首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lewis rats were immunized with partially purified 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) from bovine cerebral white matter and the spleen cells were fused with cell of a mouse myeloma cell line (SP-2). The production of monoclonal antibody was detected by enzyme-linked immunoadsorbent assay, immunohistochemical staining of bovine cerebrum, Western blotting analysis, and CNPase binding assay. Monoclonal antibody that specifically binds CNPase molecules was obtained. However, the antibody did not suppress the enzyme activity. Western blotting analysis demonstrated that the monoclonal antibody binds both CNa (Wla) and CNb (Wlb). The monoclonal antibody was identified as being of the IgG2c subclass. Immunohistochemical examination revealed that the myelin sheath in the CNS was heavily stained with the monoclonal antibody in several species (bovine, mouse, rat, and human). In contrast, peripheral nervous system myelin was not stained even in bovine tissue. These results suggest that the monoclonal antibody obtained in the present study specifically recognizes the CNPase molecules in the CNS.  相似文献   

2.
3.
The myelin-associated glycoprotein (MAG) was quantitated in the CNS and PNS of quaking mice and the levels compared to the levels of myelin basic protein (MBP) and 2':3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) activity. In the brainstems of 36-day-old quaking mice, MBP, MAG, and CNPase were reduced to 12, 16, and 29% of control levels, respectively. In the sciatic nerves of the 36-day-old quaking mice, MBP and CNPase were 38 and 75% of control levels, respectively, whereas the concentration of MAG was unchanged or slightly increased. Similar quantitative results were obtained for the sciatic nerves and spinal roots of 7-month-old quaking mice. Immunoblots showed that the principal MAG band from the brainstems, sciatic nerves, and spinal roots of the quaking mice had a higher than normal apparent Mr. In addition, there was a minor component reacting with anti-MAG antiserum in the brainstems of the quaking mice that had a slightly lower Mr than control MAG and was not detected in the normal mice. The results for the quaking mice are compared with those from similar studies on other mutants with dysmyelination of the CNS and PNS.  相似文献   

4.
The neurological mutant mice shiverer (shi) and myelin deficient (shimld) lack a functional gene for the myelin basic proteins (MBP), have virtually no myelin in their CNS, shiver, seize, and die early. Mutant mice homozygous for an MBP transgene have MBP mRNA and MBP in net amounts approximately 25% of normal, have compact myelin, do not shiver or seize, and live normal life spans. We bred mice with various combinations of the normal, transgenic, shi, and shimld genes to produce mice that expressed MBP mRNA at levels of 0, 5, 12.5, 17.5, 50, 62.5, and 100% of normal. The CNS of these mice were analyzed for MBP content, tissue localization of MBP, degree of myelination, axon size, and myelin thickness. MBP protein content correlated with predicted MBP gene expression. Immunocytochemical staining localized MBP to white matter in normal and transgenic shi mice with an intensity of staining comparable to the degree of MBP gene expression. An increase in the percentage of myelinated axons and the thickness of myelin correlated with increased gene expression up to 50% of normal. The percentage of myelinated axons and myelin thickness remained constant at expression levels greater than 50%. The presence of axons loosely wrapped with oligodendrocytic membrane in mice expressing lower amounts of MBP mRNA and protein suggested that the oligodendroglia produced sufficient MBP to elicit axon wrapping but not enough to form compact myelin. Mean axon circumference of myelinated axons was greater than axon circumference of unmyelinated axons at each level of gene expression, further evidence that oligodendroglial cells preferentially myelinate axons of larger caliber.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The twitcher is an autosomal recessive mutant mouse characterized by absence of galactosylceramidase. Thetwitcher shows clinical and histological features similar to those of human Krabbe-type leukodystrophy. We here present the results of a neurochemical and immunohistochemical analysis of thetwitcher. Electrophoretic analysis revealed that in the particulate fraction of the spinal cord, myelin basic proteins (MBP) and proteolipid protein were decreased, and in the sciatic nerve fibers, PO protein, X, Y and MBP were clearly decreased. 2,3-Cyclic nucleotide 3-phosphodiesterase (CNPase) activities of the pallium cerebri, brain stem and spinal cord of thetwitcher were about 20% less than those of the control. However, in the sciatic nerve, the activity was half that of the control. Immunohistochemical studies were carried out by means of antisera against MBP and CNPase. There were clear patches indicating both MBP- and CNPase-negative reactions in the white matter of the central nervous system from thetwitcher. The reaction on the section of sciatic nerve fibers from thetwitcher showed a positive reaction only in a very limited number of fibers with both MBP and CNPase antisera. A clear astrocytic hypertrophy was detected by the antiserum against glial fibrillary acidic protein (GFAP). Even in the grey matter of the cerebral cortex, strong GFAP-positive astrocytes were clearly observed.Dedicated to Professor Yasuzo Tsukada.  相似文献   

6.
Myelin provides important insulating properties to axons allowing for propagation of action potentials over large distances at high velocity. Disruption of the myelin sheath could therefore contribute to cognitive impairment, such as that observed during the normal aging process. In the present study, age-related changes in myelin, myelin proteins and oligodendrocyte proteins were assessed in relationship to calpain-1 expression and cognition in the rhesus monkey. Isolation of myelin fractions from brain white matter revealed that as the content of the intact myelin fraction decreased with age, there was a corresponding increase in the floating or degraded myelin fraction, suggesting an increased breakdown of intact myelin with age. Of the myelin proteins examined, only the myelin-associated glycoprotein decreased with age. Levels of the oligodendrocyte-specific proteins 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and myelin/oligodendrocyte-specific protein (MOSP) increased dramatically in white matter homogenates and myelin with age. Age-related increases in degraded CNPase also were demonstrable in white matter in association with increases in activated calpain-1. Degraded CNPase was also detectable in myelin fractions, with only the floating fraction containing activated calpain-1. The increases in the activated enzyme in white matter were much greater than those found in myelin fractions suggesting a source other than the myelin membrane for the marked overexpression of activated calpain-1 with age. In addition, CNPase was demonstrated to be a substrate for calpain in vitro. In summary, changes in myelin and oligodendrocyte proteins occur with age, and they appear to have a significant relationship to cognitive impairment. The overexpression of CNPase and MOSP suggests new formation of myelin by oligodendrocytes, which may occur in response to myelin degradation and injury caused by proteolytic enzymes such as calpain.  相似文献   

7.
Brain and spinal cord of female mice heterozygous for the jimpy gene were analyzed during development for activity of ceramide galactosyl transferase (CGT) and for levels of myelin basic protein (MBP). CGT activity was low at 13-14 days in brains of heterozygous jimpy females but showed normal levels by 31-36 days, in agreement with our earlier study of this enzyme. In cord, CGT activity was normal or slightly above normal at all ages studied, from 13-14 days into adulthood. In both brain and cord, decreased levels of MBP were observed at 13 days; by 100 days, amounts of MBP approached normal levels. Proven female carriers of the jimpy gene also showed normal levels of CGT activity, MBP, and isolated myelin at 200-250 days of age in both brain and cord. These biochemical findings agree with previous morphologic measurements in cord demonstrating deficits in myelin at early ages but compensation by 100 days. Our results show that compensation occurs earlier in cord than in brain and that levels of MBP show a closer correlation than CGT activity with amounts of myelin, as measured by either morphometric analysis or direct isolation.  相似文献   

8.
An ontogenetic survey of the basic protein of myelin, common to both central and peripheral nervous systems, was carried out on normal C57Bl and five dysmyelinating mutant mice. Myelin basic protein (MBP) was quantified by radioimmunoassay in the optic and sciatic nerves of mice from birth to adult stages, giving special attention to the premyelinating and early myelination periods. In the optic nerves of normal mice, MBP was already detectable at birth but the active period of myelin deposition was shown to occur after day 10 postnatal. The timing and rate of accumulation of MBP were normal in Trembler. In contrast, they were abnormal in the other mutants. In the quaking mouse, the active period of MBP deposition was delayed, and its final concentration represented no more than 12% of normal in the adult. No active period of MBP deposition was observed in the other mutants. In the jimpy mouse, a slow accumulation of MBP resulted in a final concentration reaching 2% of the normal value at 25 days. In mild and shiverer mice, the MBP was hardly detectable. In the sciatic nerves of normal mice, the active period of MBP deposition occurred between days 3 and 12 postnatal. No substantial changes occurred in the period of 2 months--2 years.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
Jimpy mice are dysmyelinating mutants characterized by producing near normal levels of myelin basic protein (MBP) in the brain but failing to incorporate these proteins into the myelin sheath. In this study, the activity of MBP-specific protein-arginine N-methyltransferase (protein methylase I) was studied in the brains of normal and jimpy mice of different ages. The enzyme activity varied little with age in normal mice but in 18 and 21 days-old homozygous jimpy mice the activity was reduced by 50% and 75% respectively from the level of their normal littermates. Interestingly, however, heterozygous jimpy mice who are phenotypically normal and quaking mice (a similar dysmyelinating mutant) showed unaltered enzyme levels.  相似文献   

11.
Expression of the myelin proteolipid protein (PLP) was examined in the nuclei and polysomes of 12-27-day-old quaking, jimpy, and shiverer mouse brains and in 2-27-day-old normal brains and compared with expression of the myelin basic proteins (MBPs). Northern blots showed the presence of multiple mouse PLP RNAs, the developmental expression of which coincided with myelination. Two major mouse PLP RNAs, 3.5 and 2.6 kilobases in length, were observed in both cytoplasmic polyribosomes and nuclei, and, in addition, a larger 4.6-kilobase PLP RNA was observed in nuclei. Quantitative measurements with slot blot analyses showed that the levels of PLP and MBP RNAs peaked simultaneously at 18 days in nuclei but that maximal levels of PLP RNA lagged behind MBP RNA by several days in the polysomes. The developmental expression of both major classes of myelin protein mRNAs was affected in all three mutants. In shiverer brains, the levels of PLP mRNA in polysomes and nuclei were only 30-55% of control levels after 15 days. Thus, the deletion of a portion of the MBP gene appeared to have a major effect on the expression of the PLP gene in this mutant. In jimpy mice, where the mutation has been shown to involve the PLP gene, expression of MBP mRNA was also severely reduced, to less than 25% of control values. In quaking brains, the expression of each gene followed its own developmental course, different from each other and different from the normal mouse. The extent to which the expression of PLP and MBP was affected by the quaking mutation depended on the age at which it was examined.  相似文献   

12.
Expression of myelin protein genes in the developing brain   总被引:1,自引:0,他引:1  
The major myelin proteins fall into two classes, the basic proteins and the proteolipid proteins. In mice, five forms of the myelin basic protein (MBP) have been identified with apparent molecular masses of 21.5 kD, 18.5 kD, 17 kD and 14 kD. The 17 kD MBP variant consists of two molecular forms with similar molecular masses but different amino acid sequences. Cell-free translation studies and analyses of MBP cDNAs have shown that each of the MBP variants is encoded by a separate mRNA of approximately 2 000 bp. The five mouse MBP mRNAs appear to be derived by alternative splicing of exons 2, 5, and 6 of the MBP gene. cDNAs encoding four forms of MBP have been isolated from a human fetal spinal cord library. The mRNAs corresponding to these cDNAs are probably derived by alternative splicing of exons 2 and 5 of the human MBP gene. Proteolipid protein (PLP) cDNAs have been isolated from several species and used to establish that the size of the major PLP mRNA is approximately 3 kb. Multiple size classes of the PLP mRNAs exist in mice and rats whereas the 3 kb mRNA is the predominant form in the developing human spinal cord. In normal mice, maximal expression of the PLP gene lags behind that of the MBP gene by several days. Studies on dysmyelinating mutants have determined some of the molecular defects with respect to these two classes of myelin proteins. For example, there is a deletion of a portion of the MBP gene in the shiverer mutant. In the quaking mutant, the expression of both classes of myelin proteins is significantly reduced prior to 3 weeks. However, after 3 weeks, MBP expression approaches normal levels but the newly synthesized protein fails to be incorporated into myelin. In the jimpy mutant, although the expression of both classes of proteins is reduced, PLP expression is most severely affected.  相似文献   

13.
Expression of myelin proteins was studied in the brains of 21-day-old normal mice and three dysmyelinating mutants-jimpy, quaking, and shiverer. Total brain polyribosomes and poly(A)+ mRNA were translated in two cell-free systems and the levels of synthesis of the myelin basic proteins (MBPs) and proteolipid protein (PLP) were determined. Synthesis of the MBPs in quaking homozygotes was at or above normal levels but PLP synthesis was significantly reduced to approximately 15% of control values, indicating independent effects on the expression of these proteins in this mutant. Immunoblot analysis of 21-day-old quaking brain homogenates showed a reduction in the steady-state levels of MBPs and PLP, suggesting a failure of newly synthesized MBPs to be incorporated into a stable membrane structure such as myelin. In the shiverer mutant very little synthesis of MBPs was observed, whereas greater synthesis of PLP occurred (approximately 50% of control). Almost no MBP, and low levels of PLP, were detected in the immunoblots, suggesting the possibility of a partial failure of PLP to be assembled into myelin in shiverer. In the jimpy mutant, low levels of MBP synthesis were observed in vitro (approximately 26% of controls) and very little synthesis of PLP was evident. The immunoblots of 21-day jimpy brain homogenates revealed no appreciable steady-state levels of PLP or MBP, again indicating that most newly synthesized MBPs were not incorporated into a stable membrane structure in this mutant. In sum, the data show that in the three cases examined, the mutation appears to affect the expression of the MBPs and PLP independently. Furthermore, regardless of their absolute levels of synthesis these proteins may or may not be assembled into myelin.  相似文献   

14.
15.
骨髓间充质干细胞(Bone marrow mesenchymal stem cells,BMSCs)已被广泛应用于治疗脊髓损伤,但目前对其治疗机制了解甚少。BMSCs被移植至脊髓钳夹损伤模型大鼠,以研究其保护作用。通过LFB(Luxol fast blue)染色、锇酸染色、TUNEL(Td T-mediated d UTP nick-end labeling)染色和透射电镜对白质有髓神经纤维进行观察。免疫印迹检测BMSCs移植对脑源性神经营养因子(Brain derived neurotrophic factor,BDNF)和caspase 3蛋白表达的影响。通过脊髓损伤后1、7、14 d三个时间点移植BMSCs并进行后肢运动评分(Basso,beattie and bresnahan;BBB评分)和CNPase(2′,3′-cyclic-nucleotide 3′-phosphodiesterase)、髓鞘碱性蛋白(Myelin basic protein,MBP)、caspase 3蛋白水平的检测。免疫荧光观察BMSCs移植到受损脊髓后分化情况及CNPase-caspase 3~+共表达情况。骨髓间充质干细胞移植7 d后,部分移植的BMSCs可表达神经元和少突胶质细胞标记物,大鼠后肢运动能力和髓鞘超微结构特征均明显改善。骨髓间充质干细胞移植后BDNF蛋白表达水平增加,caspase 3蛋白表达水平则降低。相对于脊髓损伤后1 d和14 d,7 d移植BMSCs后MBP和CNPase蛋白表达水平最高;caspase 3蛋白表达水平则最低。骨髓间充质干细胞移植后CNPase-caspase 3~+细胞散在分布于脊髓白质。结果表明,急性脊髓损伤后,BMSCs移植到受损脊髓有分化为神经元和少突胶质细胞的倾向,并促进BDNF的分泌介导抗少突胶质细胞凋亡而对神经脱髓鞘病变有保护作用,且最佳移植时间为脊髓损伤后7 d。  相似文献   

16.
17.
18.
Changes in intracellular [Ca(2+)](i) levels have been shown to influence developmental processes that accompany the transition of human oligodendrocyte precursor cells (OPCs) into mature myelinating oligodendrocytes and are required for the initiation of the myelination and re-myelination processes. In the present study, we explored whether calcium signals mediated by the selective sodium calcium exchanger (NCX) family members NCX1, NCX2, and NCX3, play a role in oligodendrocyte maturation. Functional studies, as well as mRNA and protein expression analyses, revealed that NCX1 and NCX3, but not NCX2, were divergently modulated during OPC differentiation into oligodendrocyte phenotype. In fact, whereas NCX1 was downregulated, NCX3 was strongly upregulated during oligodendrocyte development. The importance of calcium signaling mediated by NCX3 during oligodendrocyte maturation was supported by several findings. Indeed, whereas knocking down the NCX3 isoform in OPCs prevented the upregulation of the myelin protein markers 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) and myelin basic protein (MBP), its overexpression induced an upregulation of CNPase and MBP. Furthermore, NCX3-knockout mice showed not only a reduced size of spinal cord but also marked hypo-myelination, as revealed by decrease in MBP expression and by an accompanying increase in OPC number. Collectively, our findings indicate that calcium signaling mediated by NCX3 has a crucial role in oligodendrocyte maturation and myelin formation.  相似文献   

19.
Northern blot and "dot" blot analyses using a myelin basic protein (MBP) specific cDNA probe and in vitro translation techniques were utilized to estimate the relative levels of myelin basic protein messenger RNA (mRNA) in the brains of C57BL/6J control mice, three dysmyelinating mutants (qk/qk, jp/Y, and shi/shi), and three heterozygote controls (qk/+, jp/+, and shi+) during early postnatal development. In general, the MBP mRNA levels measured directly by Northern blot and "dot" blot analyses correlated well with the indirect in vitro translation measurements. The Northern blots indicated that the size of MBP mRNAs in quaking and jimpy brain polysomes appeared to be similar to controls. Very low levels of MBP mRNAs were observed in shi/shi brain polyribosomes throughout early postnatal development. Compared to C57BL/6J controls, accumulation of MBP mRNAs in qk/qk and qk/+ brain polyribosomes was delayed by several days. That is, whereas MBP mRNA levels were below normal between 12 and 18 days, normal levels of message had accumulated in both qk/qk and qk/+ brain polyribosomes by 21 days. Furthermore, normal levels of MBP mRNAs were observed to be maintained until at least 27 days. MBP mRNA levels remained well below control levels in jp/Y brain polyribosomes throughout early postnatal development. The levels did, however, fluctuate slightly and peaked at 15 days in both jp/Y and jp/+ brains, 3 days earlier than in normal mice. Thus, it appears that jimpy and quaking mice exhibit developmental patterns of MBP expression different from each other and from C57BL/6J control mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号