首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Wang CY  Adams DO 《Plant physiology》1982,69(2):424-427
1-Aminocyclopropane-1-carboxylic acid (ACC) level, ACC synthase activity, and ethylene production in cucumbers (Cucumis sativus L.) remain low while the fruit are held at a temperature which causes chilling injury (2.5°C) and increase rapidly only upon transfer to warmer temperatures. The increase in ACC synthase activity during the warming period is inhibited by cycloheximide but not cordycepin or α-amanitin. Our data indicate that the synthesis of ACC synthase, which results in increased ACC levels and accelerated ethylene production, occurs only upon warming, possibly from a message produced or unmasked during the chilling period. Ethylene production by chilled (2.5°C) cucumbers increased very little upon transfer to 25°C if the fruit were chilled for more than 4 days. The fruit held for 4 days or longer showed a large increase in ACC levels but little ethylene production even in the presence of exogenous ACC. This suggests that the system which converts ACC to ethylene is damaged by prolonged exposure to the chilling temperature. Cucumbers stored at a low but nonchilling temperature (13°C) showed very little change in ACC level, ethylene production, or ACC synthase activity even after transfer to 25°C.  相似文献   

2.
3.
FIELD  R. J. 《Annals of botany》1984,54(1):61-67
Ethylene production from leaf discs of dwarf bean (Phaseolausvulgaris L.) was less than 02 nl g–1 h–1 at 5 Cbut rapidly increased tenfold on transfer to 25 C. The lowethylene production at 5 C and the potential for overshootproduction on transfer to 25C were not associated with accumulationof the ethylene synthesis intermediate 1-aminocyclopropane-1-carboxylicacid (ACC). Addition of exogenous ACC to leaf discs incubatedat 5C increased ethylene production, while similarly incubatedleaf discs did not synthesize increasing amounts of endogenousACC until they were transferred to 25 C. The basis for theovershoot in ethylene production when leafdiscs were transferredfrom 5 to 25 C appears to reside in changes to the pathwayleading to the synthesis of ACC or an earlier intermediate inthe pathway of ethylene biosynthesis. Ethylene, 1-aminocyclopropane-l-carboxylic acid, Phuseolru vulgaris L., dwarf bean, temperature  相似文献   

4.
When chilling-sensitive plants are chilled, root hydraulic conductance (L(o)) declines precipitously; L(o) also declines in chilling-tolerant plants, but it subsequently recovers, whereas in chilling-sensitive plants it does not. As a result, the chilling-sensitive plants dry out and may die. Using a chilling-sensitive and a chilling-tolerant maize genotype we investigated the effect of chilling on L(o), and its relationship to osmotic water permeability of isolated root cortex protoplasts, aquaporin gene expression, aquaporin abundance, and aquaporin phosphorylation, hydrogen peroxide (H(2)O(2)) accumulation in the roots and electrolyte leakage from the roots. Because chilling can cause H(2)O(2) accumulation we also determined the effects of a short H(2)O(2) treatment of the roots and examined the same parameters. We conclude from these studies that the recovery of L(o) during chilling in the chilling-tolerant genotype is made possible by avoiding or repairing membrane damage and by a greater abundance and/or activity of aquaporins. The same changes in aquaporins take place in the chilling-sensitive genotype, but we postulate that membrane damage prevents the L(o) recovery. It appears that the aquaporin response is necessary but not sufficient to respond to chilling injury. The plant must also be able to avoid the oxidative damage that accompanies chilling.  相似文献   

5.
Experiments comparing the photosynthetic responses of a chilling-resistant species (Pisum sativum L. cv Alaska) and a chilling-sensitive species (Cucumis sativus L. cv Ashley) have shown that cucumber photosynthesis is adversely affected by chilling temperatures in the light, while pea photosynthesis is not inhibited by chilling in the light. To further investigate the site of the differential response of these two species to chilling stress, thylakoid membranes were isolated under various conditions and rates of photosynthetic electron transfer were determined. Preliminary experiments revealed that the integrity of cucumber thylakoids from 25°C-grown plants was affected by the isolation temperature; cucumber thylakoids isolated at 5°C in 400 millimolar NaCl were uncoupled, while thylakoids isolated at room temperature in 400 millimolar NaCl were coupled, as determined by addition of gramicidin. The concentration of NaCl in the homogenization buffer was found to be a critical factor in the uncoupling of cucumber thylakoids at 5°C. In contrast, pea thylakoid membranes were not influenced by isolation temperatures or NaCl concentrations. In a second set of experiments, thylakoid membranes were isolated from pea and cucumber plants at successive intervals during a whole-plant light period chilling stress (5°C). During wholeplant chilling, thylakoids isolated from cucumber plants chilled in the light were uncoupled even when the membranes were isolated at warm temperatures. Pea thylakoids were not uncoupled by the whole-plant chilling treatment. The difference in integrity of thylakoid membrane coupling following chilling in the light demonstrates a fundamental difference in photosynthetic function between these two species that may have some bearing on why pea is a chilling-resistant plant and cucumber is a chilling-sensitive plant.  相似文献   

6.
The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll–protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements. Dedicated to Prof. Zbigniew Kaniuga on the 25th anniversary of his initiation of studies on chilling-induced stress in plants.  相似文献   

7.
Ubiquinone functions primarily in the electron transport chain of the mitochondria of plants and animals. Secondary roles in plant tissue, such as antioxidant activity, have also been proposed. The effect of low temperature exposure on etiolated seedling embryonic axes of two differentially chilling-sensitive species, mung bean ( Vigna radiata L.) (chilling-sensitive) and pea ( Pisum sativum L. cv. Lincoln) (chilling-tolerant) with respect to respiration rate, lipid peroxidation and ubiquinone content was examined. Whole seedlings (embryonic axis and cotyledon) of both species were exposed to control temperatures (20°C) (6 days) or an acclimatory low temperature treatment of 10°C (3 days) followed by exposure at 5°C (3 days). Measurements were initiated 3 days after seedlings had reached 50% germination (D0). Prior to measurements the cotyledons were removed and only the embryonic axis was used in these experiments. Ubiquinol (UQH2), ubiquinone (UQ) and total ubiquinone (UQtot) content decreased in mung bean in response to the temperature treatment and UQH2 and UQtot remained stable in the more chilling-tolerant pea. The reduction of the total Q-pool was approximately 85–92%, suggesting a high degree of saturation of the respiration pathways. Respiration declined and the RQ ratio increased in both species in response to low temperature. Cytochrome c oxidase (COX) (EC 1.9.3.1) activity was higher in pea than in mung bean but decreased during low temperature exposure in both species. Considering that levels of MDA (lipid peroxidation) did not increase in either species in response to chilling, decreased levels of UQH2 and UQ observed in chilling-sensitive mung bean may indicate that these compounds were damaged prior to other membrane lipids during low temperature treatment and rendered undetectable.  相似文献   

8.
The effect of LAB 173 711, a synthetic analogue of abscisic acid, has been evaluated on chilling-sensitive mung bean (Vigna radiata L. cv. Local V.) seedlings. Electrical conductivity was used for assessing the degree of chilling injury. Exposure of 8-day-old mung bean seedlings to 4°C for 35 h resulted in a 50% electrolyte leakage and induced irreversible chilling injury. The seedlings gained the best protection against chilling injury by pretreatment with LAB 173 711 (5 × 10–4 M) for 3 days. The protection effect could be sustained for 4 days. The LAB 173 711 pretreatment at 28°C did not cause a significant difference in the electrolyte leakage over the ambient temperature (28°C) control. Application of LAB 173 711 at 28°C reduced visible injury and the treated seedlings had higher ethylene production and respiration rate over the untreated control. LAB 173 711 helped maintain the integrity of the cell membrane and thus reduced the leakage of soluble sugar and amino acids. These combined effects led to a higher chilling tolerance in the mung bean seedlings.  相似文献   

9.
Nolan WG  Smillie RM 《Plant physiology》1977,59(6):1141-1145
The effect of temperature on Hill activity has been compared in chilling-sensitive and chilling-resistant plants. The Arrhenius activation energy (Ea) for the photoreduction of 2,6-dichlorophenolindophenol by chloroplasts isolated from two chilling-sensitive plants, mung bean (Vigna radiata L. var. Mungo) and maize (Zea mays L. cv. PX 616), increased at low temperatures, below 17 C for mung bean and below 11 C for maize. However, the Ea for this reaction in pea (Pisum sativum L. cv. Massay Gem), a chilling-resistant plant, likewise increased at temperatures below 14 C. A second change in Ea occurred at higher temperatures. The Ea decreased above about 28 C for mung bean, 30 C for maize, and 25 C for pea. At temperatures approaching 40 C, thermal inactivation of Hill activity occurred. These results, when taken together with previous results obtained with the chilling-resistant plant barley, indicate that chloroplasts from both chilling-sensitive and chilling-resistant plants can undergo a change in chloroplast membrane activity at low temperatures above freezing and that the presence of such a change in chloroplast membranes is not necessarily correlated with chilling sensitivity.  相似文献   

10.
FIELD  R. J. 《Annals of botany》1981,47(2):215-223
When leaf discs cut from primary leaves of Phaseolus vulgarisL. cv. Masterpiece plants grown at 25°C were incubated attemperatures below 25 °C, basal and wound ethylene productioncontinued at reduced rates. In both cases detectable levelsof ethylene were produced at 25 °C. When the rates of ethyleneproduction were plotted according to the Arrhenius equationa marked discontinuity was found at 11.4 °C which is consistentwith a membrane phase-transition at the critical chilling temperatureof the plant. Activation energies for the rate-limiting enzymereaction in ethylene production above and below the criticaltemperature have been calculated and the data interpreted asindicating the involvement of membrane-bound enzyme systemsin the biosynthesis of basal and wound ethylene. ethylene, temperature, Arrhenius plot, activation energy, Phaseolus vulgaris L., bean  相似文献   

11.
Chilling-Induced Heat Evolution in Plants   总被引:5,自引:0,他引:5       下载免费PDF全文
Increases in respiration, particularly via the alternative pathway, are observed in response to chilling. These increases result in increased heat evolution. We have measured increases in heat evolution in response to chilling in a number of plant species using a microcalorimeter. After 8 h of exposure to 8[deg]C, heat evolution in a variety of chilling-sensitive species increased 47 to 98%. No increase in heat evolution was seen with the extremely chilling-sensitive ornamental Episcia cupreata Hook. Heat evolution increased only 7 to 22% in the chilling-resistant species. Increases in heat evolution were observed when plants were chilled in constant light or in the dark, but not when plants were chilled at high humidity. Increased capacity to produce respiratory heat after exposure to chilling temperatures may contribute to the cold-acclimation process.  相似文献   

12.
Photoinhibition resulting from exposure at 7°C to a moderate photon flux density (300 micromoles per square meter per second, 400-700 nanometers) for 20 hours was measured in leaves of annual crops differing widely in chilling tolerance. The incidence of photoinhibition, determined as the decrease in the ratio of induced to total chlorophyll fluorescence emission at 693 nanometers (Fv/Fmax) measured at 77 Kelvin, was not confined to chilling-sensitive species. The extent of photoinhibition in leaves of all chilling-resistant plants tested (barley [Hordeum vulgare L.], broad bean [Vicia faba L.], pea [Pisum sativum L.], and wheat [Triticum aestivum L.]) was about half of that measured in chilling-sensitive plants (bean [Phaseolus vulgaris L.], cucumber [Cucumis sativus L.], lablab [Lablab purpureus L.], maize [Zea mays L.], pearl millet [Pennisetum typhoides (Burm. f.) Stapf & Hubbard], pigeon pea [Cajanus cajun (L.) Millsp.], sesame [Sesamum indicum L.], sorghum [Sorghum bicolor L. Moench], and tomato [Lycopersicon esculentum Mill.]). Rice (Oryza sativa L.) leaves of the indica type were more susceptible to photoinhibition at 7°C than leaves of the japonica type. Photoinhibition was dependent both on temperature and light, increasing nonlinearly with decreasing temperature and linearly with increasing light intensity. In contrast to photoinhibition during chilling, large differences, up to 166-fold, were found in the relative susceptibility of the different species to chilling injury in the dark. It was concluded that chilling temperatures increased the likelihood of photoinhibition in leaves of both chilling-sensitive and -resistant plants. Further, while the photoinhibition during chilling generally occurred more rapidly in chilling-sensitive plants, this was not related directly to chilling sensitivity.  相似文献   

13.
Cucumber ( Cucumis sativus L. cv. Victory) seedlings were exposed to chilling at 5°C and endogenous levels of polyamines and 1-aminocyclopropane-1-carboxylic acid (ACC) were measured after chilling and after warming at 20°C. The level of spermidine was higher in the chilled seedlings than in the non-chilled seedlings. Treatment with a plant bioregulator, (2RS,3RS)-1-(4-cholorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol (paclobutrazol), reduced the chilling injury and the levels of spermidine in the chilled seedlings. The levels of ACC and production of ethylene showed sharp increases after warming following exposure to chilling. These increases were suppressed by the application of aminooxyacetic acid (AOA). However, AOA treatment did not reduce chilling injury or affect the levels of polyamines in the tissue. These data indicate that the increase in ACC and ethylene is a response of the tissue to the chilling exposure and is not a cause of the injury. The data also suggest that the syntheses of polyamines and ethylene are not competitive with each other even under chilling stress conditions.  相似文献   

14.
The effects of chilling on the photosynthesis of a chilling-resistant species, pea (Pisum sativum L. cv Alaska) and a chilling-sensitive species, cucumber (Cucumis sativus L. cv Ashley) were compared in order to determine the differences in the photosynthetic chilling sensitivity of these two species. For these experiments, plants were chilled (5°C) for different lengths of time in the dark or light. Following a 1 hour recovery period at 25°C, photosynthetic activity was measured by gas exchange (CO2 uptake and H2O release), quantum yield, and induced chlorophyll fluorescence. The results show that pea photosynthesis was largely unaffected by two consecutive nights of chilling in the dark, or by chilling during a complete light and dark cycle (15 hours/9 hours). Cucumber gas exchange was reduced by one night of chilling, but its quantum yield and variable fluorescence were unaffected by dark chilling. However, chilling cucumber in the light led to reduced CO2 fixation, increased internal leaf CO2 concentration, decreased quantum yield, and loss of variable fluorescence. These results indicate that chilling temperatures in conjunction with light damaged the light reactions of photosynthesis, while chilling in the dark did not.  相似文献   

15.
The effect of a chilling stress, at a moderate photon flux density for a few hours, on the peroxidation of membrane lipids and on superoxide dismutase (SOD) activity was compared in leaf slices of chilling-sensitive and chilling-insensitive plants. The aim was to determine if susceptibility to chill-temperature photoinhibition could be related to either damage to membrane lipids by superoxide and-or a decrease in activity of chloroplast SOD. Plants used were Nerium oleander L., grown at 45° C, and Cucumis sativus L., both susceptible to chill-temperature photoinhibition, and N. oleander, grown at 20° C and Spinacia oleracea L., both insensitive to chill-temperature photoinhibition. Lipid peroxidation was assessed by measuring the concentration of malondialdehyde (MDA). Leaf slices from all plants showed a basal level of MDA which decreased by about 15% when the leaf slices were chilled in the light. The level of MDA was not increased by the addition of either KHCO3 or methyl viologen during chilling but it was increased, up to threefold, by the addition of Rose Bengal, which produces singlet oxygen. Chloroplast SOD activity was assessed in leaf extracts as the cyanide-sensitive production of H2O2 in a system which produced superoxide. Activity of SOD was similar in all the plants and was altered little by chilling. The results show that for the plants tested, chilling at a moderate photon flux density for 5 h does not increase the susceptibility of cell membranes to peroxidative damage nor does it decrease the activity of SOD. It was concluded that the susceptibility of chilling-sensitive plants to chill-temperature photoinhibition cannot be explained on the basis of differences in the vulnerability of membrane lipids to damage by superoxide or differences in SOD activity.Abbreviations Chl chlorophyll - MDA malondialdehyde - MV methyl viologen - O 2 - superoxide - 20°-oleander Nerium oleander grown at 20° C - 45°-oleander N. oleander grown at 45° C - PFD photon flux density - SOD superoxide dismutase Deceased  相似文献   

16.
Chilling effects on respiration during the recovery period were studied in two maize (Zea mays L.) cultivars differing in their tolerance to chilling: Penjalinan, a chilling-sensitive cultivar, and Z7, a chilling-tolerant cultivar. Both cultivars were exposed to 5 degrees C for 5 d, after which measurements were taken at 25 degrees C. Chlorophyll fluorescence analysis in dark-adapted leaves showed less damage in cv Z7 than in cv Penjalinan during recovery from the chilling treatment. Studies of the electron partitioning between the cytochrome and the alternative respiratory pathways during chilling recovery using the oxygen isotope fractionation technique showed that, although total leaf respiration was not affected by the chilling treatment in either of the two cultivars, electron partitioning to the alternative pathway was significantly increased in the more stressed chilling-sensitive cv Penjalinan, suggesting that increased activity of the alternative pathway is not related to the plant tolerance to chilling. These results suggest a possible role of the alternative pathway in plants under stress rather than specifically contributing to plant resistance to chilling.  相似文献   

17.
1. Photochemical activities as a function of temperature have been compared in chloroplasts isolated from chilling-sensitive (below approximately 12 °C) and chilling-resistant plants.2. An Arrhenius plot of the photoreduction of NADP+ from water by chloroplasts isolated from tomato (Lycopersicon esculentum var. Gross Lisse), a chilling-sensitive plant, shows a change in slope at about 12 °C. Between 25 and 14 °C the activation energy for this reaction is 8.3 kcal·mole?1. Between 11 and 3 °C the activation energy increases to 22 kcal·mole?1. Photoreduction of NADP+ by chloroplasts from another chilling-sensitive plant, bean (Phaseolus vulgaris var. brown beauty), shows an increase in activation energy from 5.9 to 17.5 kcal·mole?1 below about 12 °C.3. The photoreduction of NADP+ by chloroplasts isolated from two chilling-resistant plants, lettuce (Lactuca sativa var. winter lake) and pea (Pisum sativum var. greenfeast), shows constant activation energies of 5.4 and 8.0 kcal·mole?1, respectively, over the temperature range 3–25 °C.4. The effect of temperature on photosynthetic electron transfer in the chloroplasts of chilling-sensitive plants is localized in Photosystem I region of photosynthesis. Both the photoreduction of NADP+ from reduced 2,6-dichlorophenol-indophenol and the ferredoxin-NADP+ reductase (EC 1.6.99.4) activity of choroplasts of chilling-sensitive plants show increases in activation energies at approximately 12 °C whereas Photosystem II activity of chloroplasts of chilling-sensitive plants shows a constant activation energy over the temperature range 3–25 °C. The photoreduction of Diquat (1,1′-ethylene-2,2′-dipyridylium dibromide) from water by bean chloroplasts, however, does not show a change in activation energy over the same temperature range. The activation energies of each of these reactions in chilling-resistant plants is constant between 3 and 25 °C.5. The effect of temperature on the activation energy of these reactions in chloroplasts from chilling-sensitive plants is reversible.6. In chilling-sensitive plants, the increased activation energies below approximately 12 °C, with consequent decreased rates of reaction for the photoreduction of NADP+, would result in impaired photosynthetic activity at chilling temperatures. This could explain the changes in chloroplast structure and function when chilling-sensitive plants are exposed to chilling temperatures.  相似文献   

18.
The phase behaviour of leaf polar lipids from three plants, varying in their sensitivity to chilling, was investigated by differential scanning calorimetry. For the lipids from mung bean (Vigna radiata L. var. Berken), a chilling-sensitive plant, a transition exotherm was detected beginning at 10 ± 2°C. No exotherm was evident above 0°C with polar lipids from wheat (Triticum aestivum cv. Falcon) or pea (Pisum sativum cv. Massey Gem), plants which are insensitive to chilling. The enthalpy for the transition in the mung bean polar lipids indicated that only about 7% w/w of the lipid was in the gel phase at ?8°C. The thermal transition of the mung bean lipids was mimicked by wheat and pea polar lipids after the addition of 1 to 2% w/w of a relatively high melting-point lipid such as dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol or dimyristoylphosphatidylcholine. Analysis of the polar lipids from the three plants showed that a dipalmitoylphosphatidylglycerol was present in mung bean (1.7% w/w) and pea (0.3% w/w) but undetected in wheat, indicating that the transition exotherm temperature of 10°C in mung bean, 0°C in pea and about ?3°C in wheat correlates with the proportion of the high melting-point disaturated component in the polar lipids. The results indicate that the transition exotherm, observed at temperatures above 0°C in the membranes of chilling-sensitive plants, could be induced by small amounts of high melting-point lipids and involves only a small proportion of the membrane polar lipids.  相似文献   

19.
Exposing ixora ( Ixora coccinea ) plants to chilling temperatures (3–9°C for 3 days) resulted in increased leaf abscission, initiated 3 days after transfer to 20°C. Exposure to chilling also induced a 7-fold increase in ethylene production rates of abscission zone (AZ) tissue during the initial 5 h after chilling. The ethylene burst resulted from the high levels of 1-aminocyclopropane-1-carboxylic acid (ACC) accumulated in the AZ during the chilling period. ACC levels following chilling decreased also due to enhanced conjugation to 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC). Treating plants prior to chilling with antioxidants, such as butylated hydroxyanisole (BHA), n -propyl gallate (PG), and vitamin E, significantly reduced chilling-induced leaf abscission. This effect was obtained despite the fact that ethylene production in the treated plants resembled that of chilled plants receiving no BHA. In addition, exposure of plants to ethylene (0.5–10 μl l−1) for 1–3 days significantly enhanced leaf abscission only when they had been pre-chilled. These data imply that chilling-induced leaf abscission was closely correlated with increased sensitivity of the AZ to ethylene rather than with the chilling-induced ethylene burst. Based on the findings that the ethylene action inhibitor, 1-methylcyclopropene (1-MCP), and the antioxidant BHA inhibited both the chilling-induced and the ethylene-enhanced leaf abscission, it is concluded that: (1) although ethylene is essential for chilling-induced abscission, it is not the triggering factor; (2) oxidative processes derived from the chilling stress seem to be the trigger of chilling-induced leaf abscission, operating via increased sensitivity to ethylene.  相似文献   

20.
Chilling temperatures increase the amounts of potentially lethal toxic oxygen compounds present within plants. These toxic oxygen compounds can be scavenged by antioxidant compounds such as ascorbate and β-carotene. Three developmental stages (first, third and fifth leaf) of four inbred lines of maize ( Zea mays L.) exhibiting differential sensitivity to chilling were examined in order to determine if the chilling-sensitive line had lower concentrations of antioxidant compounds than did the tolerant lines. Plants were exposed to one of three treatments: (1) control (25°C constant), (2) control treatment plus a short-term chilling exposure of 11°C one day prior to harvesting, and (3) long-term (11°C constant) chilling exposure. Total ascorbate, total glutathione, β-carotene, α-tocopherol and chlorophyll contents were quantified, and ratios of dehydroascorbate/ascorbate and reduced/oxidized glutathione were determined. Lower concentrations of β-carotene were found in the chilling-sensitive relative to those in the chilling-tolerant lines for the first-leaf stage under both short- and long-term chilling treatments. Concentrations of total ascorbate and glutathione and β-carotene in the chilling-sensitive line increased as the chilling treatment progressed and as the plants developed until they ultimately became either significantly higher or no different relative to the tolerant lines. Results suggest that this sensitive line became less sensitive to chilling-induced oxidative stress with development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号