首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although considerable variation has been documented in tree‐ring cellulose oxygen isotope ratios (δ18Ocell) among co‐occurring species, the underlying causes are unknown. Here, we used a combination of field measurements and modelling to investigate the mechanisms behind variations in late‐wood δ18Ocell18Olc) among three co‐occurring species (chestnut oak, black oak and pitch pine) in a temperate forest. For two growing seasons, we quantified among‐species variation in δ18Olc, as well as several variables that could potentially cause the δ18Olc variation. Data analysis based on the δ18Ocell model rules out leaf water enrichment (Δ18Olw) and tree‐ring formation period (Δt), but highlights source water δ18O (δ18Osw) as an important driver for the measured difference in δ18Olc between black and chestnut oak. However, the enriched δ18Olc in pitch pine relative to the oaks could not be sufficiently explained by consideration of the above three variables only, but rather, we show that differences in the proportion of oxygen exchange during cellulose synthesis (pex) is most likely a key mechanism. Our demonstration of the relevance of some species‐specific features (or lack thereof) to δ18Ocell has important implications for isotope based ecophysiological/paleoclimate studies.  相似文献   

2.
Using both oxygen isotope ratios of leaf water (δ18OL) and cellulose (δ18OC) of Tillandsia usneoides in situ, this paper examined how short‐ and long‐term responses to environmental variation and model parameterization affected the reconstruction of the atmospheric water vapour (δ18Oa). During sample‐intensive field campaigns, predictions of δ18OL matched observations well using a non‐steady‐state model, but the model required data‐rich parameterization. Predictions from the more easily parameterized maximum enrichment model (δ18OL–M) matched observed δ18OL and observed δ18Oa when leaf water turnover was less than 3.5 d. Using the δ18OL–M model and weekly samples of δ18OL across two growing seasons in Florida, USA, reconstructed δ18Oa was ?12.6 ± 0.3‰. This is compared with δ18Oa of ?12.4 ± 0.2‰ resolved from the growing‐season‐weighted δ18OC. Both of these values were similar to δ18Oa in equilibrium with precipitation, ?12.9‰. δ18Oa was also reconstructed through a large‐scale transect with δ18OL and the growing‐season‐integrated δ18OC across the southeastern United States. There was considerable large‐scale variation, but there was regional, weather‐induced coherence in δ18Oa when using δ18OL. The reconstruction of δ18Oa with δ18OC generally supported the assumption of δ18Oa being in equilibrium with precipitation δ18O (δ18Oppt), but the pool of δ18Oppt with which δ18Oa was in equilibrium – growing season versus annual δ18Oppt – changed with latitude.  相似文献   

3.
The oxygen isotope signature of sulphate (δ18Osulphate) is increasingly used to study nutritional fluxes and sulphur transformation processes in a variety of natural environments. However, mechanisms controlling the δ18Osulphate signature in soil–plant systems are largely unknown. The objective of this study was to determine key factors, which affect δ18Osulphate values in soil and plants. The impact of an 18O‐water isotopic gradient and different types of fertilizers was investigated in a soil incubation study and a radish (Raphanus sativus L.) greenhouse growth experiment. Water provided 31–64% of oxygen atoms in soil sulphate formed via mineralization of organic residues (green and chicken manures) while 49% of oxygen atoms were derived from water during oxidation of elemental sulphur. In contrast, δ18Osulphate values of synthetic fertilizer were not affected by soil water. Correlations between soil and plant δ18Osulphate values were controlled by water δ18O values and fertilizer treatments. Additionally, plant δ34S data showed that the sulphate isotopic composition of plants is a function of S assimilation. This study documents the potential of using compound‐specific isotope ratio analysis for investigating and tracing fertilization strategies in agricultural and environmental studies.  相似文献   

4.
In order to determine the incubation temperature of eggs laid by non‐avian dinosaurs, we analysed the oxygen isotope compositions of both eggshell carbonate (δ18Oc) and embryo bone phosphate (δ18Op) from seven oviraptorosaur eggs with preserved in ovo embryo bones. These eggs come from the Upper Cretaceous Nanxiong Formation of Jiangxi Province, China. Oviraptorosaur theropods were selected because of their known brooding behaviour as evidenced by preserved adult specimens fossilized in brooding posture on their clutch. Incubation temperature of these embryos was estimated based on the following considerations: eggshell δ18Oc value reflects the oxygen isotope composition of egg water fluid; embryo bones precipitate from the same egg fluid; and oxygen isotope fractionation between phosphate and water is controlled by the egg temperature. A time‐dependent model predicting the δ18Op evolution of the embryo skeleton during incubation as a function of egg temperature was built, and measured δ18Oc and δ18Op values used as boundary conditions. According to the model outputs, oviraptorosaurs incubated their eggs within a 35–40°C range, similar to extant birds and compatible with the known active brooding behaviour of these theropod dinosaurs. Provided that both eggshell and embryo bones preserved their original oxygen isotope compositions, this method could be extended to investigate some reproductive traits of other extinct groups of oviparous amniotes.  相似文献   

5.
Almost no δ18O data are available for leaf carbohydrates, leaving a gap in the understanding of the δ18O relationship between leaf water and cellulose. We measured δ18O values of bulk leaf water (δ18OLW) and individual leaf carbohydrates (e.g. fructose, glucose and sucrose) in grass and tree species and δ18O of leaf cellulose in grasses. The grasses were grown under two relative humidity (rH) conditions. Sucrose was generally 18O‐enriched compared with hexoses across all species with an apparent biosynthetic fractionation factor (εbio) of more than 27‰ relative to δ18OLW, which might be explained by isotopic leaf water and sucrose synthesis gradients. δ18OLW and δ18O values of carbohydrates and cellulose in grasses were strongly related, indicating that the leaf water signal in carbohydrates was transferred to cellulose (εbio = 25.1‰). Interestingly, damping factor pexpx, which reflects oxygen isotope exchange with less enriched water during cellulose synthesis, responded to rH conditions if modelled from δ18OLW but not if modelled directly from δ18O of individual carbohydrates. We conclude that δ18OLW is not always a good substitute for δ18O of synthesis water due to isotopic leaf water gradients. Thus, compound‐specific δ18O analyses of individual carbohydrates are helpful to better constrain (post‐)photosynthetic isotope fractionation processes in plants.  相似文献   

6.
Measurements of the carbon (δ13Cm) and oxygen (δ18Om) isotope composition of C3 plant tissue provide important insights into controls on water‐use efficiency. We investigated the causes of seasonal and inter‐annual variability in water‐use efficiency in a grassland near Lethbridge, Canada using stable isotope (leaf‐scale) and eddy covariance measurements (ecosystem‐scale). The positive relationship between δ13Cm and δ18Om values for samples collected during 1998–2001 indicated that variation in stomatal conductance and water stress‐induced changes in the degree of stomatal limitation of net photosynthesis were the major controls on variation in δ13Cm and biomass production during this time. By comparison, the lack of a significant relationship between δ13Cm and δ18Om values during 2002, 2003 and 2006 demonstrated that water stress was not a significant limitation on photosynthesis and biomass production in these years. Water‐use efficiency was higher in 2000 than 1999, consistent with expectations because of greater stomatal limitation of photosynthesis and lower leaf ci/ca during the drier conditions of 2000. Calculated values of leaf‐scale water‐use efficiency were 2–3 times higher than ecosystem‐scale water‐use efficiency, a difference that was likely due to carbon lost in root respiration and water lost during soil evaporation that was not accounted for by the stable isotope measurements.  相似文献   

7.
The combined use of a gas‐exchange system and laser‐based isotope measurement is a tool of growing interest in plant ecophysiological studies, owing to its relevance for assessing isotopic variability in leaf water and/or transpiration under non‐steady‐state (NSS) conditions. However, the current Farquhar & Cernusak (F&C) NSS leaf water model, originally developed for open‐field scenarios, is unsuited for use in a gas‐exchange cuvette environment where isotope composition of water vapour (δv) is intrinsically linked to that of transpiration (δE). Here, we modified the F&C model to make it directly compatible with the δv–δE dynamic characteristic of a typical cuvette setting. The resultant new model suggests a role of ‘net‐flux’ (rather than ‘gross‐flux’ as suggested by the original F&C model)‐based leaf water turnover rate in controlling the time constant (τ) for the approach to steady sate. The validity of the new model was subsequently confirmed in a cuvette experiment involving cotton leaves, for which we demonstrated close agreement between τ values predicted from the model and those measured from NSS variations in isotope enrichment of transpiration. Hence, we recommend that our new model be incorporated into future isotope studies involving a cuvette condition where the transpiration flux directly influences δv. There is an increasing popularity among plant ecophysiologists to use a gas‐exchange system coupled to laser‐based isotope measurement for investigating non‐steady state (NSS) isotopic variability in leaf water (and/or transpiration); however, the current Farquhar & Cernusak (F&C) NSS leaf water model is unsuited for use in a gas‐exchange cuvette environment due to its implicit assumption of isotope composition of water vapor (δv) being constant and independent of that of transpiration (δE). In the present study, we modified the F&C model to make it compatible with the dynamic relationship between δv and δE as is typically associated with a cuvette setting. Using an experiment conducted on cotton leaves, we show that the modified NSS model performed well in predicting the time constant for the exponential approach of leaf water toward steady state under cuvette conditions. Such a result demonstrates the applicability of this new model to gas‐exchange cuvette conditions where the transpiration flux directly influences δv, and therefore suggests the need to incorporate this model into future isotope studies that employ a laser‐cuvette coupled system.  相似文献   

8.
Spatial variation in marine oxygen isotope ratios (δ18O) resulting from differential evaporation rates and precipitation inputs is potentially useful for characterizing marine mammal distributions and tracking movements across δ18O gradients. Dentine hydroxyapatite contains carbonate and phosphate that precipitate in oxygen isotopic equilibrium with body water, which in odontocetes closely tracks the isotopic composition of ambient water. To test whether dentine oxygen isotope composition reliably records that of ambient water and can therefore serve as a proxy for odontocete distribution and movement patterns, we measured δ18O values of dentine structural carbonate (δ18OSC) and phosphate (δ18OP) of seven odontocete species (n = 55 individuals) from regional marine water bodies spanning a surface water δ18O range of several per mil. Mean dentine δ18OSC (range +21.2 to +25.5‰ VSMOW) and δ18OP (+16.7 to +20.3‰) values were strongly correlated with marine surface water δ18O values, with lower dentine δ18OSC and δ18OP values in high‐latitude regions (Arctic and Eastern North Pacific) and higher values in the Gulf of California, Gulf of Mexico, and Mediterranean Sea. Correlations between dentine δ18OSC and δ18OP values with marine surface water δ18O values indicate that sequential δ18O measurements along dentine, which grows incrementally and archives intra‐ and interannual isotopic composition over the lifetime of the animal, would be useful for characterizing residency within and movements among water bodies with strong δ18O gradients, particularly between polar and lower latitudes, or between oceans and marginal basins.  相似文献   

9.
The oxygen isotope composition of cellulose (δ18OCel) archives hydrological and physiological information. Here, we assess previously unexplored direct and interactive effects of the δ18O of CO218OCO2), nitrogen (N) fertilizer supply and vapour pressure deficit (VPD) on δ18OCel, 18O‐enrichment of leaf water (Δ18OLW) and cellulose (Δ18OCel) relative to source water, and pexpx, the proportion of oxygen in cellulose that exchanged with unenriched water at the site of cellulose synthesis, in a C4 grass (Cleistogenes squarrosa). δ18OCO2 and N supply, and their interactions with VPD, had no effect on δ18OCel, Δ18OLW, Δ18OCel and pexpx. Δ18OCel and Δ18OLW increased with VPD, while pexpx decreased. That VPD‐effect on pexpx was supported by sensitivity tests to variation of Δ18OLW and the equilibrium fractionation factor between carbonyl oxygen and water. N supply altered growth and morphological features, but not 18O relations; conversely, VPD had no effect on growth or morphology, but controlled 18O relations. The work implies that reconstructions of VPD from Δ18OCel would overestimate amplitudes of VPD variation, at least in this species, if the VPD‐effect on pexpx is ignored. Progress in understanding the relationship between Δ18OLW and Δ18OCel will require separate investigations of pex and px and of their responses to environmental conditions.  相似文献   

10.
Oxygen isotope compositions of phosphate (δ18Op) were measured in tooth enamel from captive and wild individuals of 8 crocodilian species. A rough linear correlation is observed between the δ18Op of all the studied species and the oxygen isotope composition of ambient water (δ18Ow). Differences in mean air temperature, diet and physiology could contribute significantly to the large scatter of δ18Op values. The combination of these parameters results in a fractionation equation for which the slope (0.82) is lower than that expected (≥ 1) from predictive model equations that assume temperature and diet as fixed parameters. Taking into account large uncertainties, the observed oxygen isotope fractionation between phosphate and ambient water does not statistically differ from that formerly established for aquatic turtles. Case studies show that δ18Op values of fossil crocodile tooth enamel can be used to discriminate between marine and freshwater living environments within a precision of about ± 2‰ only.  相似文献   

11.
Previous mangrove tree ring studies attempted, unsuccessfully, to relate the δ18O of trunk cellulose (δ18OCELL) to the δ18O of source water (δ18OSW). Here, we tested whether biochemical fractionation associated with one of the oxygen in the cellulose glucose moiety or variation in leaf water oxygen isotope fractionation (ΔLW) can interfere with the δ18OSW signal as it is recorded in the δ18OCELL of mangrove (saltwater) and hammock (freshwater) plants. We selected two transects experiencing a salinity gradient, located in the Florida Keys, USA. The δ18OCELL throughout both transects did not show the pattern expected based on that of the δ18OSW. We found that in one of the transects, biochemical fractionation interfered with the δ18OSW signal, while in the other transect ΔLW differed between mangrove and hammock plants. Observed differences in ΔLW between mangroves and hammocks were caused by a longer effective leaf mixing length (L) of the water pathway in mangrove leaves compared to those of hammock leaves. Changes in L could have caused the δ18OCELL to record not only variations in the δ18OSW but also in ΔLW making it impossible to isolate the δ18OSW signal.  相似文献   

12.
We measured the carbon and oxygen isotopic composition of stem cellulose of Pinus sylvestris, Picea abies, Fagus sylvatica and Fraxinus excelsior. Several sites along a transect of a small valley in Switzerland were selected which differ in soil moisture conditions. At every site, six trees per species were sampled, and a sample representing a mean value for the period from 1940 to 1990 was analysed. For all species, the mean site δ13C and δ18O of stem cellulose are related to the soil moisture availability, whereby higher isotope ratios are found at drier sites. This result is consistent with isotope fractionation models when assuming enhanced stomatal resistance (thus higher δ13C of incorporated carbon) and increased oxygen isotope enrichment in the leaf water (thus higher δ18O) at the dry sites. δ18 O-δ13C plots reveal a linear relationship between the carbon and oxygen isotopes in cellulose. To interpret this relationship we developed an equation which combines the above-mentioned fractionation models. An important new parameter is the degree to which the leaf water enrichment is reflected in the stem cellulose. In the combined model the slope of the δ18O-δ13C plot is related to the sensitivity of the pi/pa of a plant to changing relative humidity.  相似文献   

13.
We examined the isotopic parameters in two C3 species (Artemisia diffusa H. Krasch and Tamarix hispida Willd.) and a C4 species [Haloxylon aphyllum (Minkw.) Iljin.] growing or planted in soils with different levels of salinity in a Central Asian desert. The oxygen isotope ratios of stem water (δ18Ostem) in T. hispida and H. aphyllum distributed in high-salinity zones were similar to the δ18O of artesian water (δ18Oartesian) and different from that in A. diffusa distributed in lower-salinity zones. This indicates that T. hispida and H. aphyllum depend on water with low salinity in the deeper soil layer, whereas A. diffusa depends on water in the shallower soil layer that would be affected by salt accumulation. The carbon isotope composition of leaf organic matter (δ13Com) and oxygen isotope enrichment in leaf organic matter above stem water (Δ18Oom) were lower in A. diffusa than in the other species. The responses of δ13Com and Δ18Oom to soil salinity observed for T. hispida suggest that the species decreased its transpiration rate and increased its intrinsic water-use efficiency in response to increasing soil salinity. The δ13Com and Δ18Oom of H. aphyllum were higher than those of the C3 species, and were not correlated with soil salinity, suggesting that H. aphyllum reduced its salt uptake by decreasing transpiration—even though it was able to access less saline water in the deeper soil layer. These results indicate that the water-use strategy of desert plants in high-salinity environments can be assessed based on their carbon and oxygen isotope ratios.  相似文献   

14.
Changes in the 2H and 18O of atmospheric water vapour provide information for integrating aspects of gas exchange within forest canopies. In this study, we show that diurnal fluctuations in the oxygen isotope ratio (δ18O) as high as 4‰ were observed for water vapour (δ18Ovp) above and within an old‐growth coniferous forest in the Pacific Northwest region of the United States. Values of δ18Ovp decreased in the morning, reached a minimum at midday, and recovered to early‐morning values in the late afternoon, creating a nearly symmetrical diurnal pattern for two consecutive summer days. A mass balance budget was derived and assessed for the 18O of canopy water vapour over a 2‐d period by considering the 18O‐isoflux of canopy transpiration, soil evaporation and the air entering the canopy column. The budget was used to address two questions: (1) do δ18O values of canopy water vapour reflect the biospheric influence, or are such signals swamped by atmospheric mixing? and (2) what mechanisms drive temporal variations of δ18Ovp? Model calculations show that the entry of air into the canopy column resulted in an isotopically depleted 18O‐isoflux in the morning of day 1, causing values of δ18Ovp to decrease. An isotopically enriched 18O‐isoflux resulting from transpiration then offset this decreased δ18Ovp later during the day. Contributions of 18O‐isoflux from soil evaporation were relatively small on day 1 but were more significant on day 2, despite the small H216O fluxes. From measurements of leaf water volume and sapflux, we determined the turnover time of leaf water in the needles of Douglas‐fir trees as ≈ 11 h at midday. Such an extended turnover time suggests that transpiration may not have occurred at the commonly assumed isotopic steady state. We tested a non‐steady state model for predicting δ18O of leaf water. Our model calculations show that assuming isotopic steady state increased isoflux of transpiration. The impact of this increase on the modelled δ 18Ovp was clearly detectable, suggesting the importance of considering isotopic non‐steady state of transpiration in studies of forest 18O water balance.  相似文献   

15.
Explaining species geographic distributions by macroclimate variables is the most common approach for getting mechanistic insights into large‐scale diversity patterns and range shifts. However, species' traits influencing biophysical processes can produce a large decoupling from ambient air temperature, which can seriously undermine biogeographical inference. We combined stable oxygen isotope theory with a trait‐based approach to assess leaf temperature during carbon assimilation (TL) and its departure (ΔT) from daytime free air temperature during the growing season (Tgs) for 158 plant species occurring from 3,400 to 6,150 m a.s.l. in Western Himalayas. We uncovered a general extent of temperature decoupling in the region. The interspecific variation in ΔT was best explained by the combination of plant height and δ13 C, and leaf dry matter content partly captured the variation in TL. The combination of TL and ΔT, with ΔT contributing most, explained the interspecific difference in elevational distributions. Stable oxygen isotope theory appears promising for investigating how plants perceive temperatures, a pivotal information to species biogeographic distributions.  相似文献   

16.
13C discrimination between atmosphere and bulk leaf matter (Δ13Clb) is frequently used as a proxy for transpiration efficiency (TE). Nevertheless, its relevance is challenged due to: (1) potential deviations from the theoretical discrimination model, and (2) complex time integration and upscaling from leaf to whole plant. Six hybrid genotypes of Populus deltoides×nigra genotypes were grown in climate chambers and tested for whole‐plant TE (i.e. accumulated biomass/water transpired). Net CO2 assimilation rates (A) and stomatal conductance (gs) were recorded in parallel to: (1) 13C in leaf bulk material (δ13Clb) and in soluble sugars (δ13Css) and (2) 18O in leaf water and bulk leaf material. Genotypic means of δ13Clb and δ13Css were tightly correlated. Discrimination between atmosphere and soluble sugars was correlated with daily intrinsic TE at leaf level (daily mean A/gs), and with whole‐plant TE. Finally, gs was positively correlated to 18O enrichment of bulk matter or water of leaves at individual level, but not at genotype level. We conclude that Δ13Clb captures efficiently the genetic variability of whole‐plant TE in poplar. Nevertheless, scaling from leaf level to whole‐plant TE requires to take into account water losses and respiration independent of photosynthesis, which remain poorly documented.  相似文献   

17.
Silvicultural thinning usually improves the water status of remaining trees in water‐limited forests. We evaluated the usefulness of a dual stable isotope approach (δ13C, δ18O) for comparing the physiological performance of remaining trees between forest stands subjected to two different thinning intensities (moderate versus heavy) in a 60‐year‐old Pinus halepensis Mill. plantation in semiarid southeastern Spain. We measured bulk leaf δ13C and δ18O, foliar elemental concentrations, stem water content, stem water δ18O (δ18Ostem water), tree ring widths and leaf gas exchange rates to assess the influence of forest stand density on tree performance. Remaining trees in low‐density stands (heavily thinned) showed lower leaf δ18O, and higher stomatal conductance (gs), photosynthetic rate and radial growth than those in moderate‐density stands (moderately thinned). By contrast, leaf δ13C, intrinsic water‐use efficiency, foliar elemental concentrations and δ18Ostem water were unaffected by stand density. Lower foliar δ18O in heavily thinned stands reflected higher gs of remaining trees due to decreased inter‐tree competition for water, whereas higher photosynthetic rate was largely attributable to reduced stomatal limitation to CO2 uptake. The dual isotope approach provided insight into the early (12 months) effects of stand density manipulation on the physiological performance of remaining trees.  相似文献   

18.
Certainty regarding the degree to which organic molecules exchange oxygen with local water during plant cellulose synthesis (pex) is necessary for cellulose oxygen isotope (δ18Ocell)‐based applications in environmental and ecological studies. However, the currently accepted notion that pex is a constant of ca. 0.42 appears inconsistent with biochemical theory, which predicts that marked variation may be present in pex, in relation to variation in the turnover time (τ) of the carbohydrate pool available for cellulose synthesis. The above prediction was tested in the present study with the analysis of data collected from leaves of Ricinus communis grown in controlled environmental conditions that varied in light intensity and vapour pressure deficit. The results revealed the existence of considerable variation in both pex and τ across plants in the various growth environments. Moreover, despite uncertainties in estimates of the proportion of source water in the synthesis water (px) and of the biochemical fractionation factor (εo), our experiment yielded strong evidence that pex exhibits a significant, positive relationship with τ, consistent with biochemical theory. The observed variation in pex in association with τ has important implications for the interpretation of δ18Ocell data in environmental/ecological studies.  相似文献   

19.
  • Soil degradation resulting from various types of salinity is a major environmental problem, especially in arid and semiarid regions. Exploring the water‐related physiological traits of halophytes is useful for understanding the mechanisms of salt tolerance. This knowledge could be used to rehabilitate degraded arid lands.
  • To investigate whether different types of salinity influence the water sources and water‐use efficiency of desert plants (Karelinia caspia, Tamarix hohenackeri, Nitraria sibirica, Phragmites australis, Alhagi sparsifolia, Suaeda microphylla, Kalidium foliatum) in natural environments, we measured leaf gas exchange, leaf carbon and xylem oxygen isotope composition and soil oxygen isotope composition at neutral saline‐sodic site (NSS) and alkaline saline‐sodic site (ASS) in northwest China.
  • The studied plants had different xylem water oxygen isotope compositions (δ18O) and foliar carbon isotope compositions (δ13C), indicating that desert plants coexist through differentiation in water use patterns. Compared to that at the NSS site, the stem water in K. caspia, A. sparsifolia and S. microphylla was depleted in 18O at the ASS site, which indicates that plants can switch to obtain water from deeper soil layers when suffering environmental stress from both salinity and alkalinisation. Alhagi sparsifolia had higher δ13C at the ASS site than at the NSS site, while K. caspia and S. microphylla had lower δ13C, which may have resulted from interspecific differences in plant alkali and salt tolerance ability.
  • Our results suggest that under severe salinity and alkalinity, plants may exploit deeper soil water to avoid ion toxicity resulting from high concentrations of soluble salts in the superficial soil layer. In managed lands, it is vital to select and cultivate different salt‐tolerant or alkali‐tolerant plant species in light of local conditions.
  相似文献   

20.
Otoliths of age 0 year alewife Alosa pseudoharengus collected in different Lake Michigan habitats were microsampled, and carbon and oxygen isotope ratios (δ18Ootolith and δ13Cotolith) of resulting microsamples were quantified. To assess the temporal resolution of the method, age and otolith growth rates were also estimated by counting otolith daily growth increments. Core and outer intra‐otolith samples averaged 36 and 23 days, respectively. Because of the accretionary nature of otolith growth, a habitat switch by a larva occurring between 0 and 18 days post‐hatch may not be recognized by this approach. Taking this temporal resolution into account, A. pseudoharengus habitat occupancy and thermal history in nearshore Lake Michigan, and a connecting drowned river‐mouth lake were documented. Comparisons between δ18Ootolith and δ13Cotolith profiles, and isotope values of Lake Michigan habitats suggested that movements by individual fish between a nearshore area of Lake Michigan proper and drowned river‐mouth lake habitats were rare. Some individuals evidently moved between habitats, and such movements occurred during different periods of ontogeny. Thermal reconstructions, based on δ18Ootolith values suggested that during early life (e.g. first month of life) young A.pseudoharengus appeared to inhabit microhabitats with temperatures greater than mean epilimnetic temperatures. This study demonstrates not only the utility of intra‐otolith geochemical analysis to describe the complexity of fish behaviour in fresh water but also identifies limitations of the present approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号