共查询到20条相似文献,搜索用时 20 毫秒
1.
J. M. Marubayashi V. A. Yuki K. C. G. Rocha T. Mituti F. M. Pelegrinotti F. Z. Ferreira M. F. Moura J. Navas‐Castillo E. Moriones M. A. Pavan R. Krause‐Sakate 《Journal of Applied Entomology》2013,137(1-2):113-121
Bemisia tabaci is one of the most important global agricultural insect pests, being a vector of emerging plant viruses such as begomoviruses and criniviruses that cause serious problems in many countries. Although knowledge of the genetic diversity of B. tabaci populations is important for controlling this pest and understanding viral epidemics, limited information is available on this pest in Brazil. A survey was conducted in different locations of São Paulo and Mato Grosso states, and the phylogenetic relationships of B. tabaci individuals from 43 populations sampled from different hosts were analysed based on partial mitochondrial cytochrome oxidase 1 gene (mtCOI) sequences. According to the recently proposed classification of the B. tabaci complex, which employs the 3.5% mtCOI sequence divergence threshold for species demarcation, most of the specimens collected were found to belong to the Middle East‐Asia Minor 1 species, which includes the invasive populations of the commonly known B biotype, within the Africa/Middle East/Asia Minor high‐level group. Three specimens collected from Solanun gilo and Ipomoea sp. were grouped together and could be classified in the New World species that includes the commonly known A biotype. However, six specimens collected from Euphorbia heterophylla, Xanthium cavanillesii and Glycine maxima could not be classified into any of the 28 previously proposed species, although according to the 11% mtCOI sequence divergence threshold, they belong to the New World high‐level group. These specimens were classified into a new recently proposed species named New World 2 that includes populations from Argentina. Middle East‐Asia Minor 1, New World and New World 2 were differentiated by RFLP analysis of the mtCOI gene using TaqI enzyme. Taq I analysis in silico also differentiates these from Mediterranean species, thus making this method a convenient tool to determine population dynamics, especially critical for monitoring the presence of this exotic pest in Brazil. 相似文献
2.
Bemisia tabaci, a resistance‐prone insect pest, is a cryptic species complex with important invasive biotypes such as B and Q. The biotype and resistance statuses of this pest in Malaysia remain unclear. This study assessed the biotype and resistance status of a number of contemporary populations of B. tabaci based on the mtCO1 marker and the dose‐response method, respectively. The Pahang (PHG) population was labelled as the Q biotype, while the remainder of the populations belonged to the Asia 1 biotype. A very low level of resistance for profenofos, cypermethrin, and imidacloprid was detected for all populations [resistance factor (RF) < 10]. Resistance to diafenthiuron ranged from very low to very high (RF > 100). All populations showed a very low level of resistance against pymetrozine except Q‐type PHG population, which exhibited a very high level of resistance. For most insecticides, the highest level of resistance was detected in the PHG population. The implications of these findings for better management of this noxious pest are discussed. 相似文献
3.
The MEAM1 and MED species of the cryptic species complex Bemisia tabaci are important invasive pests that cause tremendous crop losses worldwide. A rapid and highly reliable molecular technique is necessary to identify these species because they are morphologically indistinguishable. Therefore, a multiple polymerase chain reaction coupled with a ligase detection reaction (PCR‐LDR) that was based on polymorphisms in the mitochondrial cytochrome oxidase I (mtCOI) gene of B. tabaci was developed to distinguish the two cryptic species. An assessment of the method indicated that PCR‐LDR provided high specificity and sensitivity in discriminating MEAM1 (SHB) and MED (SHQ) whiteflies. In field tests, PCR‐LDR genotyping was performed in one 96‐well plate to identify 93 individuals collected from 8 districts in the suburbs of Shanghai. Complete concordance was observed between PCR‐LDR and sequencing methods. The method was used to confirm that MEAM1 and MED were found in two districts, but only the MED was found in the other six districts. PCR‐LDR, which is a transplantable platform, provides an alternative method for species identification of B. tabaci at low cost. 相似文献
4.
OLIVIER GNANKIN LAURENCE MOUTON HLNE HENRI GABRIEL TERRAZ THOMAS HOUNDET THIBAUD MARTIN FABRICE VAVRE FRDRIC FLEURY 《Insect Conservation and Diversity》2013,6(3):411-421
Abstract. 1. The whitefly Bemisia tabaci is a pest of many agricultural and ornamental crops worldwide and particularly in Africa. B. tabaci is a complex of more than 20 biotypes. Effective control of B. tabaci calls for a greater knowledge of the local biological diversity in terms of biotypes or putative species. Information is available about biotype distribution in Northern, Eastern, and Southern Africa, but data for Western Africa remain very scarce. At the time of this study, data were available for only three sampling sites in Burkina Faso, where three biotypes have been detected, the native Sub‐Saharan Africa non‐Silver Leafing (AnSL), the Sub‐Saharan Africa Silverleafing (ASL), and the Mediterranean Q biotypes, but no information is available about their respective distributions on host plant species ( Gueguen et al., 2010 ). 2. Our study describes the biotypes and symbiotic bacterial communities of B. tabaci sampled in three West African countries, Burkina Faso, Benin, and Togo. A total of 527 individuals were collected from seven cultivated host plants. 3. In the 20 localities studied, we found the same three biotypes AnSL, ASL, and Q previously detected in Burkina Faso. These biotypes display a specific pattern of geographical distribution influenced by the host plant species. In Benin and Togo, the ASL and AnSL biotypes were predominant, while in Burkina Faso, the Q biotype was dominant, with two sub‐groups, Q1 and Q3 (recorded to date only in this country), and ASL individuals found in sympatry with Q1 individuals in some localities. As previously reported, each biotype and each genetic group harbours a specific community of symbiotic bacteria. 相似文献
5.
Tomato chlorosis virus (ToCV), which is a newly emerged and rapidly spreading plant virus in China, has seriously reduced tomato production and quality over the past several years. In this study, the effect of ToCV on the demography of the whitefly, Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae), fed on infected and healthy tomato plants was evaluated using the age‐stage, two‐sex life table. When reared on ToCV‐infected tomato plants, the fecundity, length of oviposition period and female adult longevity of B. tabaci biotype Q decreased significantly, while the pre‐adult duration significantly increased compared to controls reared on healthy tomatoes. Consequently, the intrinsic rate of increase (r) and finite of increase (λ) of B. tabaci biotype Q on ToCV‐infected tomato plants significantly decreased compared to those on healthy tomatoes. Population projection predicted that a population of B. tabaci biotype Q fed on ToCV‐infected tomatoes increases slower than on healthy plants. These findings demonstrated that ToCV infection decreased the performance of B. tabaci biotype Q on tomato plants. 相似文献
6.
Rahim Romba Olivier Gnankine Samuel Fogné Drabo Fidèle Tiendrebeogo Hélène Henri Laurence Mouton Fabrice Vavre 《Ecology and evolution》2018,8(12):6091-6103
The whitefly Bemisia tabaci is a pest of many agricultural and ornamental crops worldwide and particularly in Africa. It is a complex of cryptic species, which is extremely polyphagous with hundreds of host plants identified around the world. Previous surveys in western Africa indicated the presence of two biotypes of the invasive MED species (MED‐Q1 and MED‐Q3) living in sympatry with the African species SSA and ASL. This situation constitutes one of the rare cases of local coexistence of various genetic entities within the B. tabaci complex. In order to study the dynamics of the distribution and abundance of genetic entities within this community and to identify potential factors that could contribute to coexistence, we sampled B. tabaci populations in Burkina Faso in 2015 and 2016 on various plants, and also their parasitoids. All four genetic entities were still recorded, indicating no exclusion of local species by the MED species. While B. tabaci individuals were found on 55 plant species belonging to eighteen (18) families showing the high polyphagy of this pest, some species/biotypes exhibited higher specificity. Two parasitoid species (Eretmocerus mundus and Encarsia vandrieschei) were also recorded with E. mundus being predominant in most localities and on most plants. Our data indicated that whitefly abundance, diversity, and rate of parasitism varied according to areas, plants, and years, but that parasitism rate was globally highly correlated with whitefly abundance suggesting density dependence. Our results also suggest dynamic variation in the local diversity of B. tabaci species/biotypes from 1 year to the other, specifically with MED‐Q1 and ASL species. This work provides relevant information on the nature of plant–B. tabaci‐parasitoid interactions in West Africa and identifies that coexistence might be stabilized by niche differentiation for some genetic entities. However, MED‐Q1 and ASL show extensive niche overlap, which could ultimately lead to competitive exclusion. 相似文献
7.
In this study, species complex of Turkish Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) populations was determined by PCR‐based DNA analysis. According to phylogenetic analyses, the B. tabaci samples have been identified within three generic groups. A major part of the samples belonged to two invasive species, either Middle East–Asia Minor 1 (MEAM1) or Mediterranean (MED). In addition to these two invasive species, several samples collected from greenhouses and cotton fields have been found to be related to Middle East–Asia Minor 2 (MEAM2), which is the first record of Turkish B. tabaci species complex. 相似文献
8.
Hongying Cui Litao Guo Shaoli Wang Wen Xie Xiaoguo Jiao Qingjun Wu Youjun Zhang 《Ecology and evolution》2017,7(16):6141-6150
The performance of herbivorous insects is greatly affected by host chemical defenses and nutritional quality. Some herbivores have developed the ability to manipulate plant defenses via signaling pathways. It is currently unclear, however, whether a herbivore can benefit by simultaneously reducing plant defenses and enhancing plant nutritional quality. Here, we show that the better performance of the whitefly Bemisia tabaci Middle East‐Asia Minor 1 (MEAM1; formerly the “B” biotype) than Mediterranean (MED; formerly the “Q” biotype) on cabbage is associated with a suppression of glucosinolate (GS) content and an increase in amino acid supply in MEAM1‐infested cabbage compared with MED‐infested cabbage. MEAM1 had higher survival, higher fecundity, higher intrinsic rate of increase (rm), a longer life span, and a shorter developmental time than MED on cabbage plants. Amino acid content was higher in cabbage infested with MEAM1 than MED. Although infestation by either biotype decreased the levels of total GS, aliphatic GS, glucoiberin, sinigrin, glucobrassicin, and 4OH‐glucobrassicin, and the expression of related genes in cabbage, MED infestation increased the levels of 4ME‐glucobrassicin, neoglucobrassicin, progoitrin, and glucoraphanin. The GS content and expression of GS‐related genes were higher in cabbage infested with MED than with MEAM1. Our results suggest that MEAM1 performs better than MED on cabbage by manipulating host defenses and nutritional quality. 相似文献
9.
L. L. Esterhuizen K. G. Mabasa S. W. van Heerden H. Czosnek J. K. Brown M. E. C. Rey 《Journal of Applied Entomology》2013,137(1-2):122-135
The whitefly Bemisia tabaci cryptic species complex contains some important agricultural pest and virus vectors. Members of the complex have become serious pests in South Africa (SA) because of their feeding habit and their ability to transmit begomovirus species. Despite their economic importance, studies on the biology and distribution of B. tabaci in SA are limited. To this end, a survey was made to investigate the diversity and distribution of B. tabaci cryptic species in eight geographical locations (provinces) in SA, between 2002 and 2009, using the mitochondrial cytochrome oxidase I (mtCOI) sequences. Phylogenetic analysis revealed the presence of members from two endemic sub‐Saharan Africa (SSAF) subclades coexisting with two introduced putative species. The SSAF‐1 subclade includes cassava host‐adapted B. tabaci populations, whereas the whiteflies collected from cassava and non‐cassava hosts formed a distinct subclade, referred to as SSAF‐5, and represent a new subclade among previously recognized southern Africa clades. Two introduced cryptic species, belonging to the Mediterranean and Middle East–Asia minor 1 clades, were identified and include the B and Q types. The B type showed the widest distribution, being present in five of the eight provinces explored in SA, infesting several host plants and predominating over the indigenous haplotypes. This is the first report of the occurrence of the exotic Q type in SA alongside the more widely distributed B type. Furthermore, mtCOI PCR‐RFLP was developed for the SA context to allow rapid discrimination between the B, Q and SSAF putative species. The capacity to manage pests and disease effectively relies on knowledge of the identity of the agents causing the damage. Therefore, this study contributes to the understanding of South African B. tabaci species diversity, information needed for the development of knowledge‐based disease management practices. 相似文献
10.
Jun‐Bo Luan Dan‐Mei Yao Tong Zhang Linda L. Walling Mei Yang Yu‐Jun Wang Shu‐Sheng Liu 《Ecology letters》2013,16(3):390-398
11.
Xiao‐Li Bing Wen‐Qiang Xia Jia‐Dong Gui Gen‐Hong Yan Xiao‐Wei Wang Shu‐Sheng Liu 《Ecology and evolution》2014,4(13):2714-2737
Wolbachia is the most prevalent symbiont described in arthropods to date. Wolbachia can manipulate host reproduction, provide nutrition to insect hosts and protect insect hosts from pathogenic viruses. So far, 13 supergroups of Wolbachia have been identified. The whitefly Bemisia tabaci is a complex containing more than 28 morphologically indistinguishable cryptic species. Some cryptic species of this complex are invasive. In this study, we report a comprehensive survey of Wolbachia in B. tabaci and its relative B. afer from 1658 insects representing 54 populations across 13 provinces of China and one state of Australia. Based on the results of PCR or sequencing of the 16S rRNA gene, the overall rates of Wolbachia infection were 79.6% and 0.96% in the indigenous and invasive Bemisia whiteflies, respectively. We detected a new Wolbachia supergroup by sequencing five molecular marker genes including 16S rRNA, groEL, gltA, hcpA, and fbpA genes. Data showed that many protein‐coding genes have limitations in detecting and classifying newly identified Wolbachia supergroups and thus raise a challenge to the known Wolbachia MLST standard analysis system. Besides, the other Wolbachia strains detected from whiteflies were clustered into supergroup B. Phylogenetic trees of whitefly mitochondrial cytochrome oxidase subunit I and Wolbachia multiple sequencing typing genes were not congruent. In addition, Wolbachia was also detected outside the special bacteriocytes in two cryptic species by fluorescence in situ hybridization, indicating the horizontal transmission of Wolbachia. Our results indicate that members of Wolbachia are far from well explored. 相似文献
12.
Shailender Kumar Prachi Sharma Susheel Sharma G. P. Rao 《Journal of Phytopathology》2015,163(5):395-406
Suspected phytoplasma and virus‐like symptoms of little leaf, yellow mosaic and witches’ broom were recorded on soya bean and two weed species (Digitaria sanguinalis and Parthenium hysterophorus), at experimental fields of Indian Agricultural Research Institute, New Delhi, India, in August–September 2013. The phytoplasma aetiology was confirmed in symptomatic soya bean and both the weed species by direct and nested PCR assays with phytoplasma‐specific universal primer pairs (P1/P6 and R16F2n/R16R2n). One major leafhopper species viz. Empoasca motti Pruthi feeding on symptomatic soya bean plants was also found phytoplasma positive in nested PCR assays. Sequencing BLASTn search analysis and phylogenetic analysis revealed that 16Sr DNA sequences of phytoplasma isolates of soya bean, weeds and leafhoppers had 99% sequence identity among themselves and were related to strains of ‘Candidatus Phytoplasma asteris’. PCR assays with Mungbean yellow mosaic India virus (MYMIV) coat‐protein‐specific primers yielded an amplicon of approximately 770 bp both from symptomatic soya bean and from whiteflies (Bemisia tabaci) feeding on soya bean, confirmed the presence of MYMIV in soya bean and whitefly. Hence, this study suggested the mixed infection of MYMIV and ‘Ca. P. asteris’ with soya bean yellow leaf and witches’ broom syndrome. The two weed species (D. sanguinalis and P. hysterophorus) were recorded as putative alternative hosts for ‘Ca. P. asteris’ soya bean Indian strain. However, the leafhopper E. motti was recorded as putative vector for the identified soya bean phytoplasma isolate, and the whitefly (B. tabaci) was identified as vector of MYMIV which belonged to Asia‐II‐1 genotype. 相似文献
13.
Midatharahally N. Maruthi Simon C. Jeremiah Ibrahim U. Mohammed James P. Legg 《Journal of Phytopathology》2017,165(11-12):707-717
Cassava brown streak disease (CBSD) is arguably the most dangerous current threat to cassava, which is Africa's most important food security crop. CBSD is caused by two RNA viruses: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). The roles of the whitefly Bemisia tabaci (Gennadius) and farmer practices in the spread of CBSD were investigated in a set of field and laboratory experiments. The virus was acquired and transmitted by B. tabaci within a short time (5–10 min each for virus acquisition and inoculation), and was retained for up to 48 hr. Highest virus transmission (60%) was achieved using 20–25 suspected viruliferous whiteflies per plant that were given acquisition and inoculation periods of 24 and 48 hr, respectively. Experiments mimicking the agronomic practices of cassava leaf picking or the use of contaminated tools for making cassava stem cuttings did not show the transmission of CBSV or UCBSV. Screenhouse and field experiments in Tanzania showed that the spread of CBSD next to spreader rows was high, and that the rate of spread decreased with increasing distance from the source of inoculum. The disease spread in the field up to a maximum of 17 m in a cropping season. These results collectively confirm that CBSV and UCBSV are transmitted by B. tabaci semipersistently, but for only short distances in the field. This implies that spread over longer distances is due to movements of infected stem cuttings used for planting material. These findings have important implications for developing appropriate management strategies for CBSD. 相似文献
14.
Magali Thierry Audrey Bile Martial Grondin Bernard Reynaud Nathalie Becker Hlne Delatte 《Insect Conservation and Diversity》2015,8(1):71-80
- The whitefly Bemisia tabaci is a worldwide pest considered to be a complex of cryptic species. Its identification is primarily based on mitochondrial COI sequences. Microsatellite markers can also be used to identify this species and to study its population structure. Moreover, B. tabaci species harbour quite specific endosymbiont communities that can constitute additional markers for identification. Previous studies have demonstrated the occurrence of two B. tabaci species on the island of La Réunion: the exotic MEAM1 and the indigenous IO. A recent field survey revealed unusually high densities of whiteflies in Saint Pierre, and this could reflect the introduction of a new B. tabaci species.
- To test the putative introduction of a new invasive species, B. tabaci individuals were collected at Saint Pierre and at six additional sites. Among these samples, analyses were conducted on mitochondrial COI, microsatellites, and endosymbiont communities.
- Based on the mitochondrial COI marker, we detected in Saint Pierre two subgroups (Eastern and Western) characteristic of the invasive MED species. This is the first time these subgroups have been found in La Réunion. The analysis of microsatellite data from the seven sites around the island showed that (i) the geographical distribution of MED seems confined to Saint Pierre, (ii) no hybrids were detected between MED individuals and the resident species, and (iii) the MED population, while exhibiting two mitochondrial haplotypes, has a homogenous nuclear genetic background. The two MED subgroups differing in their mitochondrial haplotype also specifically differed in their endosymbiotic diversity.
15.
M. S. Hunter P. Asiimwe A. G. Himler S. E. Kelly 《Journal of evolutionary biology》2017,30(1):141-149
Arthropods commonly carry maternally inherited intracellular bacterial symbionts that may profoundly influence host biology and evolution. The intracellular symbiont Rickettsia sp. nr. bellii swept rapidly into populations of the sweetpotato whitefly Bemisia tabaci in the south‐western USA. Previous laboratory experiments showed female‐bias and fitness benefits were associated with Rickettsia infection, potentially explaining the high frequencies of infection observed in field populations, but the effects varied with whitefly genetic line. Here, we explored whether host extranuclear or nuclear genes influenced the variation in the Rickettsia–host phenotype in two genetic lines of the whitefly host, each with Rickettsia‐infected and uninfected sublines. Introgression between the Rickettsia‐infected subline of one genetic line and the Rickettsia‐uninfected subline of the other was used to create two new sublines, each with the maternally inherited extranuclear genetic lineages of one line (Rickettsia, two other symbionts and the mitochondria) and the nuclear genotype of the other. Performance assays comparing the original and new lines showed that in addition to Rickettsia, the interaction of Rickettsia infection with host nuclear genotype influenced development time and the sex ratio of the progeny, whereas the extranuclear genotype did not. Host nuclear genotype, but not extranuclear genotype, also influenced the titre of Rickettsia. Our results support the hypothesis that differences in host nuclear genotype alone may explain considerable within‐population variation in host–symbiont phenotype and may contribute to the observed variation in Rickettsia–whitefly interactions worldwide. 相似文献
16.
F. Díaz V. Muñoz‐Valencia D. L. Juvinao‐Quintero M. R. Manzano‐Martínez N. Toro‐Perea H. Cárdenas‐Henao A. A. Hoffmann 《Journal of evolutionary biology》2014,27(6):1160-1171
There is an increasing evidence that populations of ectotherms can diverge genetically in response to different climatic conditions, both within their native range and (in the case of invasive species) in their new range. Here, we test for such divergence in invasive whitefly Bemisia tabaci populations in tropical Colombia, by considering heritable variation within and between populations in survival and fecundity under temperature stress, and by comparing population differences with patterns established from putatively neutral microsatellite markers. We detected significant differences among populations linked to mean temperature (for survival) and temperature variation (for fecundity) in local environments. A QST ? FST analysis indicated that phenotypic divergence was often larger than neutral expectations (QST > FST). Particularly, for survival after a sublethal heat shock, this divergence remained linked to the local mean temperature after controlling for neutral divergence. These findings point to rapid adaptation in invasive whitefly likely to contribute to its success as a pest species. Ongoing evolutionary divergence also provides challenges in predicting the likely impact of Bemisia in invaded regions. 相似文献
17.
Onder Duzlu Alparslan Yildirim Zuhal Onder Arif Ciloglu Gamze Yetismis Abdullah Inci 《The Journal of eukaryotic microbiology》2019,66(5):771-777
Microsporidia are opportunistic pathogens that infect a wide range of invertebrates and vertebrates. To assess the potential role of dogs in the transmission of these zoonotic pathogens, a total of 282 fecal samples from dogs in the Central Anatolia Region of Turkey were analyzed by utilizing species specific polymerase chain reaction for the four most frequent human microsporidia. Two microsporidia species were recognized in 41 samples (14.5%). Encephalitozoon intestinalis was detected in 35 samples (12.4%) and it was the most common microsporidium. The second microsporidium, E. cuniculi, was identified in six (2.1%) of the samples. Sequence analysis of the intergenic spacer of the ribosomal ribonucleic acid (RNA) internal transcribed spacer (ITS) gene revealed the presence of three E. intestinalis haplotypes closely associated with each other. No polymorphic region was found among the ITS sequences of E. cuniculi isolates and they were characterized as genotype III. This study provides the first data on the zoonotic microsporidia species from dogs in Turkey. 相似文献
18.
Qing Zhao Junwei J. Zhu Yuchuan Qin Pengliang Pan Hongtao Tu Wenxiao Du Wangfang Zhou Frederick P. Baxendale 《Entomologia Experimentalis et Applicata》2014,150(1):19-27
The effectiveness of four less preferred vegetables – celery, asparagus lettuce, Malabar spinach, and edible amaranth – were investigated for suppression of two biotypes of sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) on cucumber, Cucumis sativus L. (Cucurbitaceae). Intercropping celery and Malabar spinach with cucumber significantly reduced whitefly numbers on cucumber. Y‐tube olfactometer behavioral assays revealed that whiteflies were strongly repelled from the aqueous extracts of the less preferred vegetables. The level of whitefly repellency varied with combinations of intercropped vegetables, and also differed between the two whitefly biotypes. For whitefly biotype B, the greatest repellency was observed with asparagus lettuce extract, whereas celery and Malabar spinach extracts were more repellent to whitefly biotype Q. Two major volatile constituent compounds were identified, D‐limonene from celery and geranyl nitrile from Malabar spinach. Sprayable 1% formulations of these compounds significantly reduced whitefly colonization on cucumber under field conditions. 相似文献
19.
Onion thrips, Thrips tabaci Lindeman, colonization of onion fields may be influenced by bordering crop and non‐crop habitats. Identifying habitats adjacent to onion fields associated with high T. tabaci infestations would be valuable for improving scouting efforts and management decisions. A 3‐year study examined adult T. tabaci colonization patterns within onion fields early (June through early July) and late in the season (August) in three muck regions in New York (USA). We hypothesized that early‐season adult densities would be greater in onion fields bordering other crops (e.g. carrot, corn and potato) and non‐crops (e.g. woods) than those bordering other onion fields and that more adults would occur along onion field edges than field centres. Results indicated similar adult densities in onion fields regardless of bordering crop and non‐crop habitats in seven of nine muck region × year data sets; exceptions were more adults in onion fields bordering potato (Elba region only) and corn (Potter region only) than those bordering other onion fields. Adult densities decreased as distance into onion fields increased in only four of nine muck region × year data sets; in these cases only 38% more adults were found along field edges than field centres. Later in the season, we hypothesized that adult densities would be greater in non‐mature onion fields bordering mature onion fields, and densities would be greater along field edges than field centres. Results indicated that adult densities in non‐mature onion fields bordering mature onion fields were 54 times greater than those bordering other non‐mature onion fields, and four times more adults occurred along field edges than field centres; adult densities were similar along field edges and centres in non‐mature onion fields bordering other non‐mature onion fields. Implications for T. tabaci management in onion based on these colonization patterns are discussed. 相似文献
20.
Maysa S. Areas Ricardo M. Gonçalves José M. Soman Renate K. Sakate Ricardo Gioria Tadeu A. F. da Silva Júnior Antonio C. Maringoni 《Journal of Phytopathology》2015,163(11-12):1050-1054
Bacterial spot, caused by Xanthomonas spp., is one of the major diseases of pepper in Brazil, causing considerable losses to crop productivity. The efficient management of the disease is hampered by the high variability of the causal agents. In Brazil, there is no knowledge of which species of Xanthomonas occurs on pepper. In this study, 59 strains of Xanthomonas spp. isolated from different pepper‐producing regions of Brazil were characterized by biochemical and molecular techniques. Results showed the prevalence of X. euvesicatoria as the causal agent of bacterial spot on pepper in Brazil. 相似文献