首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 174 毫秒
1.
About 95% of the ultraviolet (UV) photons reaching the Earth’s surface are UV-A (315–400 nm) photons. Plant responses to UV-A radiation have been less frequently studied than those to UV-B (280–315 nm) radiation. Most previous studies on UV-A radiation have used an unrealistic balance between UV-A, UV-B, and photosynthetically active radiation (PAR). Consequently, results from these studies are difficult to interpret from an ecological perspective, leaving an important gap in our understanding of the perception of solar UV radiation by plants. Previously, it was assumed UV-A/blue photoreceptors, cryptochromes and phototropins mediated photomorphogenic responses to UV-A radiation and “UV-B photoreceptor” UV RESISTANCE LOCUS 8 (UVR8) to UV-B radiation. However, our understanding of how UV-A radiation is perceived by plants has recently improved. Experiments using a realistic balance between UV-B, UV-A, and PAR have demonstrated that UVR8 can play a major role in the perception of both UV-B and short-wavelength UV-A (UV-Asw, 315 to ∼350 nm) radiation. These experiments also showed that UVR8 and cryptochromes jointly regulate gene expression through interactions that alter the relative sensitivity to UV-B, UV-A, and blue wavelengths. Negative feedback loops on the action of these photoreceptors can arise from gene expression, signaling crosstalk, and absorption of UV photons by phenolic metabolites. These interactions explain why exposure to blue light modulates photomorphogenic responses to UV-B and UV-Asw radiation. Future studies will need to distinguish between short and long wavelengths of UV-A radiation and to consider UVR8’s role as a UV-B/UV-Asw photoreceptor in sunlight.

In sunlight, UVR8 mediates the perception of both UV-B and short-wavelength UV-A radiation with its sensitivity moderated by blue light perceived through cryptochromes.  相似文献   

2.
The regulation of oxyradicals and PSII activity by UV-B (280-315 nm) and UV-A (315-400 nm) components were investigated in the leaves of maize [Zea mays L. var: HQPM.1]. The impact of ambient UV radiation on the production of superoxide (O2-) and hydroxyl (.OH) radicals were analysed in the leaves of 20-day-old plants. The amount of O2.- and .OH radicals and the radical scavenging activity were significantly higher in the leaves exposed to ambient UV radiation as compared to the leaves of the plants grown under UV exclusion filters. Smaller amount of oxyradicals in the leaves of UV excluded plants was accompanied by a substantial increase in quantum yield of electron transport (phi Eo), rate of electron transport (psi o) and performance index (PIABS), as indicated by chlorophyll a fluorescence transient. Although higher amounts of oxyradicals invoked higher activity of antioxidant enzymes like superoxide dismutase and peroxidase under ambient UV, they also imposed limitation on the photosynthetic efficiency of PSII. Exclusion of UV components (UV-B 280-315 nm; UV-A 315-400 nm) translated to enhanced photosynthesis, growth and biomass. Thus, solar UV components, especially in the tropical region, could be a major limiting factor in the photosynthetic efficiency of the crop plants.  相似文献   

3.
Appropriate controls in outdoor UV-B supplementation experiments   总被引:7,自引:0,他引:7  
Quercus robur L. saplings were exposed in an outdoor experiment to supplemental levels of UV-8 (280–315 nm) radiation using treatment arrays of cellulose diacetate-filtered fluorescent lamps that also produce UV-A (315–400 nm) radiation. Saplings were also exposed to UV-A radiation alone using control arrays of the same lamps filtered with polyester and to ambient levels of radiation, using arrays of unenergized lamps. The UV-B treatment was modulated to maintain a 30% elevation above the ambient level of UV-B radiation, measured by a broad-band sensor weighted with an erythemal action spectrum. Saplings exposed to UV-B radiation beneath treatment arrays developed thicker leaves than those beneath ambient and control arrays. Despite the fact that supplemental levels of UV-A radiation were only a small percentage of ambient levels, apparent UV-A effects were also recorded. Significant increases in sapling height, lammas shoot length and herbivory by chewing insects were observed under treatment and control arrays, relative to ambient, but there were no differences between the responses of saplings under treatment and control. These data imply that supplemental UV-A radiation or other effects associated with energised lamps can significantly affect plant growth parameters and herbivory in outdoor studies. We conclude that the results from current outdoor UV-B supplementation experiments that lack control exposures using polyester-filtered lamps need to be interpreted with caution and that future supplementation experiments should include appropriate controls.  相似文献   

4.
UV irradiation has been shown to activate the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) in cell culture; however, only limited studies have been described in vivo. UV light has been categorized as UV-A (400 to 315 nm), -B (315 to 280 nm), or -C (less than 280 nm); the longer wavelengths are less harmful but more penetrative. Highly penetrative UV-A radiation constitutes the vast majority of UV sunlight reaching the earth's surface but is normally harmless. UV-B irradiation is more harmful but less prevalent than UV-A. In this report, the HIV-1 LTR-luciferase gene in the skin of transgenic mice was markedly activated when exposed to UV-B irradiation. The LTR in the skin of transgenic mice pretreated topically with a photosensitizing agent (psoralen) was also activated to similar levels when exposed to UV-A light. A 2-h exposure to sunlight activated the LTR in skin treated with psoralen, whereas the LTR in skin not treated with psoralen was activated after 7 h of sunlight exposure. The HIV-1 LTR-beta-galactosidase reporter gene was preferentially activated by UV-B irradiation in a small population of epidermal cells. The transgenic mouse models carrying HIV-1 LTR-luciferase and LTR-beta-galactosidase reporter genes have been used to demonstrate the in vivo UV-induced activation of the LTR and might be used to evaluate other environmental factors or pharmacologic substances that might potentially activate the HIV-1 LTR in vivo.  相似文献   

5.
Spectral balance and UV-B sensitivity of soybean: a field experiment   总被引:12,自引:5,他引:7  
Soybean [Glycine max (L.) Merr.] cultivar Essex was grown and tested for sensitivity to UV-B radiation (280–320 nm) under different combinations of UV-A (320–400 nm) and PFD (400–700 nm) radiation in four simultaneous field experiments. The radiation conditions were effected with combinations of filtered solar radiation and UV-B and UV-A lamps electronically modulated to track ambient radiation. Significant UV-B-caused decreases in total aboveground production and growth were seen only when PFD and UV-A were reduced to less than half their flux in sunlight. When PFD was low, UV-A appeared to be particularly effective in mitigating UV-B damage. However, when PFD was high, substantial UV-A did not appear to be required for UV-B damage mitigation. Leaf chlorophyll fluorescence did not indicate photosynthetic damage under any radiation combination. With UV-B, leaves in all experiments exhibited increased UV-absorbing pigments and decreased whole-leaf UV transmittance. Results of these field experiments indicate difficulties in extrapolating from UV-B experiments conducted in glasshouse or growth cabinet conditions to plant UV-B sensitivity in the field. Implications for UV radiation weighting functions in evaluating atmospheric ozone reduction are also raised.  相似文献   

6.
Liquid cultures of the terrestrial cyanobacterium Nostoc commune derived from field material were treated with artificial UV-B and UV-A irradiation. We studied the induction of various pigments which are though to provide protection against damaging UV-B irradiation. First, UV-B irradiation induced an increase in carotenoids, especially echinenone and myxoxanthophyll, but did not influence production of chlorophyll a. Second, an increase of an extracellular, water-soluble UV-A/B-absorbing mycosporine occurred, which was associated with extracellular glycan synthesis. Finally, synthesis of scytonemin, a lipid-soluble, extracellular pigment known to function as a UV-A sunscreen, was observed. After long-time exposure, the UV-B effect on carotenoid and scytonemin synthesis ceased whereas the mycosporine content remained constantly high. The UV-B sunscreen mycosporine is exclusively induced by UV-B (< 315 nm). The UV-A sunscreen scytonemin is induced only slightly by UV-B (< 315 nm), very strongly by near UV-A (350 to 400 nm), and not at all by far UV-A (320 to 350 nm). These results may indicate that the syntheses of these UV sunscreens are triggered by different UV photoreceptors.  相似文献   

7.
We examined the influence of short-term exposure of different UV wavebands on the fine-scale kinetics of hypocotyl growth of dim red light-grown cucumbers (Cucumis sativus L.) and other selected dicotyledonous seedlings to evaluate: (1) whether responses induced by UV-B radiation (280-320 nm) are qualitatively different from those induced by UV-A (320-400 nm) radiation, and (2) whether different wavebands within the UV-B elicit different responses. Responses to brief (30 min) irradiations with 3 different UV wavebands all included transient inhibition of elongation during irradiation followed by wavelength specific responses. Irradiations with proportionally greater short wavelength UV-B (37% of UV-B between 280 and 300 nm) induced inhibition of hypocotyl elongation within 20 min of onset of irradiation, while UV-B including only wavelengths longer than 290 nm (and only 8% of UV-B between 290 and 300 nm) induced inhibition of hypocotyl elongation with a lag of 1-2 h. The response to short wavelength UV-B was persistent for at least 24 h, while the response to long wavelength UV-B lasted only 2-3 h. The UV-A treatment induced reductions in elongation rates of approximately 6-9 h following exposure followed by a continued decline in rates for the following 15-18 h. Short wavelength UV-B also induced positive phototropic curvature in both cucumber and Arabidopsis seedlings, and this response was present in nph-1 mutant Arabidopsis seedlings defective in normal blue light phototropism. Reciprocity was not found for the response to short wavelength UV-B. The short wavelength and long wavelength UV-B responses differed in dose-response relationships and both short wavelength responses (phototropic curvature and elongation inhibition) increased sharply at wavelengths below 300 nm. These results indicate that different photosensory processes are involved in mediating growth and morphological responses to short wavelength UV-B (280-300 nm), long wavelength UV-B (essentially 300-320 nm) and UV-A. The existence of two separate types of hypocotyl inhibition responses to UV-B, with one that depends on the intensity of the light source, provides alternate interpretations to findings in other studies of UV-B induced photomorphogenesis and may explain inconsistencies between action spectra for inhibition of stem growth.  相似文献   

8.
The physiological effects unique to solar ultraviolet (UV)-B exposure (280-315 nm) are difficult to accurately replicate in the laboratory. This study evaluates the effectiveness of the sodium urate anion in a liquid filter that yields a spectrum nearly indistinguishable from the solar UV-B spectrum while filtering the emissions of widely used UV-B lamps. The photochemical properties and stability of this filter are examined and weighed against a typical spectrum of ground-level solar UV-B radiation. To test the effectiveness of this filter, light-saturated photosynthetic oxygen evolution rates were measured following exposure to UV-B filtered either by this urate filter or the widely used cellulose acetate (CA) filter. The ubiquitous marine Chlorophyte alga Dunaliella tertiolecta was tested under identical UV-B flux densities coupled with ecologically realistic fluxes of UV-A and visible radiation for 6 and 12 h exposures. These results indicate that the urate-filtered UV-B radiation yields minor photosynthetic inhibition when compared with exposures lacking in UV-B. This is in agreement with published experiments using solar radiation. In sharp contrast, radiation filtered by CA filters produced large inhibition of photosynthesis.  相似文献   

9.
Grape (Vitis vinifera cv Silvaner) vine plants were cultivated under shaded conditions in the absence of ultraviolet (UV) radiation in a greenhouse, and subsequently placed outdoors under three different light regimes for 7 d. Different light regimes were produced by filters transmitting natural radiation, or screening out the UV-B (280-315 nm), or screening out the UV-A (315-400 nm) and the UV-B spectral range. During exposure, synthesis of UV-screening phenolics in leaves was quantified using HPLC: All treatments increased concentrations of hydroxycinnamic acids but the rise was highest, reaching 230% of the initial value, when UV radiation was absent. In contrast, UV-B radiation specifically increased flavonoid concentrations resulting in more than a 10-fold increase. Transmittance in the UV of all extracted phenolics was lower than epidermal UV transmittance determined fluorimetrically, and the two parameters were curvilinearly related. It is suggested that curvilinearity results from different absorption properties of the homogeneously dissolved phenolics in extracts and of the non-homogeneous distribution of phenolics in the epidermis. UV-B-dependent inhibition of maximum photochemical yield of photosystem II (PSII), measured as variable fluorescence of dark-adapted leaves, recovered in parallel to the buildup of epidermal screening for UV-B radiation, suggesting that PSII is protected against UV-B damage by epidermal screening. However, UV-B inhibition of CO(2) assimilation rates was not diminished by efficient UV-B screening. We propose that protection of UV-B inactivation of PSII is observed because preceding damage is efficiently repaired while those factors determining UV-B inhibition of CO(2) assimilation recover more slowly.  相似文献   

10.
Field experiments were conducted to determine the effects of exclusion of UV-A/B and UV-B alone on growth parameters, activity of antioxidant enzymes, level of antioxidants and yield, to evaluate the intra-specific variations in sensitivity of these responses in eight soybean (Glycine max) varieties (PK-472, PK-1029, Pusa-24, JS-7105, JS-335, Hardee, NRC-7 and Kalitur). The plants were grown in specially designed UV-exclusion chambers which lined with selective UV filters to exclude either UV-B (<320 nm) or UV-A/B (<400 nm). Plants grown under UV-exclusion filters were compared with those grown under polythene filter which transmitted ambient UV-B and UV-A radiation. The results indicate that the exclusion of solar UV-B and UV-A/B enhanced the vegetative growth (plant height and leaf area), total biomass accumulation and yield (number of seeds and seed weight) of all the varieties as compared with those grown under ambient UV. The activities of SOD, GPX, APX and GR, and levels of ASA were significantly decreased, while α-tocopherol increased after the exclusion of UV-B and UV-A/B in all varieties. These results suggest that the ambient level of UV-B and UV-A radiation evoked some active oxygen species to accumulate, which in turn retarded the growth, development and yield of soybean varieties. On the basis of biomass, UV-B (280–315 nm) sensitivity can be arranged in decreasing order as PK-472 > Hardee > JS-335 > Kalitur > JS 71-05 > Pusa-24 > NRC-7 > PK-1029 and UV-A/B sensitivity can be arranged in decreasing order as PK-472 > Kalitur > JS-335 > Hardee > Pusa-24 > JS 71-05 > NRC-7 > PK-1029. The results indicate var. PK-472 is more sensitive than other varieties and PK-1029 is least sensitive to ambient level of UV radiation. This study in the area of UV-B and UV-A/B stress provides an extensive data that can be used as a predictive basis in crop sciences to further investigate some of the tolerant varieties in field studies.  相似文献   

11.
At Helgoland, in the North Sea, growth of the high sublittoral brown macroalga Dictyota dichotoma (Hudson) Lamoroux was examined in October (the time of tetraspore release) in an outdoor tank by exposing 2-day-old germlings to four solar radiation treatments achieved with different filter materials or an additional artificial light source: photosynthetically active radiation (PAR; 395–700 nm), PAR plus ultraviolet (UV)-A (320–700 nm), full solar spectrum, or solar spectrum plus artificial UV radiation (UVR). Based on length measurements over a period of 3 weeks, the growth rate in germlings strongly decreased in conditions with UVR compared to PAR: by 14% under PAR+UV-A, by 31% under the full solar spectrum and by 65% with additional UVR. Although growth rates of germlings under UVR were reduced mainly in the first week, the plants did not regain the size of the untreated plants even after 9 weeks. Regardless of the exposure, no defects in morphology or anatomy including the exposed apical meristem were detected, except for a reduction in cell division rates perhaps due to additional cost for photoprotective or repair mechanisms. Depending on the actual position of D. dichotoma plants in the natural habitat, individuals in high positions receive substantial amounts of the more harmful UV-B while those lower down might only receive UV-A during part of the day, thus the effect of UV-B on the growth of D. dichotoma will depend on its position in the field. The effects of tidal variation of the light climate and the implications of our results for the zonation of D. dichotoma are discussed. Received in revised form: 6 July 2000 Electronic Publication  相似文献   

12.
The minor variant of the economically important cyanobacterium, Arthrospira platensis, usually appears in commercial production ponds under solar radiation. However, how sensitive the minor variant to solar UVR and whether its occurrence relates to the solar exposures are not known. We investigated the photochemical efficiency of PSII and growth rate of D-0083 strain and its minor variant in semi-continuous cultures under PAR (400–700 nm) alone, PAR + UV-A (320–400 nm) and PAR + UV-A + UV-B (280–700 nm) of solar radiation. The effective quantum yield of D-0083 at 14:00 p.m. decreased by about 86% under PAR, 87% under PAR + UV-A and 92% under PAR + UV-A + UV-B (280–315 nm), respectively. That of the minor variant was reduced by 93% under PAR and to undetectable values in the presence of UV-A or UV-A + UV-B. Diurnal change of the yield showed constant pattern during long-term (10 days) exposures, high in the early morning and late afternoon but the lowest at noontime in both strains, with the UVR-related inhibition being always higher in the variant than D-0083. During the long-term exposures, cells of D-0083 acclimated faster to solar UV radiation and showed paralleled growth rates among the treatments with or without UVR at the end of the experiment; however, growth of the minor variant was significantly reduced by UV-A and UV-B throughout the period. Comparing to the major strain D-0083, the minor variant was more sensitive to UVR in terms of its growth, quantum yield and acclimation to solar radiation.  相似文献   

13.
14.
The effects of UV-B radiation on the heterotrophic nanoflagellate Bodo saltans (Kinetoplastida) were examined under controlled conditions with artificial UV sources and also under natural solar radiation in an oligotrophic lake. In both types of experiments, the characteristic elongated cell morphology of this flagellate changed into a spherical one. This effect was due to UV-B but also to UV-A radiation, and after 4 h of exposure at 0.5 m of depth, 99% (UV-B plus UV-A plus photosynthetically active radiation) and 69% of the cells (UV-A plus photosynthetically active radiation) were spherical. At 6 m of depth where only 10% of the UV-B (305 nm) at the surface was measured, no significant effect was observed. The spherical cells were nonmotile, but before the morphological change took place, the swimming speed was ca. 3.5 times lower in the plus-UV-B treatment. The negative relation between the abundance of spherical cells and the average ingestion of fluorescently labeled bacteria per cell indicates that these cells are not able to feed upon bacteria. In bacterivory experiments lasting for 6 h, the total number of grazed bacteria was up to 70% lower in the plus-UV-B treatment than in the control without UV-B. This resulted in a positive feedback between UV-B and bacterial growth. The high sensitivity of B. saltans to solar UV-B and UV-A radiation strongly reduces its ability to live near the surface at times of high UV radiation.  相似文献   

15.
We examined whether the exposure of Quercus robur L. to elevated UV-B radiation (280–315 nm) during growth would influence leaf decomposition rate through effects on litter quality. Saplings were exposed for eight months at an outdoor facility in the UK to a 30% elevation above the ambient level of erythemally weighted UV-B radiation under UV-B treatment arrays of fluorescent lamps filtered with cellulose diacetate, which transmitted both UV-B and UV-A (315–400 nm) radiation. Saplings were exposed to elevated UV-A alone under control arrays of lamps filtered with polyester and to ambient radiation under unenergised arrays of lamps. Abscised leaves from saplings were enclosed in 1 mm2 mesh nylon bags, placed in a Quercus–Fraxinus woodland and were sampled at 0.11, 0.53, 1.10 and 1.33 years for dry weight loss, chemical composition and saprotrophic fungal colonization. At abscission, litters from UV-A control arrays had ≈ 7.5% higher lignin/nitrogen ratios than those from UV-B treatment and ambient arrays (P < 0.06). Dry weight loss of leaves treated with elevated UV-B radiation during growth was 2.5% and 5% greater than that of leaves from UV-A control arrays at 0.53 and 1.33 years, respectively. Litter samples from UV-B treatment arrays lost more nitrogen and phosphorus than samples from ambient arrays and more carbon than samples from UV-A control arrays. The annual fractional weight loss of litter from UV-B treatment arrays was 8% and 6% greater than that of litter from UV-A control and ambient arrays, respectively. Regression analyses indicated that the increased decomposition rate of UV-B treated litters was associated with enhanced colonization of leaves by basidiomycete fungi, the most active members of the soil fungal community, and that the frequency of these fungi was negatively associated with the initial lignin/nitrogen ratio of leaves.  相似文献   

16.
Antonelli  F.  Grifoni  D.  Sabatini  F.  Zipoli  G. 《Plant Ecology》1997,128(1-2):127-136
During the last few decades many experiments have been performed to evaluate the responses of plants to enhanced solar UV-B radiation (280–320 nm) that may occur because of stratospheric ozone depletion; most of them were performed in controlled environment conditions where plants were exposed to low photosynthetically active radiation (PAR) levels and high UV-B irradiance. Since environmental radiative regimes can play a role in the response of plants to UV-B enhancement, it appears doubtful whether it is valid to extrapolate the results from these experiments to plants grown in natural conditions. The objective of this work was to evaluate the effects on physiology and morphology of a bean (Phaseolus vulgaris L.) cultivar Nano Bobis, exposed to supplemental UV radiation in the open-air. UV-B radiation was supplied by fluorescent lamps to simulate a 20% stratospheric ozone reduction. Three groups of plants were grown: control (no supplemental UV), UV-A treatment (supplementation in the UV-A band) and UV-B treatment (supplemental UV-B and UV-A radiation). Each group was replicated three times. After 33 days of treatment plants grown under UV-B treatment had lower biomass, leaf area and reduced leaf elongation compared to UV-A treatment. No significant differences were detected in photosynthetic parameters, photosynthetic pigments and UV-B absorbing compounds among the three groups of plants. However, plants exposed to UV-A treatment showed a sort of 'stimulation' of their growth when compared to the control. The results of this experiment showed that plants may be sensitive to UV-A radiation, thus it is difficult to evaluate the specific effects of UV-B (280–320 nm) radiation from fluorescent lamps and it is important to choose the appropriate control. Environmental conditions strongly affect plant response to UV radiation so further field studies are necessary to assess the interaction between UV-B exposure and meteorological variability.  相似文献   

17.
Effects of ambient solar UV radiation in the field and of artifical UV irradiation under controlled laboratory conditions were studied with natural phytoplankton populations from Helgoland, German Bight, North Sea. The pattern of pigments varied after UV-A or UV-B plus a low dose of UV-A radiation: UV-A usually induced a stimulation of pigment biosynthesis; whereas UV-B plus UV-A led to a reduction of the contents of chlorophyll a, diadinoxanthin, fucoxanthin, peridinin and an unknown carotenoid; content of diatoxanthin was significantly enhanced. The damaging effect on nitrogen assimilation by UV was more pronounced after artificial UV-B plus UV-A irradiance compared to the influence of ambient solar UV under field conditions. The uptake of inorganic nitrogen was dependent on the dose and exposure time of UV radiation as well as on the species composition. The uptake of 15N-nitrate by natural phytoplankton collected in spring was more sensitive to UV irradiation than the assimilation of 15N-ammonium. UV-A radiation with a small part of shorter wavelengths at 315 nm (Philips-lamps in conjunction with the cut-off filter WG 320) caused a reduction of up to 12% whereas a stimulation of the 15NH4+ uptake was observed after exposure to UV-A without any UV-B (Philips lamps TL 60W/09N). Pattern of 15N-incorporation into free amino acids and pool sizes varied in dependence on the applied nitrogen compound and on the irradiation conditions. The impact of UV radiation on the pattern of 15N-Iabelled free amino acids and the pool sizes was different. 15N enrichment into all the tested amino acids was reduced after 5 h UV-B plus UV-A exposure and after application of 15NH4+. A depression of the glutamate and glutamine pools was observed after addition of 15N-nitrate alone. Pools of all main amino acids from phytoplankton in summer 1993/94 were inhibited by UV irradiance. Results are discussed with reference to the UV target (e.g. enzymes, pigments) and the adaptation to the environmental conditions.  相似文献   

18.
Elevated UV-B radiation effects on experimental grassland communities   总被引:5,自引:0,他引:5  
Experimental grassland communities (turves) were exposed to supplemental levels of UV-B radiation (280–315 nm) at an outdoor facility, under treatment arrays of cellulose diacetate-filtered fluorescent lamps which also produce UV-A radiation (315–400 nm). Control treatments consisted of arrays of polyester-filtered lamps, which allowed for exposure to UV-A radiation alone, and arrays of unenergized lamps allowing for exposure to ambient levels of solar radiation.  相似文献   

19.
Abstract: The effects of solar ultraviolet radiation (UV) on carbon uptake, oxygen evolution and motility of marine phytoplankton were investigated in coastal waters at Kristineberg Marine Research Station on the west coast of Sweden (58° 30'N, 11° 30'E). The mean irradiances at noon above the water surface during the investigation period were: photosynthetic active radiation (PAR, 400–700 nm) 1670 μmol m−2 s−1; ultraviolet-A radiation (UV-A, 320–400 nm) 35.9 W m−2 and ultraviolet-B radiation (UV-B, 280–320 nm) 1.7 W m−2. UV-B radiation was much more attenuated with depth in the water column than were PAR and UV-A radiation. UV-B radiation could not be detected at depths greater than 100–150 cm. Inhibition of carbon uptake by UV-A and UV-B in natural phytoplankton populations was greatest at 50 cm depth and the effects of UV-B were greater than those of UV-A. At depths greater than 50 cm there was almost no effect of ultraviolet radiation on carbon uptake. PAR, UV-A and UV-B decreased oxygen evolution by the dinoflagellate Prorocentrum minimum . Inhibition of oxygen evolution was greater after 4 h than 2 h but it was not possible to distinguish the negative effects of the different light regimes. The motility of P. minimum was not affected by PAR, UV-A and UV-B. The importance of exposure of phytoplankton to different light regimes before being exposed to natural solar radiation is discussed.  相似文献   

20.
Plants ofLolium perenne, grown with and without the balansoidfungal leaf endophyteNeotyphodium lolii, were exposed to threeultraviolet radiation treatments at an outdoor facility in theUK for 172 d. Plants were exposed to either (a) a 30% elevationabove the ambient erythemally-weighted level of UV-B (280–315nm) radiation under banks of cellulose diacetate filtered fluorescentlamps that also produce UV-A (315–400 nm) radiation (UV-B+A);(b) elevated UV-A radiation alone under banks of polyester filteredlamps; or (c) ambient levels of solar radiation under banksof unenergized lamps. The fertility of plants grown withN. loliiwassignificantly reduced by the elevated UV-B+A exposure. After172 d, these plants produced 70% fewer spikes, 75% fewer seeds,71% lower total weight of seed and 78% fewer seeds per g d.wt of plant tissue than plants colonized byN. loliiwhich wereexposed to ambient radiation. There was no discernible effectof elevated UV-B+A exposure on the fertility of endophyte-freeplants. Plants irradiated with UV-B+A developed 14% thickerleaves than those exposed to ambient radiation. Those whichwere irradiated with elevated UV-A alone produced seeds thatwere 20% heavier than plants exposed to ambient levels of radiation.Plants grown withN. loliihad 7% thicker leaves, 4% thicker stembases and 7% fewer tillers than those grown without it. Thefresh mass of tillers of plants grown withN. loliiwas 11% greaterthan those of endophyte-free plants, owing to their higher moisturecontents. These results suggest that the fertility ofL. perennecolonizedbyN. loliiin the natural environment could be deleteriouslyaffected by elevated fluxes of UV-B radiation associated withstratospheric ozone depletion and that this may affect the populationdynamics of the species.Copyright 1998 Annals of Botany Company Fungal leaf endophyte,Neotyphodium lolii, perennial ryegrass (Lolium perenne), stratospheric ozone depletion, UV-B radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号