suggest a model of zebrafish inner ear development with several discrete steps that utilize sequential Fgf signals during otic placode induction and vesicle patterning.  相似文献   

3.
Fgf3 and Fgf10 are required for mouse otic placode induction   总被引:1,自引:0,他引:1  
The inner ear, which contains the sensory organs specialised for audition and balance, develops from an ectodermal placode adjacent to the developing hindbrain. Tissue grafting and recombination experiments suggest that placodal development is directed by signals arising from the underlying mesoderm and adjacent neurectoderm. In mice, Fgf3 is expressed in the neurectoderm prior to and concomitant with placode induction and otic vesicle formation, but its absence affects only the later stages of otic vesicle morphogenesis. We show here that mouse Fgf10 is expressed in the mesenchyme underlying the prospective otic placode. Embryos lacking both Fgf3 and Fgf10 fail to form otic vesicles and have aberrant patterns of otic marker gene expression, suggesting that FGF signals are required for otic placode induction and that these signals emanate from both the hindbrain and mesenchyme. These signals are likely to act directly on the ectoderm, as double mutant embryos showed normal patterns of gene expression in the hindbrain. Cell proliferation and survival were not markedly affected in double mutant embryos, suggesting that the major role of FGF signals in otic induction is to establish normal patterns of gene expression in the prospective placode. Finally, examination of embryos carrying three out of the four mutant Fgf alleles revealed intermediate phenotypes, suggesting a quantitative requirement for FGF signalling in otic vesicle formation.  相似文献   

4.
Fgf and Wnt signalling have been shown to be required for formation of the otic placode in vertebrates. Whereas several Fgfs including Fgf3, Fgf8 and Fgf10 have been shown to participate during early placode induction, Wnt signalling is required for specification and maintenance of the otic placode, and dorsal patterning of the otic vesicle. However, the requirement for specific members of the Wnt gene family for otic placode and vesicle formation and their potential interaction with Fgf signalling has been poorly defined. Due to its spatiotemporal expression during placode formation in the hindbrain Wnt8a has been postulated as a potential candidate for its specification. Here we have examined the role of Wnt8a during formation of the otic placode and vesicle in mouse embryos. Wnt8a expression depends on the presence of Fgf3 indicating a serial regulation between Fgf and Wnt signalling during otic placode induction and specification. Wnt8a by itself however is neither essential for placode specification nor redundantly required together with Fgfs for otic placode and vesicle formation. Interestingly however, Wnt8a and Fgf3 are redundantly required for expression of Fgf15 in the hindbrain indicating additional reciprocal interactions between Fgf and Wnt signalling. Further reduction of Wnt signalling by the inactivation of Wnt1 in a Wnt8a mutant background revealed a redundant requirement for both genes during morphogenesis of the dorsal portion of the otic vesicle.  相似文献   

5.
Requirements for FGF3 and FGF10 during inner ear formation   总被引:8,自引:0,他引:8  
Members of the fibroblast growth factor (FGF) gene family control formation of the body plan and organogenesis in vertebrates. FGF3 is expressed in the developing hindbrain and has been shown to be involved in inner ear development of different vertebrate species, including zebrafish, Xenopus, chick and mouse. In the mouse, insertion of a neomycin resistance gene into the Fgf3 gene via homologous recombination results in severe developmental defects during differentiation of the otic vesicle. We have addressed the precise roles of FGF3 and other FGF family members during formation of the murine inner ear using both loss- and gain-of-function experiments. We generated a new mutant allele lacking the entire FGF3-coding region but surprisingly found no evidence for severe defects either during inner ear development or in the mature sensory organ, suggesting the functional involvement of other FGF family members during its formation. Ectopic expression of FGF10 in the developing hindbrain of transgenic mice leads to the formation of ectopic vesicles, expressing some otic marker genes and thus indicating a role for FGF10 during otic vesicle formation. Expression analysis of FGF10 during mouse embryogenesis reveals a highly dynamic pattern of expression in the developing hindbrain, partially overlapping with FGF3 expression and coinciding with formation of the inner ear. However, FGF10 mutant mice have been reported to display only mild defects during inner ear differentiation. We thus created double mutant mice for FGF3 and FGF10, which form severely reduced otic vesicles, suggesting redundant roles of these FGFs, acting in combination as neural signals for otic vesicle formation.  相似文献   

6.
The inner ear develops from an ectodermal placode that is specified by inductive signals from the adjacent neurectoderm and underlying mesoderm. In chick, fibroblast growth factor (Fgf)-19 is expressed in mesoderm underlying the presumptive otic placode, and human FGF19 induces expression of otic markers in a tissue explant containing neural plate and surface ectoderm. We show here that mouse Fgf15 is the sequence homolog of chick and human Fgf19/FGF19. In addition, we show that FGF15, like FGF19, is sufficient to induce expression of otic markers in a chick explant assay, suggesting that these FGFs are orthologs. Mouse embryos lacking Fgf15, however, do not have otic abnormalities at E9.5-E10.5, suggesting that Fgf15 is not uniquely required for otic induction or early patterning of the otocyst. To compare FGF15 and FGF19 signaling components and assess where signals potentially redundant with FGF15 might function, we determined the expression patterns of Fgf15 and Fgf19. Unlike Fgf19, Fgf15 is not expressed in mesoderm underlying the presumptive otic placode, but is expressed in the adjacent neurectoderm. Fgfr4, which encodes the likely receptor for both FGF19 and FGF15, is expressed in the neurectoderm of both species, and is also expressed in the mesoderm only in chick. These results suggest the hypotheses that during otic induction, FGF19 signals in either an autocrine fashion to the mesoderm or a paracrine fashion to the neurectoderm, whereas FGF15 signals in an autocrine fashion to the neurectoderm. Thus, the FGFs that signal to the neurectoderm are the best potential candidates for redundancy with FGF15 during mouse otic development.  相似文献   

7.
The inner ear, which contains sensory organs specialized for hearing and balance, develops from an ectodermal placode that invaginates lateral to hindbrain rhombomeres (r) 5-6 to form the otic vesicle. Under the influence of signals from intra- and extraotic sources, the vesicle is molecularly patterned and undergoes morphogenesis and cell-type differentiation to acquire its distinct functional compartments. We show in mouse that Fgf3, which is expressed in the hindbrain from otic induction through endolymphatic duct outgrowth, and in the prospective neurosensory domain of the otic epithelium as morphogenesis initiates, is required for both auditory and vestibular function. We provide new morphologic data on otic dysmorphogenesis in Fgf3 mutants, which show a range of malformations similar to those of Mafb (Kreisler), Hoxa1 and Gbx2 mutants, the most common phenotype being failure of endolymphatic duct and common crus formation, accompanied by epithelial dilatation and reduced cochlear coiling. The malformations have close parallels with those seen in hearing-impaired patients. The morphologic data, together with an analysis of changes in the molecular patterning of Fgf3 mutant otic vesicles, and comparisons with other mutations affecting otic morphogenesis, allow placement of Fgf3 between hindbrain-expressed Hoxa1 and Mafb, and otic vesicle-expressed Gbx2, in the genetic cascade initiated by WNT signaling that leads to dorsal otic patterning and endolymphatic duct formation. Finally, we show that Fgf3 prevents ventral expansion of r5-6 neurectodermal Wnt3a, serving to focus inductive WNT signals on the dorsal otic vesicle and highlighting a new example of cross-talk between the two signaling systems.  相似文献   

8.
The hindbrain and cranial paraxial mesoderm have been implicated in the induction and patterning of the inner ear, but the precise role of the two tissues in these processes is still not clear. We have addressed these questions using the vitamin-A-deficient (VAD) quail model, in which VAD embryos lack the posterior half of the hindbrain that normally lies next to the inner ear. Using a battery of molecular markers, we show that the anlagen of the inner ear, the otic placode, is induced in VAD embryos in the absence of the posterior hindbrain. By performing grafting and ablation experiments in chick embryos, we also show that cranial paraxial mesoderm which normally lies beneath the presumptive otic placode is necessary for otic placode induction and that paraxial mesoderm from other locations cannot induce the otic placode. Two members of the fibroblast growth factor family, FGF3 and FGF19, continue to be expressed in this mesodermal population in VAD embryos, and these may be responsible for otic placode induction in the absence of the posterior hindbrain. Although the posterior hindbrain is not required for otic placode induction in VAD embryos, the subsequent patterning of the inner ear is severely disrupted. Several regional markers of the inner ear, such as Pax2, EphA4, SOHo1 and Wnt3a, are incorrectly expressed in VAD otocysts, and the sensory patches and vestibulo-acoustic ganglia are either greatly reduced or absent. Exogenous application of retinoic acid prior to 30 h of development is able rescue the VAD phenotype. By performing such rescue experiments before and after 30 h of development, we show that the inner ear defects of VAD embryos correlate with the absence of the posterior hindbrain. These results show that induction and patterning of the inner ear are governed by separate developmental processes that can be experimentally uncoupled from each other.  相似文献   

9.
Vertebrate inner ear develops from its rudiment, otic placode, which later forms otic vesicle and gives rise to tissues comprising the entire inner ear. Although several signaling molecules have been identified as candidates responsible for inner ear specification and patterning, many details remain elusive. Here, we report that Paraxial Protocadherin (PAPC) is required for otic vesicle formation in Xenopus embryos. PAPC is expressed strictly in presumptive otic placode and later in otic vesicle during inner ear morphogenesis. Knockdown of PAPC by dominant-negative PAPC results in the failure of otic vesicle formation and the loss of early inner ear markers Sox9 and Tbx2, suggesting the requirement of PAPC in the early stage of otic vesicle development. However, PAPC alone is not sufficient to induce otic placode formation.  相似文献   

10.
11.
The mammalian inner ear comprises the cochleovestibular labyrinth, derived from the ectodermal otic placode, and the encasing bony labyrinth of the temporal bone. Epithelial-mesenchymal interactions are thought to control inner ear development, but the modes and the molecules involved are largely unresolved. We show here that, during the precartilage and cartilage stages, Fgf9 is expressed in specific nonsensory domains of the otic epithelium and its receptors, Fgfr1(IIIc) and Fgfr2(IIIc), widely in the surrounding mesenchyme. To address the role of Fgf9 signaling, we analyzed the inner ears of mice homozygous for Fgf9 null alleles. Fgf9 inactivation leads to a hypoplastic vestibular component of the otic capsule and to the absence of the epithelial semicircular ducts. Reduced proliferation of the prechondrogenic mesenchyme was found to underlie capsular hypoplasticity. Semicircular duct development is blocked at the initial stages, since fusion plates do not form. Our results show that the mesenchyme directs fusion plate formation and they give direct evidence for the existence of reciprocal epithelial-mesenchymal interactions in the developing inner ear. In addition to the vestibule, in the cochlea, Fgf9 mutation caused defects in the interactions between the Reissner's membrane and the mesenchymal cells, leading to a malformed scala vestibuli. Together, these data show that Fgf9 signaling is required for inner ear morphogenesis.  相似文献   

12.
The vertebrate inner ear develops from an ectodermal placode adjacent to rhombomeres 4 to 6 of the segmented hindbrain. The placode then transforms into a vesicle and becomes regionalised along its anteroposterior, dorsoventral and mediolateral axes. To investigate the role of hindbrain signals in instructing otic vesicle regionalisation, we analysed ear development in zebrafish mutants for vhnf1, a gene expressed in the caudal hindbrain during otic induction and regionalisation. We show that, in vhnf1 homozygous embryos, the patterning of the otic vesicle is affected along both the anteroposterior and dorsoventral axes. First, anterior gene expression domains are either expanded along the whole anteroposterior axis of the vesicle or duplicated in the posterior region. Second, the dorsal domain is severely reduced, and cell groups normally located ventrally are shifted dorsally, sometimes forming a single dorsal patch along the whole AP extent of the otic vesicle. Third, and probably as a consequence, the size and organization of the sensory and neurogenic epithelia are disturbed. These results demonstrate that, in zebrafish, signals from the hindbrain control the patterning of the otic vesicle, not only along the anteroposterior axis, but also, as in amniotes, along the dorsoventral axis. They suggest that, despite the evolution of inner ear structure and function, some of the mechanisms underlying the regionalisation of the otic vesicle in fish and amniotes have been conserved.  相似文献   

13.
Induction of the otic placode, the rudiment of the inner ear, is believed to depend on signals derived from surrounding tissues, the head mesoderm and the prospective hindbrain. Here we report the first attempt to define the specific contribution of the neuroectoderm to this inductive process in Xenopus. To this end we tested the ability of segments of the neural plate (NP), isolated from different axial levels, to induce the otic marker Pax8 when recombined with blastula stage animal caps. We found that one single domain of the NP, corresponding to the prospective anterior hindbrain, had Pax8-inducing activity in this assay. Surprisingly, more than half of these recombinants formed otic vesicle-like structures. Lineage tracing experiments indicate that these vesicle-like structures are entirely derived from the animal cap and express several pan-otic markers. Pax8 activation in these recombinants requires active Fgf and canonical Wnt signaling, as interference with either pathway blocks Pax8 induction. Furthermore, we demonstrate that Fgf and canonical Wnt signaling cooperate to activate Pax8 expression in isolated animal caps. We propose that in the absence of mesoderm cues the combined activity of hindbrain-derived Wnt and Fgf signals specifies the otic placode in Xenopus, and promotes its morphogenesis into an otocyst.  相似文献   

14.
Inner ear develops from an induced surface ectoderm placode that invaginates and closes to form the otic vesicle, which then undergoes a complex morphogenetic process to form the membranous labyrinth. Inner ear morphogenesis is severely affected in Gata3 deficient mouse embryos, but the onset and basis of the phenotype has not been known. We show here that Gata3 deficiency leads to severe and unique abnormalities during otic placode invagination. The invagination problems are accompanied often by the formation of a morphological boundary between the dorsal and ventral otic cup and by the precocious appearance of dorsal endolymphatic characteristics. In addition, the endolymphatic domain often detaches from the rest of the otic epithelium during epithelial closure. The expression of several cell adhesion mediating genes is altered in Gata3 deficient ears suggesting that Gata3 controls adhesion and morphogenetic movements in early otic epithelium. Inactivation of Gata3 leads also to a loss of Fgf10 expression in otic epithelium and auditory ganglion demonstrating that Gata3 is an important regulator of Fgf-signalling during otic development.  相似文献   

15.
Expression and functions of FGF ligands during early otic development   总被引:2,自引:0,他引:2  
Classical studies have postulated the action of an endomesodermal signal initiating inner ear induction, subsequently followed by a neural tube-derived signal to complete the process of otic placode formation in the surface ectoderm. Members of the Fibroblast growth factor (FGF) gene family have been implicated in these processes. In this review, expression analysis and recent experimental evidence for candidate inner ear FGF ligands during inner ear induction is discussed. Careful examination of the spatiotemporal expression patterns of different FGFs during inner ear induction reveals that the sequential appearance of FGF members in the endoderm and/or mesoderm is followed by expression in the posterior hindbrain in all vertebrate species analysed to date. Experimental manipulations have demonstrated the sufficiency and/or necessity of some FGFs during different steps of inner ear induction in vitro and in vivo. Combining the advantages of the molecular tools and approaches available in different experimental systems such as zebrafish, chicken or mouse will eventually lead to a complete understanding of how FGFs control inner ear induction in vertebrates.  相似文献   

16.
The inner ear develops from a patch of thickened cranial ectoderm adjacent to the hindbrain called the otic placode. Studies in a number of vertebrate species suggest that the initial steps in induction of the otic placode are regulated by members of the Fibroblast Growth Factor (FGF) family, and that inhibition of FGF signaling can prevent otic placode formation. To better understand the genetic pathways activated by FGF signaling during otic placode induction, we performed microarray experiments to estimate the proportion of chicken otic placode genes that can be up-regulated by the FGF pathway in a simple culture model of otic placode induction. Surprisingly, we find that FGF is only sufficient to induce about 15% of chick otic placode-specific genes in our experimental system. However, pharmacological blockade of the FGF pathway in cultured chick embryos showed that although FGF signaling was not sufficient to induce the majority of otic placode-specific genes, it was still necessary for their expression in vivo. These inhibitor experiments further suggest that the early steps in otic placode induction regulated by FGF signaling occur through the MAP kinase pathway. Although our work suggests that FGF signaling is necessary for otic placode induction, it demonstrates that other unidentified signaling pathways are required to co-operate with FGF signaling to induce the full otic placode program.  相似文献   

17.
杨志  姚俊  曹新 《遗传》2018,40(7):515-524
内耳是感受听觉和平衡觉的复杂器官。在内耳发育过程中,成纤维生长因子(fibroblast growth factor, FGF)信号通路参与了听基板的诱导、螺旋神经节(statoacoustic ganglion, SAG)的发育以及Corti器感觉上皮的分化。FGF信号开启了内耳早期发育的基因调控网络,诱导前基板区域以及听基板的形成。正常表达的FGF信号分子可促进听囊腹侧成神经细胞的特化,但成熟SAG神经元释放的过量FGF5可抑制此过程,形成负反馈环路使SAG在稳定状态下发育。FGF20在Notch信号通路的调控下参与了前感觉上皮区域向毛细胞和支持细胞的分化过程,而内毛细胞分泌的FGF8可调控局部支持细胞分化为柱细胞。人类FGF信号通路异常可导致多种耳聋相关遗传病。此外,FGF信号通路在低等脊椎动物毛细胞自发再生以及干细胞向内耳毛细胞诱导过程中都起到了关键作用。本文综述了FGF信号通路在内耳发育调控以及毛细胞再生中的作用及其相关研究进展,以期为毛细胞再生中FGF信号通路调控机制的阐明奠定理论基础。  相似文献   

18.
19.
Induction of the otic placode, which gives rise to all tissues comprising the inner ear, is a fundamental aspect of vertebrate development. A number of studies indicate that fibroblast growth factor (Fgf), especially Fgf3, is necessary and sufficient for otic induction. However, an alternative model proposes that Fgf must cooperate with Wnt8 to induce otic differentiation. Using a genetic approach in zebrafish, we tested the roles of Fgf3, Fgf8 and Wnt8. We demonstrate that localized misexpression of either Fgf3 or Fgf8 is sufficient to induce ectopic otic placodes and vesicles, even in embryos lacking Wnt8. Wnt8 is expressed in the hindbrain around the time of otic induction, but loss of Wnt8 merely delays expression of preotic markers and otic vesicles form eventually. The delay in otic induction correlates closely with delayed expression of fgf3 and fgf8 in the hindbrain. Localized misexpression of Wnt8 is insufficient to induce ectopic otic tissue. By contrast, global misexpression of Wnt8 causes development of supernumerary placodes/vesicles, but this reflects posteriorization of the neural plate and consequent expansion of the hindbrain expression domains of Fgf3 and Fgf8. Embryos that misexpress Wnt8 globally but are depleted for Fgf3 and Fgf8 produce no otic tissue. Finally, cells in the preotic ectoderm express Fgf (but not Wnt) reporter genes. Thus, preotic cells respond directly to Fgf but not Wnt8. We propose that Wnt8 serves to regulate timely expression of Fgf3 and Fgf8 in the hindbrain, and that Fgf from the hindbrain then acts directly on preplacodal cells to induce otic differentiation.  相似文献   

20.
The widely held view that neurogenic placodes are vertebrate novelties has been challenged by morphological and molecular data from tunicates suggesting that placodes predate the vertebrate divergence. Here, we examine requirements for the development of the tunicate atrial siphon primordium, thought to share homology with the vertebrate otic placode. In vertebrates, FGF signaling is required for otic placode induction and for later events following placode invagination, including elaboration and patterning of the inner ear. We show that results from perturbation of the FGF pathway in the ascidian Ciona support a similar role for this pathway: inhibition with MEK or Fgfr inhibitor at tailbud stages in Ciona results in a larva which fails to form atrial placodes; inhibition during metamorphosis disrupts development of the atrial siphon and gill slits, structures which form where invaginated atrial siphon ectoderm apposes pharyngeal endoderm. We show that laser ablation of atrial primordium ectoderm also results in a failure to form gill slits in the underlying endoderm. Our data suggest interactions required for formation of the atrial siphon and highlight the role of atrial ectoderm during gill slit morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号