首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Cardiomyocyte apoptosis contributes to the development of coxsackievirus B3 (CVB3)‐induced myocarditis, but the mechanism for the apoptosis by CVB3 infection remains unclear. Here, we showed that CVB3‐induced endoplasmic reticulum (ER) stress response and apoptosis in cultured H9c2 cardiomyocytes. We found that Ca2+‐calmodulin‐dependent kinase II (CaMKII) was activated by ER stress‐dependent intracellular Ca2+ overload in the CVB3‐infected H9c2 cardiomyocytes. Treatment with an inhibitor of ER stress, 4‐phenylbutyric acid (4‐PBA), attenuated intracellular Ca2+ accumulation indirectly and reduced CaMKII activity. Inhibition of CaMKII with pharmacological inhibitor (KN‐93) or short hairpin RNA reduced CVB3‐induced H9c2 apoptosis and repressed cytochrome c release from mitochondria to cytoplasm; whereas overexpression of the activated mutant of CaMKII (CaMKII‐T287D) enhanced CVB3‐induced H9c2 apoptosis and mitochondrial cytochrome c release, which could be alleviated by blocking of mitochondrial Ca2+ uniporter or mitochondrial permeability transition pore. Further in vivo investigation revealed that blocking of CaMKII with KN‐93 prevented cardiomyocytes apoptosis and improved cardiac contractile function in CVB3‐infected mouse heart. Collectively, these findings provide a novel evidence that CaMKII plays a vital role in the promotion of CVB3‐induced cardiomyocyte apoptosis, which links ER stress and mitochondrial Ca2+ uptake.  相似文献   

3.
Brain damage after insult and cognitive decline are related to excitotoxicity and strongly influenced by aging, yet mechanisms of aging‐dependent susceptibility to excitotoxicity are poorly known. Several non‐steroidal anti‐inflammatory drugs (NSAIDs) may prevent excitotoxicity and cognitive decline in the elderly by an unknown mechanism. Interestingly, after several weeks in vitro, hippocampal neurons display important hallmarks of neuronal aging in vivo. Accordingly, rat hippocampal neurons cultured for several weeks were used to investigate mechanisms of aging‐related susceptibility to excitotoxicity and neuroprotection by NSAIDs. We found that NMDA increased cytosolic Ca2+ concentration in young, mature and aged neurons but only promoted apoptosis in aged neurons. Resting Ca2+ levels and responses to NMDA increased with time in culture which correlated with changes in expression of NMDA receptor subunits. In addition, NMDA promoted mitochondrial Ca2+ uptake only in aged cultures. Consistently, specific inhibition of mitochondrial Ca2+ uptake decreased apoptosis. Finally, we found that a series of NSAIDs depolarized mitochondria and inhibited mitochondrial Ca2+ overload, thus preventing NMDA‐induced apoptosis in aged cultures. We conclude that mitochondrial Ca2+ uptake is critical for age‐related susceptibility to excitotoxicity and neuroprotection by NSAIDs.

  相似文献   


4.
Eicosapentaenoic acid (EPA), a neuroactive omega‐3 fatty acid, has been demonstrated to exert neuroprotective effects in experimental models of Parkinson's disease (PD), but the cellular mechanisms of protection are unknown. Here, we studied the effects of EPA in fully differentiated human SH‐SY5Y cells and primary mesencephalic neurons treated with MPP+. In both in‐vitro models of PD, EPA attenuated an MPP+‐induced reduction in cell viability. EPA also prevented the presence of electron‐dense cytoplasmic inclusions in SH‐SY5Y cells. Then, possible mechanisms of the neuroprotection were studied. In primary neurons, EPA attenuated an MPP+‐induced increase in Tyrosine‐related kinase B (TrkB) receptors. In SH‐SY5Y cells, EPA down‐regulated reactive oxygen species and nitric oxide. This antioxidant effect of EPA may have been mediated by its inhibition of neuronal NADPH oxidase and cyclo‐oxygenase‐2 (COX‐2), as MPP+ increased the expression of these enzymes. Furthermore, EPA prevented an increase in cytosolic phospholipase A2 (cPLA2), an enzyme linked with COX‐2 in the potentially pro‐inflammatory arachidonic acid cascade. Lastly, EPA attenuated an increase in the bax:bcl‐2 ratio, and cytochrome c release. However, EPA did not prevent mitochondrial enlargement or a decrease in mitochondrial membrane potential. This study demonstrated cellular mechanisms by which EPA provided neuroprotective effects in experimental PD.  相似文献   

5.
Ca2+ may trigger apoptosis in β-cells. Hence, the control of intracellular Ca2+ may represent a potential approach to prevent β-cell apoptosis in diabetes. Our objective was to investigate the effect and mechanism of action of plasma membrane Ca2+-ATPase (PMCA) overexpression on Ca2+-regulated apoptosis in clonal β-cells. Clonal β-cells (BRIN-BD11) were examined for the effect of PMCA overexpression on cytosolic and mitochondrial [Ca2+] using a combination of aequorins with different Ca2+ affinities and on the ER and mitochondrial pathways of apoptosis. β-cell stimulation generated microdomains of high [Ca2+] in the cytosol and subcellular heterogeneities in [Ca2+] among mitochondria. Overexpression of PMCA decreased [Ca2+] in the cytosol, the ER, and the mitochondria and activated the IRE1α-XBP1s but inhibited the PRKR-like ER kinase-eIF2α and the ATF6-BiP pathways of the ER-unfolded protein response. Increased Bax/Bcl-2 expression ratio was observed in PMCA overexpressing β-cells. This was followed by Bax translocation to the mitochondria with subsequent cytochrome c release, opening of the permeability transition pore, and apoptosis. In conclusion, clonal β-cell stimulation generates microdomains of high [Ca2+] in the cytosol and subcellular heterogeneities in [Ca2+] among mitochondria. PMCA overexpression depletes intracellular [Ca2+] stores and, despite a decrease in mitochondrial [Ca2+], induces apoptosis through the mitochondrial pathway. These data open the way to new strategies to control cellular Ca2+ homeostasis that could decrease β-cell apoptosis in diabetes.  相似文献   

6.
Wang X  Su B  Liu W  He X  Gao Y  Castellani RJ  Perry G  Smith MA  Zhu X 《Aging cell》2011,10(5):807-823
Selective degeneration of nigrostriatal dopaminergic neurons in Parkinson’s disease (PD) can be modeled by the administration of the neurotoxin 1‐methyl‐4‐phenylpyridinium (MPP+). Because abnormal mitochondrial dynamics are increasingly implicated in the pathogenesis of PD, in this study, we investigated the effect of MPP+ on mitochondrial dynamics and assessed temporal and causal relationship with other toxic effects induced by MPP+ in neuronal cells. In SH‐SY5Y cells, MPP+ causes a rapid increase in mitochondrial fragmentation followed by a second wave of increase in mitochondrial fragmentation, along with increased DLP1 expression and mitochondrial translocation. Genetic inactivation of DLP1 completely blocks MPP+‐induced mitochondrial fragmentation. Notably, this approach partially rescues MPP+‐induced decline in ATP levels and ATP/ADP ratio and increased [Ca2+]i and almost completely prevents increased reactive oxygen species production, loss of mitochondrial membrane potential, enhanced autophagy and cell death, suggesting that mitochondria fragmentation is an upstream event that mediates MPP+‐induced toxicity. On the other hand, thiol antioxidant N‐acetylcysteine or glutamate receptor antagonist D‐AP5 also partially alleviates MPP+‐induced mitochondrial fragmentation, suggesting a vicious spiral of events contributes to MPP+‐induced toxicity. We further validated our findings in primary rat midbrain dopaminergic neurons that 0.5 μm MPP+ induced mitochondrial fragmentation only in tyrosine hydroxylase (TH)‐positive dopaminergic neurons in a similar pattern to that in SH‐SY5Y cells but had no effects on these mitochondrial parameters in TH‐negative neurons. Overall, these findings suggest that DLP1‐dependent mitochondrial fragmentation plays a crucial role in mediating MPP+‐induced mitochondria abnormalities and cellular dysfunction and may represent a novel therapeutic target for PD.  相似文献   

7.
Defective FUS metabolism is strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), but the mechanisms linking FUS to disease are not properly understood. However, many of the functions disrupted in ALS/FTD are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling is facilitated by close physical associations between the two organelles that are mediated by binding of the integral ER protein VAPB to the outer mitochondrial membrane protein PTPIP51, which act as molecular scaffolds to tether the two organelles. Here, we show that FUS disrupts the VAPB–PTPIP51 interaction and ER–mitochondria associations. These disruptions are accompanied by perturbation of Ca2+ uptake by mitochondria following its release from ER stores, which is a physiological read‐out of ER–mitochondria contacts. We also demonstrate that mitochondrial ATP production is impaired in FUS‐expressing cells; mitochondrial ATP production is linked to Ca2+ levels. Finally, we demonstrate that the FUS‐induced reductions to ER–mitochondria associations and are linked to activation of glycogen synthase kinase‐3β (GSK‐3β), a kinase already strongly associated with ALS/FTD.  相似文献   

8.
Parkinson''s disease (PD) is the most common neurodegenerative movement disorder, characterized by loss of dopominergic (DA) neurons in substantia nigra pars compacta (SNpc), and can be experimentally mimicked by the neurotoxin MPP+ in vitro models. In this study, we investigated the potential protective effect of SKF-96365, a non-specific inhibitor of SOCE (store-operated calcium entry), on MPP+ induced cytotoxicity in PC12 cells. We found that pretreatment with SKF-96365 (10 µM and 50 µM) 30 min before injury significantly increased cell viability, decreased LDH release, prevented nuclear damage, and inhibited apoptotic cell death in MPP+ stressed PC12 cells. The results of calcium image using the ratiometric calcium indicator Fura-2-AM also showed that SKF-96365 reduced the intracellular calcium overload induced by MPP+ in PC12 cells. In addition, SKF-96365 decreased the expression of Homer1, a more recently discovered postsynaptic scaffolding protein with calcium modulating function, following MPP+ administration in PC12 cells, while had no statistically significant effects on endoplasmic reticulum (ER) calcium concentration. Furthermore, overexpression of Homer1 by using recombinant lentivirus partly reversed protective effects of SKF-96365 against MPP+ injury. The ER Ca2+ release was further amplified and ER calcium recovery was delayed by Homer1 upregulation in PC12 cells following MPP+ insult. Taken together, these data suggest that SKF-96365 protects PC12 cells against MPP+ induced cytotoxicity, and this protection may be at least in part on the inhibition of intracellular calcium overload and suppression of Homer1-mediated ER Ca2+ release.  相似文献   

9.
Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria‐associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM‐associated proteins and enhanced ER to mitochondria Ca2+ transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β‐peptide (Aβ)‐related neuronal models. Here, we report that siRNA knockdown of mitofusin‐2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca2+ transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra‐ and extracellular Aβ40 and Aβ42. Analysis of γ‐secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ‐secretase complex function. Amyloid‐β precursor protein (APP), β‐site APP‐cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER–mitochondria contact affects γ‐secretase activity and Aβ generation. Increased ER–mitochondria contact results in lower γ‐secretase activity suggesting a new mechanism by which Aβ generation can be controlled.  相似文献   

10.
Neurotoxic effects of amyloid β peptides are mediated through deregulation of intracellular Ca2+ homeostasis and signaling, but relatively little is known about amyloid β modulation of Ca2+ homeostasis and its pathological influence on glia. Here, we found that amyloid β oligomers caused a cytoplasmic Ca2+ increase in cultured astrocytes, which was reduced by inhibitors of PLC and ER Ca2+ release. Furthermore, amyloid β peptides triggered increased expression of glial fibrillary acidic protein (GFAP), as well as oxidative and ER stress, as indicated by eIF2α phosphorylation and overexpression of chaperone GRP78. These effects were decreased by ryanodine and 2APB, inhibitors of ryanodine receptors and InsP3 receptors, respectively, in both primary cultured astrocytes and organotypic cultures of hippocampus and entorhinal cortex. Importantly, intracerebroventricular injection of amyloid β oligomers triggered overexpression of GFAP and GRP78 in astrocytes of the hippocampal dentate gyrus. These data were validated in a triple‐transgenic mouse model of Alzheimer's disease (AD). Overexpression of GFAP and GRP78 in the hippocampal astrocytes correlated with the amyloid β oligomer load in 12‐month‐old mice, suggesting that this parameter drives astrocytic ER stress and astrogliosis in vivo. Together, these results provide evidence that amyloid β oligomers disrupt ER Ca2+ homeostasis, which induces ER stress that leads to astrogliosis; this mechanism may be relevant to AD pathophysiology.  相似文献   

11.
Endoplasmic reticulum (ER) and mitochondria are intracellular organelles and their interactions are directly involved in different processes such as Ca2+ signaling in cell survival and death mechanisms. Bcl-2 is an anti-apoptotic protein intrinsically related to ER and mitochondria, modulating Ca2+ content in these organelles. We investigated the effects of Bcl-2 overexpression on ER and mitochondrial Ca2+ dynamics in PC12 cells. Bcl-2 overexpressing and control cells were loaded with Fura 2/AM and stimulated with different drugs. Results showed that in Bcl-2 cells, ACh induced a lower Ca2+ response compared to control. Ca2+ release induced by TG was decreased in Bcl-2 cells, however, it was greater in Caff induced Ca2+ rise. In addition, FCCP induced a higher Ca2+ release in Bcl-2 cells. These results suggest that Bcl-2 overexpression modulate the ER Ca2+ pools differently and the release of ER Ca2+ may increase mitochondrial Ca2+ accumulation. These alterations of intracellular Ca2+ stores are important mechanisms for the control of Ca2+ signaling.  相似文献   

12.
Sepsis is associated with cardiac dysfunction, which is at least in part due to cardiomyocyte apoptosis. However, the underlying mechanisms are far from being understood. Using the colon ascendens stent peritonitis mouse model of sepsis (CASP), we examined the subcellular mechanisms that mediate sepsis‐induced apoptosis. Wild‐type (WT) CASP mice hearts showed an increase in apoptosis respect to WT‐Sham. CASP transgenic mice expressing a CaMKII inhibitory peptide (AC3‐I) were protected against sepsis‐induced apoptosis. Dantrolene, used to reduce ryanodine receptor (RyR) diastolic sarcoplasmic reticulum (SR) Ca2+ release, prevented apoptosis in WT‐CASP. To examine whether CaMKII‐dependent RyR2 phosphorylation mediates diastolic Ca2+ release and apoptosis in sepsis, we evaluated apoptosis in mutant mice hearts that have the CaMKII phosphorylation site of RyR2 (Serine 2814) mutated to Alanine (S2814A). S2814A CASP mice did not show increased apoptosis. Consistent with RyR2 phosphorylation‐dependent enhancement in diastolic SR Ca2+ release leading to mitochondrial Ca2+ overload, mitochondrial Ca2+ retention capacity was reduced in mitochondria isolated from WT‐CASP compared to Sham and this reduction was absent in mitochondria from CASP S2814A or dantrolene‐treated mice. We conclude that in sepsis, CaMKII‐dependent RyR2 phosphorylation results in diastolic Ca2+ release from SR which leads to mitochondrial Ca2+ overload and apoptosis.  相似文献   

13.
Loss-of-function mutations in PINK1 or parkin genes are associated with juvenile-onset autosomal recessive forms of Parkinson disease. Numerous studies have established that PINK1 and parkin participate in a common mitochondrial-quality control pathway, promoting the selective degradation of dysfunctional mitochondria by mitophagy. Upregulation of parkin mRNA and protein levels has been proposed as protective mechanism against mitochondrial and endoplasmic reticulum (ER) stress. To better understand how parkin could exert protective function we considered the possibility that it could modulate the ER–mitochondria inter-organelles cross talk. To verify this hypothesis we investigated the effects of parkin overexpression on ER–mitochondria crosstalk with respect to the regulation of two key cellular parameters: Ca2 + homeostasis and ATP production. Our results indicate that parkin overexpression in model cells physically and functionally enhanced ER–mitochondria coupling, favored Ca2 + transfer from the ER to the mitochondria following cells stimulation with an 1,4,5 inositol trisphosphate (InsP3) generating agonist and increased the agonist-induced ATP production. The overexpression of a parkin mutant lacking the first 79 residues (ΔUbl) failed to enhance the mitochondrial Ca2 + transients, thus highlighting the importance of the N-terminal ubiquitin like domain for the observed phenotype. siRNA-mediated parkin silencing caused mitochondrial fragmentation, impaired mitochondrial Ca2 + handling and reduced the ER–mitochondria tethering. These data support a novel role for parkin in the regulation of mitochondrial homeostasis, Ca2 + signaling and energy metabolism under physiological conditions.  相似文献   

14.
Long‐chain base phosphates (LCBPs) have been correlated with amounts of crucial biological processes ranging from cell proliferation to apoptosis in animals. However, their functions in plants remain largely unknown. Here, we report that LCBPs, sphingosine‐1‐phosphate (S1P) and phytosphingosine‐1‐phosphate (Phyto‐S1P), modulate pollen tube growth in a concentration‐dependent bi‐phasic manner. The pollen tube growth in the stylar transmitting tissue was promoted by SPHK1 overexpression (SPHK1‐OE) but dampened by SPHK1 knockdown (SPHK1‐KD) compared with wild‐type of Arabidopsis; however, there was no detectable effect on in vitro pollen tube growth caused by misexpression of SPHK1. Interestingly, exogenous S1P or Phyto‐S1P applications could increase the pollen tube growth rate in SPHK1‐OE, SPHK1‐KD and wild‐type of Arabidopsis. Calcium ion (Ca2+)‐imaging analysis showed that S1P triggered a remarkable increase in cytosolic Ca2+ concentration in pollen. Extracellular S1P induced hyperpolarization‐activated Ca2+ currents in the pollen plasma membrane, and the Ca2+ current activation was mediated by heterotrimeric G proteins. Moreover, the S1P‐induced increase of cytosolic free Ca2+ inhibited the influx of potassium ions in pollen tubes. Our findings suggest that LCBPs functions in a signaling cascade that facilitates Ca2+ influx and modulates pollen tube growth.  相似文献   

15.
In the present study, we investigated the protective mechanism of paeoniflorin (PF), a monoterpene glycoside extracted from Radix Paeoniae alba roots, on MPP+-induced neurotoxicity in cultured rat pheochromocytoma cells (PC12). Our work included examination of cell viability assessment, amounts of released lactic dehydrogenase (LDH), intracellular Ca2+ concentration, cell apoptosis, mitochondrial membrane potential, caspase-3 activity, and expression profiling of two apoptosis-related genes (Bcl-2 and Bax). It was shown that, PF functioned as an MPP+ antagonist, being able to suppress apoptosis, decrease LDH release and Ca2+ concentration, attenuate membrane potential collapse and, inhibit caspase-3 activation, decrease in Bax/Bcl-2 ratio. These observations suggest that PF could protect PC12 cells against MPP+-induced injury and the mechanism PF’s neuroprotective effect was closely associated with Bcl-2 up-regulation and Bax down-regulation. PF has neuroprotective effects on MPP+-induced apoptosis in PC12 cells via regulating mitochondrial membrane potential and Bcl-2/Bax/caspase-3 signaling pathways, and this new insight will help develop a PF-based therapeutic strategy for treatmenting neurodegenerative diseases and injury.  相似文献   

16.
1-Methyl-4-phenylpyridinium (MPP+) or 6-hydroxydopamine (6-OHDA) caused a nuclear damage, the mitochondrial membrane permeability changes, leading to the cytochrome c release and caspase-3 activation, the formation of reactive oxygen species and the depletion of GSH in PC12 cells. Nicardipine (a calcium channel blocker), EGTA (an extracellular calcium chelator), BAPTA-AM (a cell permeable calcium chelator) and calmodulin antagonists (W-7 and calmidazolium) attenuated the MPP+-induced mitochondrial damage and cell death. In contrast, the compounds did not reduce the toxicity of 6-OHDA. Treatment with MPP+ or 6-OHDA evoked the elevation of intracellular Ca2+ levels. Unlike cell injury, addition of nicardipine, BAPTA-AM and calmodulin antagonists prevented the elevation of intracellular Ca2+ levels due to both toxins. The results show that the MPP+-induced formation of the mitochondrial permeability transition seems to be mediated by elevation of intracellular Ca2+ levels and calmodulin action. In contrast, the 6-OHDA-induced cell death seems to be mediated by Ca2+-independent manner.  相似文献   

17.
The mitochondrial transition pore (MTP) is implicated as a mediator of cell injury and death in many situations. The MTP opens in response to stimuli including reactive oxygen species and inhibition of the electron transport chain. Sporadic Parkinson’s disease (PD) is characterized by oxidative stress and specifically involves a defect in complex I of the electron transport chain. To explore the possible involvement of the MTP in PD models, we tested the effects of the complex I inhibitor and apoptosis-inducing toxin N-methyl-4-phenylpyridinium (MPP+) on cyclosporin A (CsA)-sensitive mitochondrial swelling and release of cytochrome c. In the presence of Ca2+ and Pi, MPP+ induced a permeability transition in both liver and brain mitochondria. MPP+ also caused release of cytochrome c from liver mitochondria. Rotenone, a classic non-competitive complex I inhibitor, completely inhibited MPP+-induced swelling and release of cytochrome c. The MPP+-induced permeability transition was synergistic with nitric oxide and the adenine nucleotide translocator inhibitor atractyloside, and additive with phenyl arsine oxide cross-linking of dithiol residues. MPP+-induced pore opening and cytochrome c release were blocked by CsA, the Ca2+ uniporter inhibitor ruthenium red, the hydrophobic disulfide reagent N-ethylmaleimide, butacaine, and the free radical scavenging enzymes catalase and superoxide dismutase. MPP+ neurotoxicity may derive from not only its inhibition of complex I and consequent ATP depletion, but also from its ability to open the MTP and to release mitochondrial factors including Ca2+ and cytochrome c known to be involved in apoptosis.  相似文献   

18.
Disturbances in Ca2+ homeostasis have been implicated in a variety of neuropathological conditions including Parkinson's disease (PD). However, the importance of store-operated Ca2+ entry (SOCE) channels in PD remains to be investigated. In the present study, we have scrutinized the significance of TRPC1 in 1-methyl-4-phenyl-1,2,3,6-tetrahyrdro-pyridine (MPTP)-induced PD using C57BL/6 animal model and PC12 cell culture model. Both sub-acute and sub-chronic treatments of MPTP significantly reduced TRPC1, and tyrosine hydroxylase levels, but not TRPC3, along with increased neuronal death. Furthermore, MPTP induces mitochondrial dysfunction, which was associated with reduced mitochondrial membrane potential, decreased level of Bcl2, Bcl-xl, and an altered Bcl-xl/Bax ratio thereby initiating apoptosis. Importantly, TRPC1 overexpression in PC12 cells showed significant protection against MPP+ induced neuronal apoptosis, which was attributed to the restoration of cytosolic Ca2+ and preventing loss of mitochondrial membrane potential. Silencing of TRPC1 or addition of TRPC1 channel blockers decreased mitochondrial membrane potential, whereas activation of TRPC1 restored mitochondrial membrane potential in cells overexpressing TRPC1. TRPC1 overexpression also inhibited Bax translocation to the mitochondria and thereby prevented cytochrome c release and mitochondrial-mediated apoptosis. Overall, these results provide compelling evidence for the role of TRPC1 in either onset/progression of PD and restoration of TRPC1 levels could limit neuronal degeneration in MPTP mediated PD.  相似文献   

19.
The process of store-operated calcium entry (SOCE), whereby the release of intracellular Ca2+ from endoplasmic reticulum (ER) activates Ca2+ influx channels in the plasma membrane, has been demonstrated to impact a diverse range of cell functions. In the present study, we investigated the potential protective effect of SOCE inhibition against 1-methyl-4-phenylpyridinium (MPP+) injury by using pharmacological antagonists or specific small interfering RNA (siRNA) in PC12 cells. The results showed that both antagonists (15 μM MRS-1845 and 50 μM ML-9) and stromal interacting molecule-1 (STIM1) targeted siRNA (Si-STIM1) significantly increased cell viability, decreased apoptotic cell death and reduced intracellular reactive oxygen species (ROS) production and lipid peroxidation in MPP+ injured PC12 cells. SOCE inhibition also prevented MPP+ induced mitochondrial dysfunction and activation of mitochondrial related apoptotic factors, while had no effect on mitochondrial biogenesis. Moreover, inhibition of SOCE by antagonists and siRNA increased the expression levels of Homer1a mRNA and protein, and knockdown of Homer1a expression by specific siRNA partly reversed the protective effects induced by SOCE inhibition in PC12 cells. All these results indicated that SOCE inhibition protected PC12 cells against MPP+ insult through upregulation of Homer1a expression, and SOCE might be an ideal target for investigating therapeutic strategy against neuronal injury in PD patients.  相似文献   

20.
Toll‐like receptor 9 (TLR9) has a key role in the recognition of pathogen DNA in the context of infection and cellular DNA that is released from damaged cells. Pro‐inflammatory TLR9 signalling pathways in immune cells have been well investigated, but we have recently discovered an alternative pathway in which TLR9 temporarily reduces energy substrates to induce cellular protection from stress in cardiomyocytes and neurons. However, the mechanism by which TLR9 stimulation reduces energy substrates remained unknown. Here, we identify the calcium‐transporting ATPase, SERCA2 (also known as Atp2a2), as a key molecule for the alternative TLR9 signalling pathway. TLR9 stimulation reduces SERCA2 activity, modulating Ca2+ handling between the SR/ER and mitochondria, which leads to a decrease in mitochondrial ATP levels and the activation of cellular protective machinery. These findings reveal how distinct innate responses can be elicited in immune and non‐immune cells—including cardiomyocytes—using the same ligand‐receptor system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号