首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
McCurdy DW 《Protoplasma》1999,209(1-2):120-125
The effectiveness of 2,3-butanedione monoxime (BDM) as an inhibitor of plant myosins has been investigated. Three myosin-dependent motility phenomena in plants, namely cytoplasmic streaming in Chara corallina, light-dependent chloroplast repositioning in Elodea sp., and brefeldin A(BFA)-induced Golgi membrane dynamics in wheat (Triticum aestivum L. cv. Kite) root-tip cells were investigated. All three processes were inhibited by the sulfhydryl-modifying agent N-ethylmalemide (NEM), indicating the probable involvement of myosin as the motor protein in each case. However, none of these myosin-dependent processes were inhibited by BDM at concentrations as high as 20 mM in some instances. These results therefore question the general usefulness of BDM as an inhibitor of myosin-based activities in plant cells.  相似文献   

2.
Recently, it was found that myosin generating very fast cytoplasmic streaming in Chara corallina has very high ATPase activity. To estimate the energy consumed by this myosin, its concentration in the internodal cells of C. corallina was determined by quantitative immunoblot. It was found that the concentration of Chara myosin was considerably high (200 nM) and the amount of ATP consumed by this myosin would exceed that supplied by dark respiration if all myosin molecules were fully activated by the interaction with actin. These results and model calculations suggested that the energy required to generate cytoplasmic streaming is very small and only one-hundredth of the existing myosin is enough to maintain the force for the streaming in the Chara cell.  相似文献   

3.
David W. McCurdy 《Protoplasma》1999,209(3-4):120-125
Summary The effectiveness of 2,3-butanedione monoxime (BDM) as an inhibitor of plant myosins has been investigated. Three myosin-dependent motility phenomena in plants, namely cytoplasmic streaming inChara corallina, light-dependent chloroplast repositioning inElodea sp., and brefeldin A(BFA)-induced Golgi membrane dynamics in wheat (Triticum aestivum L. cv. Kite) roottip cells were investigated. All three processes were inhibited by the sulfhydryl-modifying agent N-ethylmalemide (NEM), indicating the probable involvement of myosin as the motor protein in each case. However, none of these myosin-dependent processes were inhibited by BDM at concentrations as high as 20 mM in some instances. These results therefore question the general usefulness of BDM as an inhibitor of myosin-based activities in plant cells.  相似文献   

4.
Cellular and intracellular motile events in plants are susceptible to SH reagents such as N-ethylmaleimide (NEM). It has long been believed that the target of the reagent is myosin. We compared the effect of NEM on the motile and ATPase activities of skeletal muscle myosin with that on plant myosin using characean algal myosin. It was found that the motile activity of myosin prepared from NEM-treated C. corallina decreased to a level accountable for the decrease in the velocity of cytoplasmic streaming but it was also found that Chara myosin was far less susceptible to NEM than skeletal muscle myosin.  相似文献   

5.
The mechanism and structural features that are responsible for the fast motility of Chara corallina myosin (CCM) have not been elucidated, so far. The low yields of native CCM that can be purified to homogeneity were the major reason for this. Here, we describe the expression of recombinant CCM motor domains, which support the fast movement of actin filaments in an in vitro motility assay. A CCM motor domain without light chain binding site moved actin filaments at a velocity of 8.8 microm/s at 30 degrees C and a CCM motor domain with an artificial lever arm consisting of two alpha-actinin repeats moved actin filaments at 16.2 microm/s. Both constructs displayed high actin-activated ATPase activities ( approximately 500 Pi/s/head), which is indicative of a very fast hydrolysis step. Our results provide an excellent system to dissect the specific structural and functional features that distinguish the myosin responsible for fast cytoplasmic streaming.  相似文献   

6.
In Characean cells endoplasmic streaming stops upon membrane depolarization accompanied by Ca(2+) entry. We investigated the mechanism of this cessation of endoplasmic streaming by reconstituting the vesicle movement in vitro. In a living cell of Chara corallina, there are a number of vesicles moving along actin cables. Vesicles in the endoplasm squeezed out of the cell into a medium containing Mg-ATP showed directional movements under a dark field microscope. When the extracted endoplasm was treated with 20 nM okadaic acid, vesicles showed only movements like the Brownian motion. When it was treated with 50 nM staurosporine, directional movements of vesicles were activated. These movements were analyzed by image processing of videomicroscopic records. Vesicle movements along F-actin filaments were also observed by merging both images of the same field by dark field microscopy and fluorescence microscopy, indicating that myosin on the vesicle surface was responsible for vesicle movements. We also examined the effects of okadaic acid and staurosporine on in vitro sliding of F-actin on Chara myosin. When Chara myosin was treated with 20 nM okadaic acid in the cell extract, the number of sliding F-actin filaments was greatly reduced. In contrast, it increased when Chara myosin was treated with 50 nM staurosporine. In addition, Chara myosin treated with protein kinase C greatly diminished its motility. These results suggest that inactivation of Chara myosin via its phosphorylation is responsible for cessation of endoplasmic streaming.  相似文献   

7.
Summary On the basis of the inhibition of myosin by 2,3-butanedione monoxime (BDM), the protein's involvement in various cell activities is discussed. However, it has not been established whether BDM inhibits plant myosin. In the present study, the effect of BDM on isolated plant myosin was analyzed in vitro. The sliding between myosin from lily (Lilium longiflorum) pollen tubes and actin filaments from skeletal muscle was inhibited to 25% at a concentration of 60 mM, indicating that BDM can be used as a myosin inhibitor for plant materials. Cytoplasmic streaming was completely inhibited by BDM at 30 mM in lily pollen tubes and at 70 mM in short root hair cells, and at 100 mM in long root hair cells ofHydrocharis dubia. However, BDM at high concentrations induced the disorganization of actin filament bundles in lily pollen tubes and short root hair cells. In addition, cortical microtubules were also fragmented in short root hair cells treated with BDM, suggesting a possible side effect of BDM.Abbreviations AF actin filament - BDM 2,3-butanedione monoxime - MT microtubule  相似文献   

8.
Pollen tubes show active cytoplasmic streaming. We isolated organelles from pollen tubes and tested their ability to slide along actin bundles in characean cell models. Here, we show that sliding of organelles was ATP-dependent and that motility was lost after N-ethylmaleimide or heat treatment of organelles. On the other hand, cytoplasmic streaming in pollen tube was inhibited by either N-ethylmaleimide or heat treatment. These results strongly indicate that cytoplasmic streaming in pollen tubes is supported by the "actomyosin"-ATP system. The velocity of organelle movement along characean actin bundles was much higher than that of the native streaming in pollen tubes. We suggested that pollen tube "myosin" has a capacity to move at a velocity of the same order of magnitude as that of characean myosin. Moreover, the motility was high at Ca2+ concentrations lower than 0.18 microM (pCa 6.8) but was inhibited at concentration higher than 4.5 microM (pCa 5.4). In conclusion, cytoplasmic streaming in pollen tubes is suggested to be regulated by Ca2+ through "myosin" inactivation.  相似文献   

9.
Chara myosin in green algae, Chara corallina, is the fastest myosin of all those observed so far. To shed light on the molecular mechanism of this fast sliding, we determined the primary structure of Chara myosin heavy chain (hc). It has a motor domain, six IQ motifs for calmodulin binding, a coiled-coil structure to dimerize, and a globular tail. Chara myosin hc is very similar to some plant myosins and has been predicted to belong to the class XI. Short loop 1 and loop 2 may account for the characteristics of mechanochemical properties of Chara myosin.  相似文献   

10.
Binding of chara Myosin globular tail domain to phospholipid vesicles   总被引:1,自引:0,他引:1  
Binding of Chara myosin globular tail domain to phospholipid vesicles was investigated quantitatively. It was found that the globular tail domain binds to vesicles made from acidic phospholipids but not to those made from neutral phospholipids. This binding was weakened at high KCl concentration, suggesting that the binding is electrostatic by nature. The dissociation constant for the binding of the globular tail domain to 20% phosphatidylserine vesicles (similar to endoplasmic reticulum in acidic phospholipid contents) at 150 mM KCl was 273 nM. The free energy change due to this binding calculated from the dissociation constant was -37.3 kJ mol(-1). Thus the bond between the globular tail domain and membrane phospholipids would not be broken when the motor domain of Chara myosin moves along the actin filament using the energy of ATP hydrolysis (DeltaG degrees ' = -30.5 kJ mol(-1)). Our results suggested that direct binding of Chara myosin to the endoplasmic reticulum membrane through the globular tail domain could work satisfactorily in Chara cytoplasmic streaming. We also suggest a possible regulatory mechanism of cytoplasmic streaming including phosphorylation-dependent dissociation of the globular tail domain from the endoplasmic reticulum membrane.  相似文献   

11.
Plant myosin XI functions as a motor that generates cytoplasmic streaming in plant cells. Although cytoplasmic streaming is known to be regulated by intracellular Ca(2+) concentration, the molecular mechanism underlying this control is not fully understood. Here, we investigated the mechanism of regulation of myosin XI by Ca(2+) at the molecular level. Actin filaments were easily detached from myosin XI in an in vitro motility assay at high Ca(2+) concentration (pCa 4) concomitant with the detachment of calmodulin light chains from the neck domains. Electron microscopic observations showed that myosin XI at pCa 4 shortened the neck domain by 30%. Single-molecule analysis revealed that the step size of myosin XI at pCa 4 was shortened to 27 nm under low load and to 22 nm under high load compared with 35 nm independent of the load for intact myosin XI. These results indicate that modulation of the mechanical properties of the neck domain is a key factor for achieving the Ca(2+)-induced regulation of cytoplasmic streaming.  相似文献   

12.
In higher plants, cell-to-cell polar auxin transport (PAT) of the phytohormone auxin, indole-3-acetic acid (IAA), generates maxima and minima that direct growth and development. Although IAA is present in all plant phyla, PAT has only been detected in land plants, the earliest being the Bryophytes. Charophyta, a group of freshwater green algae, are among the first multicellular algae with a land plant-like phenotype and are ancestors to land plants. IAA has been detected in members of Charophyta, but its developmental role and the occurrence of PAT are unknown. We show that naphthylphthalamic acid (NPA)-sensitive PAT occurs in internodal cells of Chara corallina. The relatively high velocity (at least 4-5 cm/h) of auxin transport through the giant (3-5 cm) Chara cells does not occur by simple diffusion and is not sensitive to a specific cytoplasmic streaming inhibitor. The results demonstrate that PAT evolved early in multicellular plant life. The giant Chara cells provide a unique new model system to study PAT, as Chara allows the combining of real-time measurements and mathematical modelling with molecular, developmental, cellular, and electrophysiological studies.  相似文献   

13.
Cytoplasmic streaming in characean algae is thought to be generated by interaction between subcortical actin bundles and endoplasmic myosin. Most of the existing evidence supporting this hypothesis is of a structural rather than functional nature. To obtain evidence bearing on the possible function of actin and myosin in streaming, we used perfusion techniques to introduce a number of contractile and related proteins into the cytoplasm of streaming Chara cells. Exogenous actin added at concentrations as low as 0.1 mg/ml is a potent inhibitor of streaming. Deoxyribonuclease I (DNase I), an inhibitor of amoeboid movement and fast axonal transport, does not inhibit streaming in Chara. Fluorescein-DNase I stains stress cables and microfilaments in mammalian cells but does not bind to Chara actin bundles, thus suggesting that the lack of effect on streaming is due to a surprising lack of DNase I affinity for Chara actin bundles. Heavy meromyosin (HMM) does not inhibit streaming, but fluorescein-HMM (FL-HMM), having a partially disabled EDTA ATPase, does. Quantitative fluorescence micrography provides evidence that inhibition of streaming by FL-HMM may be due to a tendency for FL-HMM to remain bound to Chara actin bundles even in the presence of MgATP. Perfusion with various control proteins, including tubulin, ovalbumin, bovine serum albumin, and irrelevant antibodies, does not inhibit streaming. These results support the hypothesis that actin and myosin function to generate cytoplasmic streaming in Chara.  相似文献   

14.
An apparatus is described by means of which the power versus frequency spectrum of the photomultiplier current can be obtained for laser light scattered by streaming cytoplasm in the algal cell Chara corallina. A Doppler peak is noted in the spectrum which is abolished when cytoplasmic streaming is arrested by electrical stimulation. For 5 cells of Chara, this simple laser-Doppler velocimeter gave streaming velocities (46-7 mum s-1, S.D. +/- 4-8 at 20 degrees C) similar to those obtained for the same cells using the light microscope (44-3 mum s-1, S.D. +/- 5-3 at 20 degrees C). A narrow distribution of streaming velocities is indicated. The technique described provides a rapid, quantitative assay of the in vivo rheological properties of cytoplasm.  相似文献   

15.
Chara corallina class XI myosin is by far the fastest molecular motor. To investigate the molecular mechanism of this fast movement, we performed a kinetic analysis of a recombinant motor domain of Chara myosin. We estimated the time spent in the strongly bound state with actin by measuring rate constants of ADP dissociation from actin.motor domain complex and ATP-induced dissociation of the motor domain from actin. The rate constant of ADP dissociation from acto-motor domain was >2800 s(-1), and the rate constant of ATP-induced dissociation of the motor domain from actin at physiological ATP concentration was 2200 s(-1). From these data, the time spent in the strongly bound state with actin was estimated to be <0.82 ms. This value is the shortest among known values for various myosins and yields the duty ratio of <0.3 with a V(max) value of the actin-activated ATPase activity of 390 s(-1). The addition of the long neck domain of myosin Va to the Chara motor domain largely increased the velocity of the motility without increasing the ATP hydrolysis cycle rate, consistent with the swinging lever model. In addition, this study reveals some striking kinetic features of Chara myosin that are suited for the fast movement: a dramatic acceleration of ADP release by actin (1000-fold) and extremely fast ATP binding rate.  相似文献   

16.
Myosin was detected on Western blots of Micrasterias denticulata extracts by use of antibodies from different sources. Inhibitors with different targets of the actomyosin system, such as the myosin ATPase-blockers N-ethylmaleimide (NEM) and 2,3-butanedione monoxime (BDM), or the myosin light chain kinase inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexhydro-1,4-diazapine (ML7), had similar effects on intracellular motility during cell development in the green alga Micrasterias, thus pointing towards a participation of myosin in these processes. The drugs markedly altered the mode of postmitotic nuclear migration, slowed down cytoplasmic streaming, changed cell pattern development and prevented normal chloroplast distribution and spreading into the growing semicell. In addition, an increase and dilatations in ER cisternae and marked morphological changes of the Golgi system were observed by transmission electron microscopy after exposure of growing cells to BDM.Neither BDM nor ML7 exhibited any effect on the distribution or arrangement of the cortical F-actin network nor on the F-actin basket around the nucleus, characteristic of untreated growing Micrasterias cells (J Cell Sci 107 (1994) 1929). This is particularly interesting since BDM caused disintegration of the microtubule system co-localized to the F-actin cage during normal nuclear migration. Together with the fact that other microtubules not connected to the F-actin system remained uninfluenced by BDM, this observation is evidence of an integrative function of myosin between the cytoskeleton elements.  相似文献   

17.
Chara myosin, two-headed plant myosin belonging to class XI, slides F-actin at maximally 60 microm s(-1). To elucidate the mechanism of this fast sliding, we extensively investigated its mechanochemical properties. The maximum actin activated ATPase activity, Vmax, was 21.3 s(-1) head(-1) in a solution, but when myosin was immobilized on the surface, its activity was 57.6 s(-1) head(-1) at 2 mg ml(-1) of F-actin. The sliding velocity and the actin activated ATPase activity were greatly inhibited by ADP, suggesting that ADP dissociation was the rate limiting step. With the extensive assay of motility by varying the surface density, the duty ratio of Chara myosin was found to be 0.49-0.44 from velocity measurements and 0.34 from the landing rate analysis. At the surface density of 10 molecules microm(-2), Chara myosin exhibited pivot movement under physiological conditions. Based on the results obtained, we will discuss the sliding mechanism of Chara myosin according to the working stroke model in terms of its physiological aspects. aspects.  相似文献   

18.
When an internodal cell of Chara corallina was stimulated with a mechanical pulse of various amplitudes lasting for 0.1 s (mechanical stimulus), the cell generated a receptor potential, which was highly dependent not only on the strength of the stimulus but also on the extracellular Cl- concentration. Extracellular Ca2+ was indispensable for generating receptor potential, since removal of Ca2+ reversibly inhibited generation of the receptor potential. The cytoplasmic Ca2+ level transiently rose upon mechanical stimulation. The stronger the mechanical stimulus, the larger was the increase in the cytoplasmic level of Ca2+. It is proposed that the first step of receptor potential is an activation of mechanosensitive Ca2+ channels at the plasma membrane.  相似文献   

19.
Cytoplasmic streaming in Characean internodes enables rapid intracellular transport and facilitates interactions between spatially remote cell regions. Cyclosis-mediated distant interactions might be particularly noticeable under nonuniform illumination, in the vicinity of light-shade borders where metabolites are transported between functionally distinct cell regions. In support of this notion, chlorophyll fluorescence parameters assessed on a microscopic area of Chara corallina internodal cells (area of inspection, AOI) responded to illumination of nearby regions in asymmetric manner depending on the vector of cytoplasmic streaming. When a beam of white light was applied through a 400-μm optic fiber upstream of AOI with regard to the direction of cytoplasmic streaming, non-photochemical quenching (NPQ) developed after a lag period in AOI exposed to moderate intensity light. Conversely, no NPQ was induced in the same cell area when the beam position was shifted to an equal distance downstream of AOI. Light-response curves for the efficiency of photosystem II electron transport in chloroplasts differed markedly depending on the illumination pattern (whole-cell versus small area illumination) but these differences were eliminated after the inhibition of cytoplasmic streaming with cytochalasin B. Localized illumination promoted chloroplast fluorescence responses to electrical plasmalemma excitation at high light intensities, which contrasts to the requirement of low to moderate irradiances for observation of the stimulus-response coupling under whole-cell illumination. The results indicate that different photosynthetic capacities of chloroplasts under general and localized illumination are related to lateral transport of nonevenly distributed cytoplasmic components between the cell parts with dominant photosynthetic and respiratory metabolism.  相似文献   

20.
High velocity cytoplasmic streaming is found in various plant cells from algae to angiosperms. We characterized mechanical and enzymatic properties of a higher plant myosin purified from tobacco bright yellow-2 cells, responsible for cytoplasmic streaming, having a 175 kDa heavy chain and calmodulin light chains. Sequence analysis shows it to be a class XI myosin and a dimer with six IQ motifs in the light chain-binding domains of each heavy chain. Electron microscopy confirmed these predictions. We measured its ATPase characteristics, in vitro motility and, using optical trap nanometry, forces and movement developed by individual myosin XI molecules. Single myosin XI molecules move processively along actin with 35 nm steps at 7 micro m/s, the fastest known processive motion. Processivity was confirmed by actin landing rate assays. Mean maximal force was approximately 0.5 pN, smaller than for myosin IIs. Dwell time analysis of beads carrying single myosin XI molecules fitted the ATPase kinetics, with ADP release being rate limiting. These results indicate that myosin XI is highly specialized for generation of fast processive movement with concomitantly low forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号