首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Cold‐induced sweetening (CIS) is a serious post‐harvest problem for potato tubers, which need to be stored cold to prevent sprouting and pathogenesis in order to maintain supply throughout the year. During storage at cold temperatures (below 10 °C), many cultivars accumulate free reducing sugars derived from a breakdown of starch to sucrose that is ultimately cleaved by acid invertase to produce glucose and fructose. When affected tubers are processed by frying or roasting, these reducing sugars react with free asparagine by the Maillard reaction, resulting in unacceptably dark‐coloured and bitter‐tasting product and generating the probable carcinogen acrylamide as a by‐product. We have previously identified a vacuolar invertase inhibitor (INH2) whose expression correlates both with low acid invertase activity and with resistance to CIS. Here we show that, during cold storage, overexpression of the INH2 vacuolar invertase inhibitor gene in CIS‐susceptible potato tubers reduced acid invertase activity, the accumulation of reducing sugars and the generation of acrylamide in subsequent fry tests. Conversely, suppression of vacuolar invertase inhibitor expression in a CIS‐resistant line increased susceptibility to CIS. The results show that post‐translational regulation of acid invertase by the vacuolar invertase inhibitor is an important component of resistance to CIS.  相似文献   

3.
Potato cold‐induced sweetening (CIS) is critical for the postharvest quality of potato tubers. Starch degradation is considered to be one of the key pathways in the CIS process. However, the functions of the genes that encode enzymes related to starch degradation in CIS and the activity regulation of these enzymes have received less attention. A potato amylase inhibitor gene known as SbAI was cloned from the wild potato species Solanum berthaultii. This genetic transformation confirmed that in contrast to the SbAI suppression in CIS‐resistant potatoes, overexpressing SbAI in CIS‐sensitive potatoes resulted in less amylase activity and a lower rate of starch degradation accompanied by a lower reducing sugar (RS) content in cold‐stored tubers. This finding suggested that the SbAI gene may play crucial roles in potato CIS by modulating the amylase activity. Further investigations indicated that pairwise protein–protein interactions occurred between SbAI and α‐amylase StAmy23, β‐amylases StBAM1 and StBAM9. SbAI could inhibit the activities of both α‐amylase and β‐amylase in potato tubers primarily by repressing StAmy23 and StBAM1, respectively. These findings provide the first evidence that SbAI is a key regulator of the amylases that confer starch degradation and RS accumulation in cold‐stored potato tubers.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Cold-induced sweetening (CIS) is a crucial factor influencing the processing quality of potato tubers. To better understand the molecular events of potato CIS and different CIS-sensitivity among various potato species, a suppression subtractive hybridization library and cDNA microarray gene filters were developed. A total of 188 genes were found to be differentially expressed (DE) in Solanum berthaultii (ber) upon cold stimulation. These functional genes were mostly related to cell rescue, defense and virulence, metabolism, energy and protein fate, included in various processes of plant defense against abiotic stresses. Four expression patterns of these DE genes were profiled by qRT-PCR using the cold-stored tubers of both CIS-resistant (ber) and CIS-sensitive (E-potato 3, a variety of S. tuberosum) potatoes. The expression pattern and abundance of many DE genes encoding proteins involved in metabolism were different in these two potato tubers, especially genes associated with amylolysis, sucrose decomposition and glycolysis pathways, indicating distinct regulatory mechanisms between ber and E3 in response to cold stress, which may be crucial for potato CIS. Further investigation of these cold-regulated genes will deepen our understanding of the regulatory mechanisms of potato CIS and direct approaches for the genetic improvement of potato processing quality.  相似文献   

11.
12.
In planta the enzymatic activity of apoplastic and vacuolar invertases is controlled by inhibitory proteins. Although these invertase inhibitors (apoplastic and vacuolar forms) have been implicated as contributing to resistance to cold-induced sweetening (CIS) in tubers of potato (Solanum tuberosum L.), there is a lack of information on the structure and allelic diversity of the apoplastic invertase inhibitor genes. We have PCR-isolated and sequenced the alleles of the apoplastic invertase inhibitor gene (Stinh1) from three tetraploid potato genotypes: 1021/1 (a genotype with very high tolerance to CIS), 'Karaka' and 'Summer Delight' (two cultivars that are highly susceptible to CIS). In total, five alleles were identified in these genotypes, of which four (Stinh1-c, Stinh1-d, Stinh1-e, Stinh1-f) were novel. An analysis of allele diversity was conducted by incorporating previously published sequences of apoplastic invertase inhibitors from potato. Eight alleles were assessed for sequence polymorphism in the two exons and the single hypervariable intron. Contrary to the hypervariable intron, only 65 single nucleotide polymorphisms were observed in the exons, of which 42 confer amino acid substitutions. Phylogenetic analysis of amino acid sequences indicates that the alleles of the invertase inhibitor are highly conserved amongst members of the Solanaceae family.  相似文献   

13.
14.
Storage of potato tubers at low temperatures leads to the accumulation of glucose and fructose in a process called 'cold sweetening'. The aim of this work was to investigate the role of sucrose-phosphatase (SPP) in potato tuber carbohydrate metabolism at low temperature (4 degrees C). To this end, RNA interference (RNAi) was used to reduce SPP expression in transgenic potato tubers. Analysis of SPP specific small interfering RNAs (siRNAs), SPP protein accumulation and enzyme activity indicated that SPP silencing in transgenic tubers was stable during the cold treatment. Analysis of soluble carbohydrates showed that in transgenic tubers, cold-induced hexogenesis was inhibited while, despite strongly reduced SPP activity, sucrose levels exceeded wild-type (WT) values four- to fivefold after 34 d of cold treatment. This led to a drastic change in the hexose-to-sucrose ratio from 1.9 in WT tubers to 0.15 to 0.11 in transgenic tubers, while the total amount of soluble sugars was largely unchanged in both genotypes. Sucrose-6(F)-phosphate (Suc6P), the substrate of SPP, accumulated in transgenic tubers in the cold which most likely enables the residual enzyme to operate with maximal catalytic activity in vivo and thus, in the long term, counterbalances reduced SPP activity in the transformants. Northern analysis revealed that cold-induced expression of vacuolar invertase (VI) was blocked in SPP-silenced tubers explaining a reduced sucrose-to-hexose conversion. Suc6P levels were found to negatively correlate with VI expression. A possible role of Suc6P in regulating VI expression is discussed.  相似文献   

15.
16.
Sugar-end defect is a tuber quality disorder and persistent problem for the French fry processing industry that causes unacceptable darkening of one end of French fries. This defect appears when environmental stress during tuber growth increases post-harvest vacuolar acid invertase activity at one end of the tuber. Reducing sugars produced by invertase form dark-colored Maillard reaction products during frying. Acrylamide is another Maillard reaction product formed from reducing sugars and acrylamide consumption has raised health concerns worldwide. Vacuolar invertase gene (VInv) expression was suppressed in cultivars Russet Burbank and Ranger Russet using RNA interference to determine if this approach could control sugar-end defect formation. Acid invertase activity and reducing sugar content decreased at both ends of tubers. Sugar-end defects and acrylamide in fried potato strips were strongly reduced in multiple transgenic potato lines. Thus vacuolar invertase silencing can minimize a long-standing French fry quality problem while providing consumers with attractive products that reduce health concerns related to dietary acrylamide.  相似文献   

17.
Tolerance to chilling was compared under in vitro conditions in potato plants (Solanum tuberosum L., cv. Désirée) transformed with a yeast-derived invertase gene under the control of the B33 class 1 tuber-specific promoter (the B33-inv plants) and potato plants transformed only with a reporter gene (the control plants). The expression of the inserted yeast invertase gene was proved by following the acid and alkaline invertase activities and sugar contents in the leaves under the optimum temperature (22°C). The total activities of acid and alkaline invertases in the B33-inv plants exceeded those in the control plants by the factors of 2–3 and 1.3, respectively. In the B33-inv plants, the activity of acid invertase twice exceeded that of the alkaline invertase, whereas the difference equaled 12% in the control plants. The contents of sucrose and glucose increased in the B33-inv plants by 21 and 13%, respectively, as compared to the control. Chilling at +3 and –1°C for 1, 3, and 6 h did not affect the rate of lipid peroxidation, as measured by the content of malonic dialdehyde (MDA) in the leaves of the genotypes under study. Only the longer exposures (24 h at +3 and –1°C and 7 days at +5°C) produced a significant decline in the MDA content in the B33-invplants, as compared to the control. Following short freezing (20 min at –9°C), the content of MDA increased by 50% in the leaves of the control plants, while in the B33-inv plants, cold-treated and control plants did not differ in the MDA content. The authors presume that the potato plants transformed with the yeast invertase gene acquire a higher tolerance to low temperatures as compared to the control plants, apparently due to the changes in sugar ratio produced by the foreign invertase.  相似文献   

18.
Mechanical wounding or infection of potatoes with Phytophthora infestans caused an accumulation of only serine protease inhibitors in exudates of potato tubers. Among them, proteins prevailed that are structurally similar to those present in healthy tubers: a 22-kDa trypsin inhibitor, a 21-kDa serine protease inhibitor consisting of two polypeptide chains, and a 8-kDa potato chymotrypsin I inhibitor produced de novo. The accumulated proteins inhibited the growth of hyphae and germination of zoospores of P. infestans. Treatment with elicitors, jasmonic and arachidonic acids, intensified the accumulation of these inhibitors in tubers in response to the wound stress, whereas salicylic acid blocked this process. These results suggest that lipoxygenase metabolism plays a substantial role in signal transduction of the protective system of resting potato tubers.  相似文献   

19.
Glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) is an important enzyme that functions in producing energy and supplying intermediates for cellular metabolism. Recent researches indicate that GAPDHs have multiple functions beside glycolysis. However, little information is available for functions of GAPDHs in potato. Here, we identified 4 putative cytosolic GAPDH genes in potato genome and demonstrated that the StGAPC1, StGAPC2, and StGAPC3, which are constitutively expressed in potato tissues and cold inducible in tubers, encode active cytosolic GAPDHs. Cosuppression of these 3 GAPC genes resulted in low tuber GAPDH activity, consequently the accumulation of reducing sugars in cold stored tubers by altering the tuber metabolite pool sizes favoring the sucrose pathway. Furthermore, GAPCs‐silenced tubers exhibited a loss of apical dominance dependent on cell death of tuber apical bud meristem (TAB‐meristem). It was also confirmed that StGAPC1, StGAPC2, and StGAPC3 interacted with the autophagy‐related protein 3 (ATG3), implying that the occurrence of cell death in TAB‐meristem could be induced by ATG3 associated events. Collectively, the present research evidences first that the GAPC genes play crucial roles in diverse physiological and developmental processes in potato tubers.  相似文献   

20.
The soluble acid invertase (β-D-fructofuranoside fructohydrolase, EC 3.2.1.26) from potato (Solanum tuberosum L. cv. Kennebec) tubers was located in the vacuoles. Although the functionality of this invertase in the vacuoles has been assumed, the activity of the enzyme has never been shown within isolated vacuoles. Vacuoles were prepared by gentle osmotic shock from free protoplasts obtained by enzymic digestion of tuber tissues. The mean volume of these vacuoles, (0.26 ± 0.05) × 10−2 μl, was estimated by optical microscopy. Sucrose, glucose and fructose concentrations were calculated to be 100 mM, 20 mM and 40 mM, respectively, in the vacuoles. Sucrose hydrolysis and the increase in glucose and fructose concentrations within the vacuoles were measured during vacuolar incubations. An almost identical pattern of sucrose hydrolysis by invertase was found by an in-vitro assay reproducing the vacuolar conditions. In view of the determinations of internal vacuolar pH (5.2), the possibility of spontaneous hydrolysis of sucrose was disregarded. Vacuoles were shown to be free from proteinaceous inhibitors, confirming the extravacuolar location of these inhibitors. The vacuolar hydrolytic pattern of sucrose confirms the regulatory role of the reaction products previously proposed for in-vitro assays. Received: 21 July 1997 / Accepted: 31 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号