首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Stable isotope natural abundance measurements integrate across several biogeochemical processes in ecosystem N and C dynamics. Here, we report trends in natural isotope abundance (δ13C and δ15N in plant and soil) along a climosequence of 33 Nothofagus forest stands located within Patagonia, Southern Argentina. We measured 28 different abiotic variables (both climatic variables and soil properties) to characterize environmental conditions at each of the 33 sites. Foliar δ13C values ranged from ?35.4‰ to ?27.7‰, and correlated positively with foliar δ15N values, ranging from ?3.7‰ to 5.2‰. Soil δ13C and δ15N values reflected the isotopic trends of the foliar tissues and ranged from ?29.8‰ to ?25.3‰, and ?4.8‰ to 6.4‰, respectively, with no significant differences between Nothofagus species (Nothofagus pumilio, Nothofagus antarctica, Nothofagus betuloides). Principal component analysis and multiple regressions suggested that mainly water availability variables (mean annual precipitation), but not soil properties, explained between 42% and 79% of the variations in foliar and soil δ13C and δ15N natural abundance, which declined with increased moisture supply. We conclude that a decline in water use efficiency at wetter sites promotes both the depletion of heavy C and N isotopes in soil and plant biomass. Soil δ13C values were higher than those of the plant tissues and this difference increased as annual precipitation increased. No such differences were apparent when δ15N values in soil and plant were compared, which indicates that climatic differences contributed more to the overall C balance than to the overall N balance in these forest ecosystems.  相似文献   

2.
Stable isotopes in bones are a powerful tool for diet, provenance, climate, and physiological reconstructions, but necessarily require well‐preserved specimens unaltered by postmortem diagenesis or conservation practices. This study examines the effects of Paraloid B‐72 and Butvar B‐98, two common consolidants used in field and museum conservation, on δ13C, δ15N, and δ18O values from bone collagen and hydroxyapatite. The effects of solvent removal (100% acetone, 100% ethanol, 9:1 acetone:xylenes, 9:1 ethanol:xylenes) and drying methods (ambient air, vacuum, oven drying at 80°C) were also examined to determine if bones treated with these consolidants can successfully be cleaned and used for stable isotope analyses. Results show that introduction of Paraloid B‐72 or Butvar B‐98 in 100% acetone or 100% ethanol, respectively, with subsequent removal by the same solvents and drying at 80°C facilitates the most successful removal of consolidants and solvents. The δ13C values in collagen, δ15N in collagen, δ18O in hydroxyapatite phosphate, and δ13C in hydroxyapatite structural carbonate were unaltered by treatments with Paraloid or Butvar and subsequent solvent removal. The δ18O in hydroxyapatite structural carbonate showed nonsystematic variability when bones were treated with Paraloid and Butvar, which is hypothesized to be a result of hydroxyl exchange when bones are exposed to consolidants in solution. It is therefore recommended that δ18O in hydroxyapatite structural carbonate should not be used in stable isotope studies if bones have been treated with Paraloid or Butvar. Am J Phys Anthropol 157:330–338, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Several different factors in the collection and preservation of whale skin and blubber samples were examined to determine their effect on the results obtained by stable nitrogen and carbon isotope (δ15N and δ13C) analysis. Samples of wet killer whale skin retained their original stable isotope values for up to 14 d at 4°C or lower. However, decomposition significantly changed the δ15N value within 3 d at 20°C. Storage at ?20°C was as effective as ?80°C for the preservation of skin and blubber samples for stable isotope analysis for at least a year. By contrast, once a skin sample had been freeze‐dried and lipid extracted, the stable isotope values did not change significantly when it was stored dry at room temperature for at least 12 mo. Preservation of whale skin samples for a month in DMSO‐salt solution, frozen or at room temperature, did not significantly change the δ15N and δ13C values of lipid extracted tissues, although the slight changes seen could influence results of a study if only small changes are expected.  相似文献   

4.
Nitrogen isotope composition (δ15N) in plant organic matter is currently used as a natural tracer of nitrogen acquisition efficiency. However, the δ15N value of whole leaf material does not properly reflect the way in which N is assimilated because isotope fractionations along metabolic reactions may cause substantial differences among leaf compounds. In other words, any change in metabolic composition or allocation pattern may cause undesirable variability in leaf δ15N. Here, we investigated the δ15N in different leaf fractions and individual metabolites from rapeseed (Brassica napus) leaves. We show that there were substantial differences in δ15N between nitrogenous compounds (up to 30‰) and the content in (15N enriched) nitrate had a clear influence on leaf δ15N. Using a simple steady‐state model of day metabolism, we suggest that the δ15N value in major amino acids was mostly explained by isotope fractionation associated with isotope effects on enzyme‐catalysed reactions in primary nitrogen metabolism. δ15N values were further influenced by light versus dark conditions and the probable occurrence of alternative biosynthetic pathways. We conclude that both biochemical pathways (that fractionate between isotopes) and nitrogen sources (used for amino acid production) should be considered when interpreting the δ15N value of leaf nitrogenous compounds.  相似文献   

5.
Spatial variation in mean annual precipitation is the principal driver of plant water and nitrogen status in drylands. The natural abundance of carbon stable isotopes (δ13C) in photosynthetic tissues of C3 plants is an indicator of time‐integrated behaviour of stomatal conductance; while that of nitrogen stable isotopes (δ15N) is an indicator of the main source of plant N (soil N vs. atmospheric N2). Previous studies in drylands have documented that plant δ13C and δ15N values increase with decreasing mean annual precipitation due to reductions in stomatal conductance, and soil enriched in 15N, respectively. However, evidence for this comes from studies focused on stable isotopes measurements integrated at the plant community level or on dominant plants at the site level, but little effort has been made to study C and N isotope variations within a species growing along rainfall gradients. We analysed plant δ13C, δ15N and C/N values of three woody species having different phenological leaf traits (deciduous, perennial and aphyllous) along a regional mean annual precipitation gradient from the central‐western Argentinian drylands. Noticeably, plant δ13C and δ15N values in the three woody species did not increase towards sites with low precipitation or at the start of the growing season (drier period), as we expected. These results suggest that environmental factors other than mean annual precipitation may be affecting plant δ13C and δ15N. The short‐term environmental conditions may interact with species‐specific plant traits related to water and nitrogen use strategies and override the predictive influence of the mean annual precipitation on plant δ13C and δ15N widely reported in drylands.  相似文献   

6.
We compared δ13C and δ15N values of muscle with fin from juvenile Chinese sturgeon (Acipenser sinensis), to evaluate the feasibility of using nonlethal (fin) as an alternative to lethal (muscle) sampling. Size and lipid effect on the relationship between fin and muscle were also investigated. Dorsal muscle (DM) and fin clip (FC) were collected from A. sinensis with different body length (120–373 mm) in the Yangtze Estuary for isotope analysis. The result showed that (1) muscle isotope values could estimated by the values of fin, from either use the regression model (δ13CDM = 0.939 × FC ? 2.577; δ15NDM = 0.737 × FC + 4.638) or constants factors (δ13CDM = δ13CFC ? 1.27; δ15NDM = δ15NFC + 0.59); (2) no size‐based relationships with δ13C and δ15N from either fin or muscle; (3) lipid extraction significantly improving the fin and muscle regression model fit for both δ13C and δ15N values. Therefore, this study support the use of nonlethal fin tissues for isotope analysis of juvenile A. sinensis, and will allow trophic studies to avoid the effect of lipid accumulation from muscle.  相似文献   

7.
The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long‐term human impacts. We used stable isotope (δ13C, δ15N) analysis of feathers from glaucous‐winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long‐term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of δ13C and δ15N declined since 1860 in both subadult and adult gulls (δ13C, ~ 2–6‰; δ15N, ~4–5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish δ13C and δ15N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage‐based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long‐term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional population declines in this species and other piscivores.  相似文献   

8.
Differences between the stable isotopic ratios (δ13C and δ15N) of two tissues (blood and muscle) from four species of East African coral reef parrotfishes (family: Labridae, tribe: Scarini) were analysed across a broad spectrum of body sizes. Comparison of isotopic ratios between the tissues allowed the assessment of using blood as an alternative tissue to muscle. In 2010–2011, constant differences between tissues (δblood minus δmuscle) were found across a broad range of sampled fish lengths. Linear relationships between the tissues, specific for an isotope, indicate that constants could be generated for converting blood isotope into muscle isotope values. Only one species, Chlorurus sordidus, displayed an inconsistent difference between tissues in δ15N, indicating that this ratio was dependent on fish length. The δ13C of both tissues was positively related linearly to fish length for three species, while δ15N showed no relationship with body length. The results are interpreted as indicating dietary consistency over days to weeks, the time of tissue turnover for blood and muscle, respectively. Lastly, differences among the species, even closely related species, show that the generation of tissue conversion constants is species‐specific.  相似文献   

9.
Ethanol storage and lipid and urea extraction had no effect on bluespotted maskray Neotrygon kuhlii muscle δ13C values whereas urea‐removal and ethanol storage increased δ15N values. Results presented here show a significant δ15N increase post‐urea removal and provide additional support for this approach in future elasmobranch stable‐isotope analysis (SIA) studies. Further experimental work on other elasmobranch species is needed to assess extraction and preservation effects on stable‐isotope (SI) values.  相似文献   

10.
In the present study, Xyrichtys novacula (Labridae) were sampled at five locations around the islands of Ibiza and Formentera (western Mediterranean Sea). Isotopic signatures of δ13C, δ15N and the C:N ratio were analysed in relation to locality, sex and size differences. δ13C and δ15N partitioning was also studied in the reproductive spawning period. There were significant differences in the δ13C signature between localities for both sexes, but not for δ15N. Sex differences were also found with a mean ±s.e . value of ?17·38 ± 0·06‰δ13C and 8·36 ± 0·05‰δ15N for females and ?17·17 ± 0·07‰δ13C and 8·80 ± 0·06‰δ15N for males. Increasing total length in both sexes was positively correlated with δ15N enrichment and a significant positive linear regression was established for both variables. During the reproductive spawning period, there were changes in δ13C fractioning with enrichment in postspawning females and males (with respect to prespawning and spawning periods) and δ15N impoverishment in postspawning females (with respect to prespawning and spawning periods). Xyrichtys novacula uses local food sources, as confirmed by δ13C and δ15N, and females and males use different food sources, thus avoiding intraspecific competition. This was confirmed by δ15N enrichment as size increased. Spawning leads to special requirements for gonad maturation, which is reflected in the isotopic signatures for both sexes.  相似文献   

11.
The use of efficient selection traits for screening under contrasting irrigation water salinity is a challenge for breeders. To identify patterns, grain yield (GY) and yield components (kernels m?2, thousand kernels weight), growth traits (plant height, biomass), flag leaf ion accumulation (Na+ and K+), carbon isotope composition (δ13Cgrain) and nitrogen concentration (Ngrain) of grains were assessed on 25 durum wheat genotypes (G) in two consecutive growing seasons (2010 and 2011), in three semi‐arid locations in Tunisia. Each location differed in their irrigation water salinity as measured by electrical conductivity: Echbika (S1, 6 dS m?1), Barrouta (S2, 12 dS m?1) and Sidi Bouzid (S3, 18 dS m?1). GY was shown to be negatively correlated to Ngrain as well as to δ13Cgrain. This is confirmed by a multiple linear regression analysis that showed that both δ13Cgrain and Ngrain were the major determinant components for GY variability under S3. A high genotypic variability was observed and the improved genotype Maali exhibited the most stable GY under the three irrigation water salinities and the two cropping seasons. Maali showed the lowest δ13Cgrain. This indicates that tolerance in durum wheat is likely to be correlated to the ability of maintaining a high stomatal conductance. According to our data suggests δ13Cgrain can be used for an efficient screening of salt tolerant durum wheat. Under our experimental conditions, Ngrain was shown to be highly correlated to δ13Cgrain and can therefore be easier‐to‐use trait to assess the tolerance to salinity.  相似文献   

12.
Stable isotope analysis (SIA) has rapidly become a useful tool to study the ecology of wild animal populations, especially for elusive, wide‐ranging predators like marine mammals. The development of projectile biopsy techniques resulted in the collection of thousands of cetacean tissue samples that were archived in a dimethyl sulfoxide (DMSO) solution for long‐term, multidecadal preservation. Here we examine the influence of DMSO preservation on carbon (δ13C) and nitrogen (δ15N) values by comparing a set of paired delphinid skin samples stored frozen without preservative and in DMSO for up to 22 yr. Treatment of paired frozen and DMSO‐preserved skin in a 2:1 chloroform:methanol solution yielded similar δ13C and δ15N values, revealing that DMSO and lipid contamination have similar isotopic effects on skin, and that these effects can be removed using routine lipid‐extraction methods. Further, amino acid concentrations in DMSO‐preserved and frozen skin tissue were similar, providing independent evidence of minimal protein alteration due to preservation. Access to a rich archive of skin samples preserved in DMSO will expand our ability to examine temporal and spatial variability in the isotope values of cetaceans, which will aid our understanding of how their ecology has been influenced by historical changes in environmental conditions.  相似文献   

13.
Determination of the ratios of natural stable isotopes (13C/12C and 15N/14N) in unfed Ixodes ricinus nymphs and adults, which, in their previous stage, fed on captive wild rodents (Apodemus sylvaticus and Myodes glareolus), wild birds (Parus major and Cyanistes caeruleus) or domestic ruminants (Ovis aries and Bos taurus), demonstrated that it is possible to identify each host category with confidence. First, the tick–blood spacing, which is the difference between values obtained from ticks and the blood of hosts that they had fed on in the previous stage, was consistent (152 spacings investigated from 15 host individuals in total). Second, potential confounding factors (tick age and sex) did not affect the discriminatory power of the isotope patterns, nor did different rearing conditions (room temperature vs. 4 °C) or the duration of development (maximum of 430 days). The findings that the tick–blood isotope spacings, across a diverse range of hosts, were similar and predictable, and that confounders had little or no effect on this, strongly support the usage of the isotope approach. Because each of the host categories has a different role in the population dynamics of I. ricinus and in tick‐borne pathogen ecology, the method described here has great potential for the clarification of tick and tick‐borne pathogen ecology in the field.  相似文献   

14.
Previous mangrove tree ring studies attempted, unsuccessfully, to relate the δ18O of trunk cellulose (δ18OCELL) to the δ18O of source water (δ18OSW). Here, we tested whether biochemical fractionation associated with one of the oxygen in the cellulose glucose moiety or variation in leaf water oxygen isotope fractionation (ΔLW) can interfere with the δ18OSW signal as it is recorded in the δ18OCELL of mangrove (saltwater) and hammock (freshwater) plants. We selected two transects experiencing a salinity gradient, located in the Florida Keys, USA. The δ18OCELL throughout both transects did not show the pattern expected based on that of the δ18OSW. We found that in one of the transects, biochemical fractionation interfered with the δ18OSW signal, while in the other transect ΔLW differed between mangrove and hammock plants. Observed differences in ΔLW between mangroves and hammocks were caused by a longer effective leaf mixing length (L) of the water pathway in mangrove leaves compared to those of hammock leaves. Changes in L could have caused the δ18OCELL to record not only variations in the δ18OSW but also in ΔLW making it impossible to isolate the δ18OSW signal.  相似文献   

15.
Variations in δ13C and δ15N might arise from differences in nutrient allocation. Residence times of δ13C and δ15N vary among tissues depending on metabolic turnover rates. However, because of their small size, entire individual insects are generally used as single samples in isotope analyses. The present study aimed to determine the degree of isotope similarity among regions of the adult body and eggs in four species of Plecoptera (Amphinemura sp., Sweltsa sp., Kamimuria tibialis Pictet and Ostrovus sp.). Levels of δ13C and δ15N differ between the four species, being lowest in Amphinemura sp., and with δ15N being highest in Sweltsa sp. Egg masses contain consistently the lowest values of δ13C in the four species, with the δ15N value of eggs being highest in K. tibialis and Ostrovus sp., and lower in Amphinemura and Sweltsa spp. In Sweltsa sp., the δ15N levels of the dermal layers and cuticle are lowest, whereas the δ13C values of the dermal layers and cuticle are almost equal to those in other regions of the body, except egg masses. Oviposited individuals of Amphinemura and Sweltsa spp. have lower δ15N levels than individuals that have not oviposited. The rates of metabolism and incorporation of dietary metabolites will differ depending on the body regions and species. Differences in egg ecology such as egg developmental period and egg buoyancy among species are considered to impact on the values of δ13C and δ15N. These results will be useful for understanding the nutritional status of aquatic insects and their energy allocation.  相似文献   

16.
This study aimed to evaluate the effects of long‐term repeated aerial nitrogen (N) and sulphur (S) misting over tree canopies of a Sitka spruce plantation in Scotland. We combined δ13C and δ18O in tree rings to evaluate the changes in CO2 assimilation (A) and stomatal conductance (gs) and to assess their contribution to variations in the intrinsic water‐use efficiency (WUEi, i.e., the A/gs ratio). Measurements of δ15N enabled shifts in the ecosystem N cycling following misting to be assessed. We found that: (i) N applications, with or without S, increased the ratio between A and gs in favour of A, thus supporting a fertilizer effect of added N. (ii) After the treatments ceased, the trees quickly adjusted to the reductions of N deposition, but not to the reduction in S deposition, which had a negative effect on WUEi by reducing A. This indicates that the beneficial role of N deposition may be negated in forests that previously received a high load of acid rain. (iii) δ15N in tree rings reflected the N dynamics caused by canopy retention, with the fingerprint also present in the litter, after the experiment stopped. (iv) Both our results (obtained using canopy applications) and a collection of published data (obtained using soil applications) showed that generally WUEi increased in response to an increase of N applications, with the magnitude of the changes related to soil conditions and the availability of other nutrients. The shifts observed in δ15N in tree rings also suggest that both the quantity of the applied N and its quality, mediated by processes occurring during canopy N retention, are important determinants of the interactions between N and C cycles. Stable isotopes are useful probes to understand these processes and to put the results of short‐term experiments into context.  相似文献   

17.
A decrease in foliar δ13C with increasing precipitation is a common tendency in steppe plants. However, the rate of decrease has been reported to differ between different species or populations. We here hypothesized that plant populations in the same habitat of temperate steppes may not differ in foliar δ13C response patterns to precipitation, but could differ in the levels of plasticity of foliar δ13C across different habitats. In order to test this hypothesis, we conducted controlled watering experiments in northeast China at five sites along a west–east transect at latitude 44°N, which show substantial interannual fluctuations and intra‐annual changes in precipitation among them. In 2001, watering treatment (six levels, three replicates) was assigned to 18 plots at each site. The responses of foliar δ13C to precipitation (i.e., the sum of watering and rainfall) were determined in populations of several grass species that were common across all sites. Although similar linear regression slopes were observed for populations of different species growing at the same site, significantly different slopes were obtained for populations of the same species growing at different sites. Further, the slope of the line progressively decreased from Site I to Site V for all species in this study. These results suggest habitat‐specific differences in plasticity of foliar δ13C in temperate steppe grasses. This indicates that species' δ13C response to precipitation is conservative at the same site due to their long‐term acclimation, but the mechanism responsible behind this needs further investigations.  相似文献   

18.
Stable isotope analysis (SIA) in combination with growth analysis using scales collected from adult chum salmon Oncorhynchus keta migrating back to Hokkaido, Japan, was performed to describe the variation of isotopic composition of carbon (δ13C) and nitrogen (δ15N) in scales and to examine relationships with growth traits [age, fork length (FL), and relative growth ratio in the last growth period [(RGRlast)]. Scale stable isotope (SI) values in 3‐ to 6‐year‐old fish were highly variable, ranging from ?17.6‰ to ?14.3‰ for δ13C and 9.5‰ to 13.4‰ for δ15N. The δ15N was positively correlated with FL, and this tendency may indicate changes in trophic level with growth. Significant effect was not detected between δ15N and RGRlast, it can be inferred that factors potentially yielding high δ15N may not necessarily result in higher growth rates. No trend found between FL and δ13C may imply that there is no clear segregation in feeding locations between the 3‐ to 6‐year groups. This study provided basic information for scale SI values of chum salmon adults and indicated that SIA using scales could be a new approach to elucidating the trophic ecology of chum salmon.  相似文献   

19.
Salinity levels and drought status of coastal wetlands may be strongly affected by climate change, and changes in the nitrogen cycle of mangrove wetlands may also be affected. We established combinations of three salinity and water levels with applied stable isotope 15N to study the δ15N distributions in the sediment and plants of a greenhouse-based simulated mangrove Aegiceras corniculatum wetland system. The stable isotope 13C and 15N, C and N contents and the C:N ratio were determined. Results showed that increasing in salinity significantly increased the δ13C value in plant organs. The δ15N value of plant organs increased with increasing water level in low salinity (10‰) and medium salinity (20‰) treatment groups but not in the high salinity (30‰) treatment group. This may attributed to A. corniculatum adjusting the δ15N distribution in different organs in response to high salinity stress. Compared to the δ13C, the δ15N values of plant were strongly affected by salinity and water level treatments, indicating that the behavior of N cycle was somewhat different than the C cycle, and affected by the combined effects of both salinity and water level. Most of 15N absorbed by plant tissues were in leaves except for the highest salinity and high water level treatment, showing at increasing water level, the proportion of 15N increased in root. Overall, the measured indicators exhibited different responses to salinity level and water level, suggesting that the changes in salinity and water levels have an impact on N cycling processes of wetland systems.  相似文献   

20.
Funerary practices and bioarchaeological (sex and age) data suggest that a mortality crisis linked to an epidemic episode occurred during the fifth phase of the St. Benedict cemetery in Prague (Czech Republic). To identify this mass mortality episode, we reconstructed individual life histories (dietary and mobility factors), assessed the population's biological homogeneity, and proposed a new chronology through stable isotope analysis (δ13C, δ18O and δ15N) and direct radiocarbon dating. Stable isotope analysis was conducted on the bone and tooth enamel (collagen and carbonate) of 19 individuals from three multiple graves (MG) and 12 individuals from individual graves (IG). The δ15N values of collagen and the difference between the δ13C values of collagen and bone carbonate could indicate that the IG individuals had a richer protein diet than the MG individuals or different food resources. The human bone and enamel carbonate and δ18O values suggest that the majority of individuals from MG and all individuals from IG spent most of their lives outside of the Bohemian region. Variations in δ18O values also indicate that all individuals experienced residential mobility during their lives. The stable isotope results, biological (age and sex) data and eight 14C dates clearly differentiate the MG and IG groups. The present work provides evidence for the reuse of the St. Benedict cemetery to bury soldiers despite the funeral protest ban (1635 AD). The Siege of Prague (1742 AD) by French‐Bavarian‐Saxon armies is identified as the cause of the St. Benedict mass mortality event. Am J Phys Anthropol 151:202–214, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号