首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rossi B  Ogden D  Llano I  Tan YP  Marty A  Collin T 《PloS one》2012,7(6):e39983
In developing cerebellar molecular layer interneurons (MLIs), NMDA increases spontaneous GABA release. This effect had been attributed to either direct activation of presynaptic NMDA receptors (preNMDARs) or an indirect pathway involving activation of somato-dendritic NMDARs followed by passive spread of somatic depolarization along the axon and activation of axonal voltage dependent Ca(2+) channels (VDCCs). Using Ca(2+) imaging and electrophysiology, we searched for preNMDARs by uncaging NMDAR agonists either broadly throughout the whole field or locally at specific axonal locations. Releasing either NMDA or glutamate in the presence of NBQX using short laser pulses elicited current transients that were highly sensitive to the location of the spot and restricted to a small number of varicosities. The signal was abolished in the presence of high Mg(2+) or by the addition of APV. Similar paradigms yielded restricted Ca(2+) transients in interneurons loaded with a Ca(2+) indicator. We found that the synaptic effects of NMDA were not inhibited by blocking VDCCs but were impaired in the presence of the ryanodine receptor antagonist dantrolene. Furthermore, in voltage clamped cells, bath applied NMDA triggers Ca(2+) elevations and induces neurotransmitter release in the axonal compartment. Our results suggest the existence of preNMDARs in developing MLIs and propose their involvement in the NMDA-evoked increase in GABA release by triggering a Ca(2+)-induced Ca(2+) release process mediated by presynaptic Ca(2+) stores. Such a mechanism is likely to exert a crucial role in various forms of Ca(2+)-mediated synaptic plasticity.  相似文献   

2.
Christie JM  Jahr CE 《Neuron》2008,60(2):298-307
NMDA receptor (NMDAR) activation can alter synaptic strength by regulating transmitter release from a variety of neurons in the CNS. As NMDARs are permeable to Ca(2+) and monovalent cations, they could alter release directly by increasing presynaptic Ca(2+) or indirectly by axonal depolarization sufficient to activate voltage-sensitive Ca(2+) channels (VSCCs). Using two-photon microscopy to measure Ca(2+) excursions, we found that somatic depolarization or focal activation of dendritic NMDARs elicited small Ca(2+) transients in axon varicosities of cerebellar stellate cell interneurons. These axonal transients resulted from Ca(2+) entry through VSCCs that were opened by the electrotonic spread of the NMDAR-mediated depolarization elicited in the dendrites. In contrast, we were unable to detect direct activation of NMDARs on axons, indicating an exclusive somatodendritic expression of functional NMDARs. In cerebellar stellate cells, dendritic NMDAR activation masquerades as a presynaptic phenomenon and may influence Ca(2+) -dependent forms of presynaptic plasticity and release.  相似文献   

3.
NMDA receptors (NMDARs) are glutamate-gated ion channels involved in excitatory synaptic transmission and in others physiological processes such as synaptic plasticity and development. The overload of Ca2+ ions through NMDARs, caused by an excessive activation of receptors, leads to excitotoxic neuronal cell death. For this reason, the reduction of Ca2+ flux through NMDARs has been a central focus in finding therapeutic strategies to prevent neuronal cell damage.Extracellular H+ are allosteric modulators of NMDARs. Starting from previous studies showing that extracellular mild acidosis reduces NMDA-evoked whole cell currents, we analyzed the effects of this condition on the NMDARs Ca2+ permeability, measured as “fractional calcium current” (Pf, i.e. the percentage of the total current carried by Ca2+ ions), of human NMDARs NR1/NR2A and NR1/NR2B transiently transfected in HeLa cells. Extracellular mild acidosis significantly reduces Pf of both human NR1/NR2A and NR1/NR2B NMDARs, also decreasing single channel conductance in outside out patches for NR1/NR2A receptor. Reduction of Ca2+ flux through NMDARs was also confirmed in cortical neurons in culture. A comparative analysis of both NMDA evoked Ca2+ transients and whole cell currents showed that extracellular H+ differentially modulate the permeation of Na+ and Ca2+ through NMDARs.Our data highlight the synergy of two distinct neuroprotective mechanisms during acidosis: Ca2+ entry through NMDARs is lowered due to the modulation of both open probability and Ca2+ permeability. Furthermore, this study provides the proof of concept that it is possible to reduce Ca2+ overload in neurons modulating the NMDAR Ca2+ permeability.  相似文献   

4.
During vertebrate locomotion, spinal neurons act as oscillators when initiated by glutamate release from descending systems. Activation of NMDA receptors initiates Ca2+-mediated intrinsic membrane potential oscillations in central pattern generator (CPG) neurons. NMDA receptor-dependent intrinsic oscillations require Ca2+-dependent K+ (KCa2) channels for burst termination. However, the location of Ca2+ entry mediating KCa2 channel activation, and type of Ca2+ channel – which includes NMDA receptors and voltage-gated Ca2+ channels (VGCCs) – remains elusive. NMDA receptor-dependent Ca2+ entry necessitates presynaptic release of glutamate, implying a location at active synapses within dendrites, whereas VGCC-dependent Ca2+ entry is not similarly constrained. Where Ca2+ enters relative to KCa2 channels is crucial to information processing of synaptic inputs necessary to coordinate locomotion. We demonstrate that Ca2+ permeating NMDA receptors is the dominant source of Ca2+ during NMDA-dependent oscillations in lamprey spinal neurons. This Ca2+ entry is synaptically located, NMDA receptor-dependent, and sufficient to activate KCa2 channels at excitatory interneuron synapses onto other CPG neurons. Selective blockade of VGCCs reduces whole-cell Ca2+ entry but leaves membrane potential and Ca2+ oscillations unaffected. Furthermore, repetitive oscillations are prevented by fast, but not slow, Ca2+ chelation. Taken together, these results demonstrate that KCa2 channels are closely located to NMDA receptor-dependent Ca2+ entry. The close spatial relationship between NMDA receptors and KCa2 channels provides an intrinsic mechanism whereby synaptic excitation both excites and subsequently inhibits ventral horn neurons of the spinal motor system. This places the components necessary for oscillation generation, and hence locomotion, at glutamatergic synapses.  相似文献   

5.
The relationship between electrical activity and spike‐induced Ca2+ increases in dendrites was investigated in the identified wind‐sensitive giant interneurons in the cricket. We applied a high‐speed Ca2+ imaging technique to the giant interneurons, and succeeded in recording the transient Ca2+ increases (Ca2+ transients) induced by a single action potential, which was evoked by presynaptic stimulus to the sensory neurons. The dendritic Ca2+ transients evoked by a pair of action potentials accumulated when spike intervals were shorter than 100 ms. The amplitude of the Ca2+ transients induced by a train of spikes depended on the number of action potentials. When stimulation pulses evoking the same numbers of action potentials were separately applied to the ipsi‐ or contra‐lateral cercal sensory nerves, the dendritic Ca2+ transients induced by these presynaptic stimuli were different in their amplitude. Furthermore, the side of presynaptic stimulation that evoked larger Ca2+ transients depended on the location of the recorded dendritic regions. This result means that the spike‐triggered Ca2+ transients in dendrites depend on postsynaptic activity. It is proposed that Ca2+ entry through voltage‐dependent Ca2+ channels activated by the action potentials will be enhanced by excitatory synaptic inputs at the dendrites in the cricket giant interneurons. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 234–244, 2002; DOI 10.1002/neu.10032  相似文献   

6.
Brief intracellular Ca2+ transients initiate signaling routines that direct cellular activities. Consequently, activation of Ca2+-permeable neurotransmitter-gated channels can both depolarize and initiate remodeling of the postsynaptic cell. In particular, the Ca2+ transient produced by NMDA receptors is essential to normal synaptic physiology, drives the development and plasticity of excitatory central synapses, and also mediates glutamate excitotoxicity. The amplitude and time course of the Ca2+ signal depends on the receptor’s conductance and gating kinetics; these properties are themselves influenced both directly and indirectly by fluctuations in the extracellular Ca2+ concentration. Here, we used electrophysiology and kinetic modeling to delineate the direct effects of extracellular Ca2+ on recombinant GluN1/GluN2A receptor conductance and gating. We report that, in addition to decreasing unitary conductance, Ca2+ also decreased channel open probability primarily by lengthening closed-channel periods. Using one-channel current recordings, we derive a kinetic model for GluN1/GluN2A receptors in physiological Ca2+ concentrations that accurately describes macroscopic channel behaviors. This model represents a practical instrument to probe the mechanisms that control the Ca2+ transients produced by NMDA receptors during both normal and aberrant synaptic signaling.  相似文献   

7.
One of the pathways implicated in a fine-tuning control of synaptic transmission is activation of the receptors located at the presynaptic terminal. Here we investigated the intracellular events in rat brain cortical and hippocampal nerve terminals occurring under the activation of presynaptic glutamate receptors by exogenous glutamate and specific agonists of ionotropic receptors, NMDA and kainate. Involvement of synaptic vesicles in exocytotic process was assessed using [3H]GABA and pH-sensitive fluorescent dye acridine orange (AO). Glutamate as well as NMDA and kainate were revealed to induce [3H]GABA release that was not blocked by NO-711, a selective blocker of GABA transporters. AO-loaded nerve terminals responded to glutamate application by the development of a two-phase process. The first phase, a fluorescence transient completed in ∼1 min, was similar to the response to high K+. It was highly sensitive to extracellular Ca2+ and was decreased in the presence of the NMDA receptor antagonist, MK-801. The second phase, a long-lasting process, was absolutely dependent on extracellular Na+ and attenuated in the presence of CNQX, the kainate receptor antagonist. NMDA as well as kainate per se caused a rapid and abrupt neurosecretory process confirming that both glutamate receptors, NMDA and kainate, are involved in the control of neurotransmitter release. It could be suggested that at least two types ionotropic receptor are attributed to glutamate-induced two-phase process, which appears to reflect a rapid synchronous and a more prolonged asynchronous vesicle fusion.  相似文献   

8.
The processing of excitatory synaptic inputs involves compartmentalized dendritic Ca2+ oscillations. The downstream signaling evoked by these local Ca2+ transients and their impact on local synaptic development and remodeling are unknown. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is an important decoder of Ca2+ signals and mediator of synaptic plasticity. In addition to its known accumulation at spines, we observed with live imaging the dynamic recruitment of CaMKII to dendritic subdomains adjacent to activated synapses in cultured hippocampal neurons. This localized and transient enrichment of CaMKII to dendritic sites coincided spatially and temporally with dendritic Ca2+ transients. We show that it involved an interaction with microtubular elements, required activation of the kinase, and led to localized dendritic CaMKII autophosphorylation. This process was accompanied by the adjacent remodeling of spines and synaptic AMPA receptor insertion. Replacement of endogenous CaMKII with a mutant that cannot translocate within dendrites lessened this activity-dependent synaptic plasticity. Thus, CaMKII could decode compartmental dendritic Ca2+ transients to support remodeling of local synapses.  相似文献   

9.
Traditionally, NMDA receptors are located postsynaptically; yet, putatively presynaptic NMDA receptors (preNMDARs) have been reported. Although implicated in controlling synaptic plasticity, their function is not well understood and their expression patterns are debated. We demonstrate that, in layer 5 of developing mouse visual cortex, preNMDARs specifically control synaptic transmission at pyramidal cell inputs to other pyramidal cells and to Martinotti cells, while leaving those to basket cells unaffected. We also reveal a type of interneuron that mediates ascending inhibition. In agreement with synapse-specific expression, we find preNMDAR-mediated calcium signals in a subset of pyramidal cell terminals. A tuned network model predicts that preNMDARs specifically reroute information flow in local circuits during high-frequency firing, in particular by impacting frequency-dependent disynaptic inhibition mediated by Martinotti cells, a finding that we experimentally verify. We conclude that postsynaptic cell type determines presynaptic terminal molecular identity and that preNMDARs govern information processing in neocortical columns.  相似文献   

10.
In the presence of glutamate and co-agonists, e.g., glycine, the N-methyl-D-aspartate receptor (NMDAR) plays an important role in physiological and pathophysiological brain processes. Previous studies indicate glycine could inhibit NMDAR responses induced by high concentration of NMDA in hippocampal neurons. The mechanism underlying this inhibitory impact, however, has been unclear. In this study, the whole-cell patch-clamp recording and Ca2+ imaging with Fluo-3/AM under laser scanning confocal microscope were used to analyze the possible involvement of NMDAR subunits in this effect. We found that the peak current of NMDARs and Ca2+ influx induced by high concentration of NMDA were reduced by treatment of glycine (0.03?C10 ??mol L?1) in a dose-dependent manner, and that the glycine-dependent inhibition of NMDAR responses, which were induced at 300 ??mol L?1 NMDA, was reversed by ZnCl2 through the blocking of the NR2A subunit of NMDARs, but was less influenced by ifenprodil, a NR2B inhibitor. Our results suggest that the glycine-dependent inactivation of NMDARs is potentially modulated by the regulatory subunit NR2A.  相似文献   

11.
Astrocytes play active roles in the regulation of synaptic transmission. Neuronal excitation can evoke Ca2+ transients in astrocytes, and these Ca2+ transients can modulate neuronal excitability. Although only a subset of astrocytes appears to communicate with neurons, the types of astrocytes that can regulate neuronal excitability are poorly characterized. We found that ∼30% of astrocytes in the brain express transient receptor potential vanilloid 4 (TRPV4), indicating that astrocytic subtypes can be classified on the basis of their expression patterns. When TRPV4+ astrocytes are activated by ligands such as arachidonic acid, the activation propagates to neighboring astrocytes through gap junctions and by ATP release from the TRPV4+ astrocytes. After activation, both TRPV4+ and TRPV4 astrocytes release glutamate, which acts as an excitatory gliotransmitter to increase synaptic transmission through type 1 metabotropic glutamate receptor (mGluR). Our results indicate that TRPV4+ astrocytes constitute a novel subtype of the population and are solely responsible for initiating excitatory gliotransmitter release to enhance synaptic transmission. We propose that TRPV4+ astrocytes form a core of excitatory glial assembly in the brain and function to efficiently increase neuronal excitation in response to endogenous TRPV4 ligands.  相似文献   

12.
Calcineurin and calmodulin-dependent protein kinase II (CaMKII) are both highly abundant in neurons, and both are activated by calmodulin at similar Ca2+ concentrations in the test tube. However, they fulfill opposite functions in dendritic spines, with CaMKII activity driving long-term synaptic potentiation following large influxes of Ca2+ through NMDA-type glutamate receptors (NMDARs), and calcineurin responding to smaller influxes of Ca2+ through the same receptors to induce long-term depression. In this review, we explore the notion that precise dynamic localisation of the two enzymes at different sites within dendritic spines is fundamental to this behaviour. We describe the structural basis of calcineurin and CaMKII localisation by their interaction with proteins including AKAP79, densin-180, α-actinin, and NMDARs. We then consider how interactions with these proteins likely position calcineurin and CaMKII at different distances from Ca2+ microdomains emanating from the mouths of NMDARs in order to drive the divergent responses. We also highlight shortcomings in our current understanding of synaptic localisation of these two important signalling enzymes.  相似文献   

13.
Presynaptic group III metabotropic glutamate receptors (mGluRs) and Ca2+ channels are the main neuronal activity-dependent regulators of synaptic vesicle release, and they use common molecules in their signaling cascades. Among these, calmodulin (CaM) and the related EF-hand Ca2+-binding proteins are of particular importance as sensors of presynaptic Ca2+, and a multiple of them are indeed utilized in the signaling of Ca2+ channels. However, despite its conserved structure, CaM is the only known EF-hand Ca2+-binding protein for signaling by presynaptic group III mGluRs. Because the mGluRs and Ca2+ channels reciprocally regulate each other and functionally converge on the regulation of synaptic vesicle release, the mGluRs would be expected to utilize more EF-hand Ca2+-binding proteins in their signaling. Here I show that calcium-binding protein 1 (CaBP1) bound to presynaptic group III mGluRs competitively with CaM in a Ca2+-dependent manner and that this binding was blocked by protein kinase C (PKC)-mediated phosphorylation of these receptors. As previously shown for CaM, these results indicate the importance of CaBP1 in signal cross talk at presynaptic group III mGluRs, which includes many molecules such as cAMP, Ca2+, PKC, G protein, and Munc18-1. However, because the functional diversity of EF-hand calcium-binding proteins is extraordinary, as exemplified by the regulation of Ca2+ channels, CaBP1 would provide a distinct way by which presynaptic group III mGluRs fine-tune synaptic transmission.  相似文献   

14.
The effects of voltage-operated potassium channel blockers on evoked excitatory synaptic transmission were studied in theCA1 subfield of rat hippocampal slices. Incubation with 50 μM 4-aminopyridine (n=27), 300 nM α-dendrotoxin (n=3), or 5 to 25 mM tetraethylammonium (n=7) resulted in an enhancement of the peak amplitude of excitatory postsynaptic currents (EPSC) and significant prolongation of their decay at strong stimuli, due to an increased contribution of NMDA receptors into EPSC. In five experiments, the presence of an AMPA receptor antagonist, 4-aminopyridine, led to the appearance of NMDA receptor-mediated field excitatory postsynaptic potentials (fEPSP). It is suggested that various modulations increasing presynaptic Ca2+ entry and, consequently, glutamate release may increase an NMDA component of synaptic transmission via excitation of polysynaptic excitatory pathways and/or due to glutamate spillover to distant extrasynaptic NMDA receptors.  相似文献   

15.
Collapsin response mediator proteins (CRMPs) specify axon/dendrite fate and axonal growth of neurons through protein-protein interactions. Their functions in presynaptic biology remain unknown. Here, we identify the presynaptic N-type Ca2+ channel (CaV2.2) as a CRMP-2-interacting protein. CRMP-2 binds directly to CaV2.2 in two regions: the channel domain I-II intracellular loop and the distal C terminus. Both proteins co-localize within presynaptic sites in hippocampal neurons. Overexpression in hippocampal neurons of a CRMP-2 protein fused to enhanced green fluorescent protein caused a significant increase in Ca2+ channel current density, whereas lentivirus-mediated CRMP-2 knockdown abolished this effect. Interestingly, the increase in Ca2+ current density was not due to a change in channel gating. Rather, cell surface biotinylation studies showed an increased number of CaV2.2 at the cell surface in CRMP-2-overexpressing neurons. These neurons also exhibited a significant increase in vesicular release in response to a depolarizing stimulus. Depolarization of CRMP-2-enhanced green fluorescent protein-overexpressing neurons elicited a significant increase in release of glutamate compared with control neurons. Toxin block of Ca2+ entry via CaV2.2 abolished this stimulated release. Thus, the CRMP-2-Ca2+ channel interaction represents a novel mechanism for modulation of Ca2+ influx into nerve terminals and, hence, of synaptic strength.  相似文献   

16.
Jang M  Jang JY  Kim SH  Uhm KB  Kang YK  Kim HJ  Chung S  Park MK 《Cell calcium》2011,50(4):370-380
Dendritic Ca2+ plays an important role not only in synaptic integration and synaptic plasticity, but also in dendritic excitability in midbrain dopamine neurons. However, the functional organization of dendritic Ca2+ signals in the dopamine neurons remains largely unknown. We therefore investigated dendritic Ca2+ signals by measuring glutamate-induced Ca2+ increases along the dendrites of acutely isolated midbrain dopamine neurons.Maximal doses of glutamate induced a [Ca2+]c rise with similar amplitudes in proximal and distal dendritic regions of a dopamine neuron. Glutamate receptors contributed incrementally to the [Ca2+]c rise according to their distance from the soma, with a reciprocal decrement in the contribution of voltage-operated Ca2+ channels (VOCCs). The contribution of AMPA and NMDA receptors increased with dendritic length, but that of metabotropic glutamate receptors decreased. At low doses of glutamate at which spontaneous firing was sustained, the [Ca2+]c rise was higher in the distal than the proximal regions of a dendrite, possibly due to the increased spontaneous firing rate.These results indicate that functional organization of Ca2+ signals in the dendrites of dopamine neurons requires different combination of VOCCs and glutamate receptors according to dendritic length, and that regional Ca2+ rises in dendrites respond differently to applied glutamate concentration.  相似文献   

17.
Axonal ionotropic receptors are present in a variety of neuronal types, and their function has largely been associated with the modulation of axonal activity and synaptic release. It is usually assumed that activation of axonal GABAARs comes from spillover, but in cerebellar molecular layer interneurons (MLIs) the GABA source is different: in these cells, GABA release activates presynaptic GABAA autoreceptors (autoRs) together with postsynaptic targets, producing an autoR-mediated synaptic event. The frequency of presynaptic, autoR-mediated miniature currents is twice that of their somatodendritic counterparts, suggesting that autoR-mediated responses have an important effect on interneuron activity. Here, we used local Ca2+ photolysis in MLI axons of juvenile rats to evoke GABA release from individual varicosities to study the activation of axonal autoRs in single release sites. Our data show that single-site autoR conductances are similar to postsynaptic dendritic conductances. In conditions of high [Cl]i, autoR-mediated conductances range from 1 to 5 nS; this corresponds to ∼30–150 GABAA channels per presynaptic varicosity, a value close to the number of channels in postsynaptic densities. Voltage responses produced by the activation of autoRs in single varicosities are amplified by a Nav-dependent mechanism and propagate along the axon with a length constant of 91 µm. Immunolabeling determination of synapse location shows that on average, one third of the synapses produce autoR-mediated signals that are large enough to reach the axon initial segment. Finally, we show that single-site activation of presynaptic GABAA autoRs leads to an increase in MLI excitability and thus conveys a strong feedback signal that contributes to spiking activity.  相似文献   

18.
SK2- and KV4.2-containing K+ channels modulate evoked synaptic potentials in CA1 pyramidal neurons. Each is coupled to a distinct Ca2+ source that provides Ca2+-dependent feedback regulation to limit AMPA receptor (AMPAR)- and NMDA receptor (NMDAR)-mediated postsynaptic depolarization. SK2-containing channels are activated by Ca2+ entry through NMDARs, whereas KV4.2-containing channel availability is increased by Ca2+ entry through SNX-482 (SNX) sensitive CaV2.3 R-type Ca2+ channels. Recent studies have challenged the functional coupling between NMDARs and SK2-containing channels, suggesting that synaptic SK2-containing channels are instead activated by Ca2+ entry through R-type Ca2+ channels. Furthermore, SNX has been implicated to have off target affects, which would challenge the proposed coupling between R-type Ca2+ channels and KV4.2-containing K+ channels. To reconcile these conflicting results, we evaluated the effect of SK channel blocker apamin and R-type Ca2+ channel blocker SNX on evoked excitatory postsynaptic potentials (EPSPs) in CA1 pyramidal neurons from CaV2.3 null mice. The results show that in the absence of CaV2.3 channels, apamin application still boosted EPSPs. The boosting effect of CaV2.3 channel blockers on EPSPs observed in neurons from wild type mice was not observed in neurons from CaV2.3 null mice. These data are consistent with a model in which SK2-containing channels are functionally coupled to NMDARs and KV4.2-containing channels to CaV2.3 channels to provide negative feedback regulation of EPSPs in the spines of CA1 pyramidal neurons.  相似文献   

19.
The active zone of presynaptic nerve terminals organizes the neurotransmitter release machinery, thereby enabling fast Ca2+‐triggered synaptic vesicle exocytosis. BK‐channels are Ca2+‐activated large‐conductance K+‐channels that require close proximity to Ca2+‐channels for activation and control Ca2+‐triggered neurotransmitter release by accelerating membrane repolarization during action potential firing. How BK‐channels are recruited to presynaptic Ca2+‐channels, however, is unknown. Here, we show that RBPs (for RIM‐binding proteins), which are evolutionarily conserved active zone proteins containing SH3‐ and FN3‐domains, directly bind to BK‐channels. We find that RBPs interact with RIMs and Ca2+‐channels via their SH3‐domains, but to BK‐channels via their FN3‐domains. Deletion of RBPs in calyx of Held synapses decreased and decelerated presynaptic BK‐currents and depleted BK‐channels from active zones. Our data suggest that RBPs recruit BK‐channels into a RIM‐based macromolecular active zone complex that includes Ca2+‐channels, synaptic vesicles, and the membrane fusion machinery, thereby enabling tight spatio‐temporal coupling of Ca2+‐influx to Ca2+‐triggered neurotransmitter release in a presynaptic terminal.  相似文献   

20.
We have studied the architecture of giant neuropile glial cells of the medicinal leech Hirudo medicinalis L. using confocal laser scanning microscopy. We also measured changes in the intracellular Ca2+ concentration ([Ca2+]i) induced by activation of glutamate receptors or voltage-gated Ca2+ channels in different glial cell compartments. Glial cells of isolated segmental ganglia were filled iontophoretically with the Ca2+ indicator dye Fluo-3. The three-dimensional structure, calculated from serial sections, showed that numerous fine glial branches extend within the whole neuropile, where most of the synapses between neurones are established. Activation of glial glutamate receptors by glutamate or kainate, or depolarizing the cell membrane by elevating the external K+ concentration resulted in a transient increase in [Ca2+]i, as measured by Fluo-3 fluorescence. The comparison of [Ca2+]i changes in glial cell branches with changes in the cell body demonstrated that transients in the branches were 2–3 times larger than those in the cell body. The results suggest that glutamate receptors and voltage-gated Ca2+ channels are located in the membrane not only of the glial cell body but also of the cellular branches, which may extend close to synaptic domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号