首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the year 2008 to 2009, a new disease of stem canker was noticed in most red‐fleshed dragon fruit (Hylocereus polyrhizus) plantations in Malaysia. The symptoms observed were small circular sunken orange spot, black pycnidia and rotted stem. This study was conducted to determine the occurrence of the stem canker on H. polyrhizus in Malaysia, subsequently to isolate, identify and characterize the fungal pathogen based on morphology and molecular characteristics and pathogenicity test. From the surveyed 20 plantations in Malaysia, stem canker was detected in all the plantations. A total of 40 isolates of Scytalidium‐like fungus were isolated and identified as Neoscytalidium dimidiatum based on morphological characteristics and ITS region sequences, which showed 99% similarity to N. dimidiatum (FJ648577). From the phylogenetic analysis using maximum‐likelihood tree, isolates of N. dimidiatum from stem canker of H. polyrhizus were grouped together and did not show any sequence variation. From pathogenicity test, all 40 isolates of N. dimidiatum were pathogenic causing stem canker on H. polyrhizus. To our knowledge, this is the first report of stem canker of H. polyrhizus caused by N. dimidiatum in Malaysia.  相似文献   

2.
In the past 10 years, there has been a substantial increase in reports, from growers and extension personnel, on bulb and root rots in lily (Lilium longiflorum) in Israel. Rot in these plants, when grown as cut flowers, caused serious economic damage expressed in reduction in yield and quality. In lily, the fungal pathogens involved in the rot were characterized as binucleate Rhizoctonia AG‐A, Rhizoctonia solani, Pythium oligandrum, Fusarium proliferatum (white and purple isolates) and F. oxysporum, using morphological and molecular criteria. These fungi were the prevalent pathogens in diseased plants collected from commercial greenhouses. Pathogenicity trials were conducted on lily bulbs and onion seedlings under controlled conditions in a greenhouse to complete Koch's postulates. Disease symptoms on lily were most severe in treatments inoculated with binucleate Rhizoctonia AG‐A, P. oligandrum and F. proliferatum. Plant height was lower in the above treatments compared with the control plants. The least aggressive fungus was R. solani. In artificial inoculations of onion, seedling survival was significantly affected by all fungi. The most pathogenic fungus was F. proliferatum w and the least were isolates of F. oxysporum (II and III). All fungi were successfully re‐isolated from the inoculated plants.  相似文献   

3.
Fusarium wilt caused by Fusarium oxysporum f.sp. melonis (FOM) is a devastating disease of melon worldwide. Pathogenicity tests performed with F. oxysporum isolates obtained from Italian melon‐growing areas allowed to identify thirty‐four FOM isolates and the presence of all four races. The aims of this work were to examine genetic relatedness among FOM isolates by race determination and to perform phylogenetic analyses of identified FOM races including also other formae speciales of F. oxysporum of cucurbits. Results showed that FOM race 1,2 was the most numerous with a total of eighteen isolates, while six and nine isolates were identified as race 0 and 1, respectively, and just one isolate was assigned to race 2. Phylogenetic analysis was performed by random amplified polymorphic DNA (RAPD) profiling and by translation elongation factor‐1α (TEF‐1α) sequencing. The analysis of RAPD profiles separated FOM races into two distinct clades. Clade 1, which included races 0, 1 and 1,2, was further divided into ‘subclade a’ which grouped almost all race 1,2 isolates, and into ‘subclade b’ which included race 0 and 1 isolates. Clade 2 comprised only race 2 isolates. The phylogenetic analysis based on TEF‐1α separated FOM from the other formae speciales of F. oxysporum. Also with TEF‐1α analysis, FOM races 0, 1 and 1,2 isolates grouped in one single clade clearly separated from FOM race 2 isolates which grouped closer to F. oxysporum f.sp. cucumerinum. RAPD technique was more effective than TEF‐1α in differentiating FOM race 1,2 isolates from those belonging to the closely related races 0 and 1. Both phylogenetic analyses supported the close relationship between the three different FOM races which might imply the derivation from one another and the different origin of FOM race 2.  相似文献   

4.
Shoot and branch canker and tree decline of kumquat (Fortunella margarita cv. Guban) were recorded in Yangshuo County, Guilin City, in the Guangxi Zhuang Autonomous Region of China during 2008–2011. Fusarium oxysporum and a new Fusarium species within the Gibberella fujikuroi complex (Fusarium sp. GLB1) were isolated repeatedly from the infected shoots and branches. Species identifications were verified by their high translation elongation factor 1‐alpha (TEF1) sequence similarity with those of the species epitypes. Koch's postulates were fulfilled on kumquat (cv. Guban) and mandarin establishing pathogenicity. To our knowledge, this is the first report of Fusarium shoot canker disease caused by F. oxysporum and Fusarium sp. on kumquat.  相似文献   

5.
Root and basal rot of common onion (Allium cepae L.) caused by Fusarium oxysporum f. sp. cepae is one of the most important diseases causing tremendous losses in onion‐growing areas worldwide. In this study, random amplified polymorphic DNA (RAPD), intersimple sequence repeats (ISSR) and virulence studies were conducted to analyse 26 F. oxysporum f. sp. cepae isolates obtained from the main onion‐growing regions of Iran, including Fars, Azerbaijan and Isfahan states. Cluster analysis using UPGMA method for both RAPD and ISSR markers revealed no clear grouping of the isolates obtained from different geographical regions, and the isolates were observed to derive probably from the same clonal lineage. Pathogenicity test indicated that all F. oxysporum f. sp. cepae isolates were pathogenic on onion; however, virulence variability was observed among the isolates. The grouping based on virulence variability was not correlated with the results of RAPD and ISSR analyses.  相似文献   

6.
7.
Fusarium oxysporum is one of the major pathogens causing root and crown rot in asparagus. Breeding of cultivars resistant to F. oxysporum would be the most efficient strategy for pathogen control. In this study, a bioassay was developed for screening seedling resistance. The non‐destructive bioassay comprises inoculation with a highly aggressive F. oxysporum isolate, incubation in a climate chamber and quantification of disease symptoms by a digital image analysing system and a PTA‐ELISA. This bioassay is simple to implement and demonstrated high reproducibility. Subsequently, it was used to determine the resistance behaviour of 16 asparagus genotypes to F. oxysporum. The asparagus cultivars revealed different levels of susceptibility, whereas the wild relative A. densiflorus was confirmed to be resistant.  相似文献   

8.
Severe brown leaf spot disease was observed on Paris polyphylla var. chinensis in Sichuan Province, China, in 2017 and 2018. The initial symptoms were many light‐brown small spots with necrotic centres, round or irregular in shape, becoming dark brown, gradually enlarging and eventually coalescing, causing extensive leaf senescence. A fungus was isolated from diseased leaves showing typical symptoms of brown leaf spot. The isolates were cultured on potato sucrose agar, and their morphological characteristics of the causal pathogen were observed under a light microscope. Pathogenicity tests revealed that this fungus was the causal pathogen of the disease. Molecular analyses of the sequences of the ribosomal DNA internal transcribed spacer (ITS) region, translation elongation factor 1‐alpha (TEF) and the RNA polymerase II second largest subunit (RBP2) gene were conducted to confirm the identity of the pathogen. The multi‐gene phylogeny indicated that the causal agent was Alternaria tenuissima. To our knowledge, this is the first report of A. tenuissima causing brown leaf sports on P. polyphylla var. chinensis in China.  相似文献   

9.
In the current study, 160 pathogenic strains of Fusarium oxysporum collected from tomato, eggplant and pepper were studied. Eighteen inter‐primer binding site (iPBS)‐retrotransposon primers were used, and these primers generated 205 scorable polymorphic bands. The number of polymorphic bands per primer varied between 9 and 19, with a mean of 11 bands per primer. The highest polymorphism information content (PIC) value was determined as 0.27, and the lowest was 0.05. The unweighted pair‐group method with arithmetic averages (UPGMA) dendrogram including a heat map revealed that the 160 pathogenic strains of F. oxysporum were divided into two main clusters. The first cluster mainly included F. oxysporum f. sp. capsici (FOC) and F. oxysporum f. sp. melongenae (FOMG) isolates. The second cluster mainly comprised F. oxysporum f. sp. lycopersici (FOL) and F. oxysporum f. sp. radicis lycopersici (FORL) isolates. The highest percentage of loci in significant linkage disequilibrium (LD) was detected for FOL, whereas the lowest level of LD was found for FOC, and 95.2%, 99.4%, 99.1% and 97.4% of the relative kinship estimates were less than 0.4 for FOL, FOMG, FORL and FOC, respectively. LD differences were detected among formae speciales, and LD was higher in FOL as compare to FOC species. The findings of this study confirm that iPBS‐retrotransposon markers are highly polymorphic at the intraspecific level in Fusarium spp.  相似文献   

10.
Fusaric acid (FA) (5-n-butylpuridine 2-carboxyl acid), a highly toxic secondary metabolite produced by Fusarium oxysporum strains, plays a significant role in disease development. The abilities of three F. oxysporum f. sp. gladioli (Massey) Snyder and Hansen isolates (G010; 649-91; and 160-57) to produce FA in infected Gladiolus corm tissues was evaluated in vitro in relation to the presence of two biological control agents, Trichoderma harzianum T22, and Aneurinobacillus migulanus. Pathogenicity tests were used to differentiate between the abilities of the F. oxysporum strains to secrete FA. FA was identified using LC/MS and quantified using HPLC. Isolate G010 was significantly more virulent (P < 0.01) on Gladiolus grandiflorus corms; it secretes 1.8 μM FA/g fresh weight corm into inoculated Gladiolus. Moreover, G010 was the only isolate that produced FA among the three examined isolates. There was a correlation between the corm lesion area and the FA secretion ability of F. oxysporum f. sp. gladioli (P < 0.001; r 2 = 0.96). No FA was detected in PDA cultures of F.oxysporum f. sp. gladioli isolates. The presence of T. harzianum T22 appeared to prevent FA secretion into the corms. In the presence of A. migulanus, however, the amount of FA secreted into the corm tissues increased. These results support the use of T. harzianum as an effective biological control agent against F. oxysporum f. sp. gladioli.  相似文献   

11.
Walnut decline caused by Phytophthora sp. occurred in an orchard in Sakarya province in Turkey. Affected young trees showed poor growth, leaf discolouration, root and crown rot and eventual death. A Phytophthora sp. isolated from necrotic taproots and crown tissues. The causal agent of the disease was identified as Phytophthora cinnamomi by morphological characteristics and comparing sequences of internal transcribed spacer (ITS) region. Upon conducting pathogenicity test, averaging 7.8‐cm‐long canker developed on basal stem within 2 weeks, while no cankers developed in the control plants.  相似文献   

12.
Aims: The aim of this study is to isolate and identify an endophytic fungus with antibacterial activity from the Asian medicinal and culinary plant Lilium lancifolium and to study the characteristics of its major antibacterial fractions. Methods and Results: After strict sample sterilization, an endophytic fungus BH‐3 with great antibacterial activity against Leuconostoc mesenteroides was isolated from the bulbs of L. lancifolium and was identified as Fusarium oxysporum on the basis of internal transcribed spacer (ITS) rDNA sequence and morphological traits. After partial purification including superfiltration and gel filtration, the major antibacterial fractions were found to be the substances with the molecular mass ranging from 35 to 60 kDa, mainly 55 kDa. The partially purified antibacterial fractions were stable at thermal processes, with more than 80% of activity left at 60°C for 1 h, and even 70·75% left at 121°C for 15 min. 90·33–98·97% of activity was observed in the pH range of 4·0–7·0. But the fractions were sensitive to different proteases. Conclusions: Endophytic strain F. oxysporum BH‐3 isolated from the bulbs of L. lancifolium produced protein‐like antibacterial metabolites. The antibacterial assay against Leuc. mesenteroides indicated that the fractions were stable at thermal processes and wide pH conditions, but sensitive to proteolyses. Significance and Impact of the Study: This study provides an increasing understanding of endophytic F. oxysporum in L. lancifolium and its metabolites, which have a great potential in food industry as antibacterial agents.  相似文献   

13.
The rhizosphere microbial community in a multiple parallel mineralization (MPM) system contributes to suppression of root‐borne diseases. We hypothesized this phenomenon can be attributed to the interplay of non‐antagonistic bacteria rather than to a single antagonistic microbe. In this study, we tested this hypothesis by investigating the potential roles of bacterial interplay in a subset of MPM microbiota in the suppression of the fungal phytopathogen Fusarium oxysporum. Bacterial strains isolated from the MPM system were subjected to in vitro and in planta tests on F. oxysporum. A community of seven bacterial strains (Kaistia sp. TBD58, Sphingopyxis sp. TBD84, Bosea sp. TBD101, Ancylobacter sp. TBD132, Cupriavidus sp. TBD162, Brevibacillus sp. TBD179 and Sphingopyxis sp. TBD181) suppressed F. oxysporum growth. None of the strains alone was antagonistic against F. oxysporum, whereas several pairs of those non‐antagonistic strains inhibited its growth. Morphological observations showed the formation of swollen F. oxysporum cells in the presence of these bacterial pairs. The same bacterial pairs also suppressed Fusarium wilt disease in Arabidopsis thaliana. These results indicate that a complex bacterial interplay among non‐antagonistic bacteria can significantly contribute to the development of antagonism against F. oxysporum in the context of the MPM system.  相似文献   

14.
Thirteen species of weed plants were collected between May and September in 2010 and 2011 from eggplant fields representing 11 distinct locations covering a wide geographical area of Turkey. Weeds are potential hosts of many plant pathogens and may not exhibit disease symptoms when colonized. Fusarium spp. were isolated from five monocotyledonous species and eight dicotyledonous species. A total of 212 isolates recovered from weeds were assigned to eight Fusarium species on the basis of morphological characteristics. F. oxysporum was the most frequently isolated species (29.7%), followed by F. solani (19.8%), F. graminearum (13.7%), F. verticillioides (12.7%), F.equiseti (9.9%), F. avenacearum (8.0%), F. proliferatum (3.8%) and F. subglutinans (2.4%). The F. oxysporum isolates from different weed hosts were characterized by means of pathogenicity and vegetative compatibility grouping (VCG) tests. Among these, 29 isolates were found to be pathogenic to eggplant cv. Kemer and re‐isolated as Fusarium oxysporum Schlecht. f. sp. melongenae (Fomg) as evidenced. These isolates from weed hosts were assigned to VCG 0320. This study is the first report of Fomg isolated from weeds in eggplant fields in Turkey. None of the weed species tested showed symptoms of wilting in pot experiments, and F. oxysporum was isolated with greater frequency from all inoculated weeds. The results of this study indicate that several weed plants may serve as alternative sources of inoculum for Fomg, during the growing season.  相似文献   

15.
During August 2010 and January 2011, 10 isolates of Colletotrichum were recovered from stem anthracnose lesions of Hylocereus polyrhizus in the states of Kedah and Penang, Malaysia. Based on the morphological characteristics of colony colour and appearance, and shapes of conidia as well as sequences of internal transcribed spacer regions (ITS), β‐tubulin, actin (ACT) and glyceraldehyde 3‐phosphate dehydrogenase (GAPDH), the fungus was identified as Colletotrichum truncatum. Pathogenicity test showed that C. truncatum isolates were pathogenic to the artificially inoculated H. polyrhizus stem. This is the first report of C. truncatum causing anthracnose on H. polyrhizus stems in Malaysia.  相似文献   

16.
Jojoba [Simmondsia chinensis (Link) Schneider] plantations in Israel originated from vegetative propagation, planted during 1991–92, have shown symptoms of wilting and subsequent death. Verticillium dahliae was only rarely isolated from these plants and artificial inoculation showed only mild disease symptoms. Fusarium oxysporum caused severe chlorosis, desiccation, defoliation and wilt in leaves of jojoba plants, resulting in plant death. Recovery of the fungus from artificially inoculated stem cuttings and seedlings showed for the first time that F. oxysporum was the primary pathogen. Inoculated cuttings exhibited wilt within 3 weeks, while in seedlings wilt occurred 10–24 weeks after inoculation. Seedlings and cuttings of jojoba which were inoculated with other Fusarium isolates originating from different crops (F. oxysporum f. sp. vasinfectum from cotton, F. oxysporum f. sp. dianthi from carnation, F. oxysporum f. sp. lycopersici from tomato and F. oxysporum f. sp. basilicum from basil) did not develop symptoms. Moreover, cotton, tomato, melon and cucumber seedlings inoculated with several virulent F. oxysporum isolates from jojoba did not show any symptoms of wilt or defoliation. These results indicate a high degree of specificity of the Fusarium isolates from jojoba; therefore, it is suggested that this isolate be defined as F. oxysporum f. sp. simmondsia.  相似文献   

17.
Seven culturable bacterial isolates, obtained from the internal stem tissues of Solanum elaeagnifolium and successfully colonizing the internal stem tissues of tomato cv. Rio Grande, were screened for their in vivo antifungal activity against Fusarium oxysporum f.sp. lycopersici (FOL) and their growth‐promoting potential on tomato plants. SV101 and SV104 isolates, assessed on pathogen‐challenged tomato plants led to a significant decrease (77–83%) in Fusarium wilt severity and vascular browning extent (76%), as compared to the inoculated and untreated control. Isolates enhanced growth parameters on pathogen‐challenged and unchallenged tomato plants. SV104 and SV101 isolates were most effective in suppressing disease and enhancing plant growth. These two isolates were identified as Bacillus sp. str. SV101 ( KU043040 ) and B. tequilensis str. SV104 ( KU976970 ). They displayed antifungal activity against FOL; pathogen growth was inhibited by 64% and an inhibition zone (11.50 and 19.75 mm) against FOL could be formed using whole cell suspensions. SV101 and SV104 extracellular metabolites also inhibited FOL growth by 20 and 55%, respectively, as compared to control. B. tequilensis str. SV104 was shown to produce protease, chitinase, pectinase, IAA and siderophores. Bacillus sp. str. SV101 displayed pectinase activity and was found to be an IAA‐producing and phosphate‐solubilizing agent. To our knowledge, this is the first study reporting on S. elaeagnifolium use as a potential source of potent biocontrol and plant growth‐promoting agents.  相似文献   

18.
Thirty single-spore isolates of a toxigenic fungus, Fusarium oxysporum, were isolated from asparagus spears and identified by species-specific polymerase chain reaction (PCR) and translation elongation factor 1-α (TEF) sequence analysis. In the examined sets of F. oxysporum isolates, the DNA sequences of mating type genes (MAT) were identified. The distribution of MAT idiomorph may suggest that MAT1-2 is a predominant mating type in the F. oxysporum population. F. oxysporum is mainly recognised as a producer of moniliformin—the highly toxic secondary metabolite. Moniliformin content was determined by high-performance liquid chromatography (HPLC) analysis in the range 0.05–1,007.47 μg g−1 (mean 115.93 μg g−1) but, also, fumonisin B1 was detected, in the concentration range 0.01–0.91 μg g−1 (mean 0.19 μg g−1). There was no association between mating types and the mycotoxins biosynthesis level. Additionally, a significant intra-species genetic diversity was revealed and molecular markers associated with toxins biosynthesis were identified.  相似文献   

19.
Trunk diseases are potential threats to the poplar industry worldwide, including Iran. A survey on trunk diseases of Populus nigra in north‐western Iran revealed a new canker disease associated with dieback and decline of this host in West Azarbaijan Province of Iran. Wood samples were collected from poplar trees showing canker, dieback and decline symptoms and taken to the laboratory. A total of 173 fungal isolates were recovered from symptomatic tissues, of those 147 isolates had similar cultural and morphological features on potato dextrose agar. Based on a combination of morphological characteristics and phylogenetic inferences including DNA sequence data from the internal transcribed spacer regions (ITS1, 5.8S rDNA, and ITS2), all 147 isolates were identified as Cryptosphaeria pullmanensis. The remaining 26 isolates were identified as Cytospora chrysosperma. Pathogenicity of Cr. pullmanensis on two‐year‐old Pnigra and Populus alba saplings under glasshouse conditions confirmed that Cr. pullmanensis is pathogenic on P. nigra and P. alba. Cryptosphaeria pullmanensis is here reported from Iran causing Cryptosphaeria canker on poplar trees for the first time. However, its host range, the extent of geographical distribution and management strategies remain to be examined.  相似文献   

20.
Seventy‐five isolates of Fusarium oxysporum f.sp. cepae, the causal agent of basal plate rot on onion, were obtained from seven provinces of Turkey. The isolates were characterized by vegetative compatibility grouping (VCGs) and restriction fragment length polymorphism (RFLP) analysis of the nuclear ribosomal DNA intergenic spacer region (IGS). Forty‐eight vegetative compatibility groups were found, each containing a single isolate. Only one isolate formed strong heterokaryons with the reference isolates of VCG 0423. Five isolates were heterokaryon self‐incompatible. Restriction fragment analysis with six different enzymes revealed 13 IGS types among 75 F. oxysporum isolates from Turkey as well as 16 reference isolates from Colorado, USA. The majority of single‐member VCGs produced identical RFLP banding patterns with minor deviations, considerably different from those of the reference VCG isolates. These results suggested that isolates of F. oxysporum f.sp. cepae in Turkey derived from distinct clonal lineages and mutations at one or more vegetative compatibility loci restrict heterokaryon formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号