首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to compare the activation of the rectus abdominis (RA), external oblique abdominis (EO), lower abdominal stabilizers (LASs), and lumbar erector spinae (LES) during performance of 3 traditional trunk exercises vs. exercise on the Ab Circle device. Surface electromyography was used to assess 12 subjects (6 men, 6 women) for 6 exercise conditions, including: abdominal crunch, side bridge, quadruped, and Ab Circle levels 1-3. For the RA, the abdominal crunch elicited significantly greater activity vs. the Ab Circle level 1, and the side bridge elicited significantly greater activity vs. the Ab Circle levels 1 and 2. For the EO, the side bridge elicited significantly greater activity vs. the quadruped. No significant differences were noted between conditions for the LASs. For the LES, the side bridge and quadruped elicited significantly greater activity vs. the abdominal crunch. The results of this study indicate that the anterior, posterior, and lateral trunk musculature can be activated to similar or even greater levels by performing the 3 traditional trunk exercises vs. the Ab Circle. This was particularly evident for the side bridge exercise, which elicited significantly greater activity of the RA vs. the Ab Circle levels 1 and 2, and elicited similar activity of the EO, LASs, and LES at all 3 Ab Circle levels.  相似文献   

2.
3.
The aim of this study was to analyze trunk muscle activity during bridge style stabilization exercises, when combined with single and double leg support strategies. Twenty-nine healthy volunteers performed bridge exercises in 3 different positions (back, front and side bridges), with and without an elevated leg, and a quadruped exercise with contralateral arm and leg raise ("bird-dog"). Surface EMG was bilaterally recorded from rectus abdominis (RA), external and internal oblique (EO, IO), and erector spinae (ES). Back, front and side bridges primarily activated the ES (approximately 17% MVC), RA (approximately 30% MVC) and muscles required to support the lateral moment (mostly obliques), respectively. Compared with conventional bridge exercises, single leg support produced higher levels of trunk activation, predominantly in the oblique muscles. The bird-dog exercise produced greatest activity in IO on the side of the elevated arm and in the contralateral ES. In conclusion, during a common bridge with double leg support, the antigravity muscles were the most active. When performed with an elevated leg, however, rotation torques increased the activation of the trunk rotators, especially IO. This information may be useful for clinicians and rehabilitation specialists in determining appropriate exercise progression for the trunk stabilizers.  相似文献   

4.
The purpose of this study was to compare rectus abdominis and erector spinae muscle activity during isometric (prone bridge [PB] and superman [SM]) and dynamic strengthening exercises (back squat, front squat [FS], and military press). Participants (n = 10, age 21.8 ± 2.6 years; body mass 82.65 ± 10.80 kg, 174.5± 7.2 cm), performed each exercise in a randomized order, using a repeated-measures design. Electromyographical (EMG) activity (sampling at 2,000 Hz) of the rectus abdominis (RA) and the erector spinae (ES) muscles was recorded throughout the duration of the exercises. Intraclass correlations demonstrated the highest levels of reliability for muscle activity during the isometric exercises; however, all exercises demonstrated high level of reliability (r = 0.764-0.998, p ≤ 0.01). The PB demonstrated significantly greater (p < 0.01) RA activity compared to all other exercises. The ES activity was significantly (p < 0.01) greater during the FS (1.010 ± 0.308 root mean square value [RMS (V)]) and SM (0.951 ± 0.217 RMS[V]) and compared to all other exercises, although there was no significant difference (p > 0.05) between the FS and the SM exercise. The PB may be the most suitable exercise for strengthening the RA, compared to dynamic exercises at a low to moderate load, because of a higher level of muscle activity. The FS may be a useful alternative to isometric exercises when strengthening the ES, because it results in slightly higher muscle activity levels when using only a light to moderate load. Because of the dynamic nature of the FS, this may also be more beneficial in transferring to activities of daily living and sporting environments.  相似文献   

5.
The aim of this study was to assess the effect of verbal instruction, surface stability, and load intensity on trunk muscle activity levels during the free weight squat exercise. Twelve trained males performed a free weight squat under four conditions: (1) standing on stable ground lifting 50% of their 1-repetition maximum (RM), (2) standing on a BOSU balance trainer lifting 50% of their 1-RM, (3) standing on stable ground lifting 75% of their 1-RM, and (4) receiving verbal instructions to activate the trunk muscles followed by lifting 50% of their 1-RM. Surface EMG activity from muscles rectus abdominis (RA), external oblique (EO), transversus abdominis/internal oblique (TA/IO), and erector spinae (ES) were recorded for each condition and normalized for comparisons. Muscles RA, EO, and TA/IO displayed greater peak activity (39–167%) during squats with instructions compared to the other squat conditions (P = 0.04–0.007). Peak EMG activity of muscle ES was greater for the 75% 1-RM condition than squats with instructions or lifting 50% of 1-RM (P = 0.04–0.02). The results indicate that if the goal is to enhance EMG activity of the abdominal muscles during a multi-joint squat exercise then verbal instructions may be more effective than increasing load intensity or lifting on an unstable surface. However, in light of other research, conscious co-activation of the trunk muscles during the squat exercise may lead to spinal instability and hazardous compression forces in the lumbar spine.  相似文献   

6.
The purpose of this investigation was to compare trunk muscle activity during stability ball and free weight exercises. Nine resistance-trained men participated in one testing session in which squats (SQ) and deadlifts (DL) were completed with loads of approximately 50, 70, 90, and 100% of one-repetition maximum (1RM). Isometric contractions during 3 stability ball exercises (quadruped (QP), pelvic thrust (PT), ball back extension (BE)) were also completed. During all exercises, average integrated electromyography (IEMG) from the rectus abdominus (RA), external oblique (EO), longissimus (L1) and multifidus (L5) was collected and analyzed. Results demonstrate that when expressed relative to 100% DL 1RM, muscle activity was 19.5 +/- 14.8% for L1 and 30.2 +/- 19.3% for L5 during QP, 31.4 +/- 13.4% for L1 and 37.6 +/- 12.4% for L5 during PT, and 44.2 +/- 22.8% for L1 and 45.5 +/- 21.6% for L5 during BE. IEMG of L1 during SQ and DL at 90 and 100% 1RM, and relative muscle activity of L5 during SQ and DL at 100% 1RM was significantly greater (P < or = 0.05) than in the stability ball exercises. Furthermore, relative muscle activity of L1 during DL at 50 and 70% 1RM was significantly greater than in QP and PT. No significant differences were observed in RA and EO during any of the exercises. In conclusion, activity of the trunk muscles during SQs and DLs is greater or equal to that which is produced during the stability ball exercises. It appears that stability ball exercises may not provide a sufficient stimulus for increasing muscular strength or hypertrophy; consequently, the role of stability ball exercises in strength and conditioning programs is questioned. SQs and DLs are recommended for increasing strength and hypertrophy of the back extensors.  相似文献   

7.
The purpose of this study was to compare the Ab-Slide with crunch abdominal exercises for electromyographic activity for selected muscles. Forty-five subjects who regularly performed abdominal exercises participated. Subjects completed 5 trials for each exercise, with repetition rate controlled by the tester. Electromyographic activity for the external oblique (EO), upper rectus abdominis (URA), and lower rectus abdominis (LRA) was collected. Raw data for each muscle were rectified and integrated over 100-millisecond time intervals. For each muscle, the average concentric and eccentric integrated amplitudes of the middle 3 trials were compared with a dependent t-test. During concentric movement, the EO and LRA had significantly higher integrated activation amplitudes for the crunch exercise. During the eccentric movement, the URA, LRA, and EO had significantly higher average integrated activation amplitudes for the Ab-Slide exercise. The Ab-Slide is a credible abdominal exercise variation, but the crunch should remain the standard abdominal exercise.  相似文献   

8.
The purpose of the study was to evaluate the electromyographic (EMG) activity of muscles in curl-up exercises depending on the position of the upper and lower extremities. From the perspective of biomechanics, different positions of the extremities result in shifting the center of gravity and changing muscular loads in abdominal strength exercises. The subjects of the research were 3 healthy students (body mass 53-56 kg and height 163-165 cm) with no history of low back pain or abdominal surgery. Subjects completed 18 trials for each of the 9 exercises (static curl-up with 3 positions of the upper and 3 position of the lower extremities). The same experiment with the same subjects was conducted on the next day. The EMG activity of rectus abdominis (RA), erector spinae (ES), and quadriceps femoris-long head (rectus femoris [RF]) was examined during the exercises. The surface electrical activity was recorded for the right and left sides of each muscle. The raw data for each muscle were rectified and integrated. The statistical analysis showed that changing the position of upper extremities in the examined exercises affects the EMG activity of RA and ES but does not significantly affect the EMG activity of RF. Additionally, it was found that curl-up exercises with the upper extremities extended behind the head and the lower extremities flexed at 90° in the hip and knee joints involve RA with the greatest intensity, whereas curl-up exercises with the upper extremities extended along the trunk and the lower extremities flexed at 90° in the hip and knee joints involve RA with the lowest intensity.  相似文献   

9.
The purpose of this study was to determine whether incorporating arm movement into bridge exercise changes the electromyographic (EMG) activity of selected trunk muscles. Twenty healthy young men were recruited for this study. EMG data were collected for the rectus abdominis (RA), internal oblique (IO), erector spinae (ES), and multifidus (MF) muscles of the dominant side. During bridging, an experimental procedure was performed with two options: an intervention factor (with and without arm movement) and a bridging factor (on the floor and on a therapeutic ball). There were significant main effects for the intervention factor in the IO and ES and for the bridging factor in the IO. The RA and IO showed significant interaction between the intervention and bridge factors. Furthermore, IO/RA ratio during bridging on the floor (without arm movement, 2.05 ± 2.61; with arm movement, 3.24 ± 3.42) and bridging on the ball (without arm movement: 2.95 ± 3.87; with arm movement: 5.77 ± 4.85) showed significant main effects for, and significant interaction between the intervention and bridge factors. However, no significant main effects or interaction were found for the MF/ES ratio. These findings suggest that integrating arm movements during bridge exercises may be used to provide preferential loading to certain trunk muscle groups and that these effects may be better derived by performing bridge exercises on a therapeutic ball.  相似文献   

10.
The aim of this study was to investigate the effects of additional isometric hip adduction during the plank exercise on the abdominal muscles. Twenty healthy young men participated in this study. Surface electromyography (EMG) was used to monitor the activity of the bilateral rectus abdominis (RA), the internal oblique (IO), and the external oblique (EO) muscles. The participants performed three types of plank exercise; the standard plank exercise, the plank exercise with bilateral isometric hip adduction, and the plank exercise with unilateral isometric hip adduction. All abdominal muscle activity was significantly increased during the plank exercise combined with the bilateral and unilateral isometric hip adduction compared with the standard plank exercise (p < 0.05). Bilateral IO, EO, and left RA muscle activity was significantly increased during the unilateral isometric hip adduction compared with the bilateral isometric hip adduction (p < 0.05). These findings suggest that additional isometric hip adduction during the plank exercise could be a useful method to enhance abdominal muscle activity. In particular, the unilateral isometric hip adduction is a more beneficial exercise than the bilateral isometric hip adduction.  相似文献   

11.
BackgroundTo compare the activation of shoulder and trunk muscles between six pairs of closed (CC) and open chain (OC) exercises for the upper extremity, matched for performance characteristics. The secondary aims were to compare shoulder and trunk muscle activation and shoulder activation ratios during each pair of CC and OC exercise.MethodsTwenty-two healthy young adults were recruited. During visit 1, the 5-repetition maximum resistance was established for each CC and OC exercise. During visit 2, electromyography activation from the infraspinatus (INF), deltoid (DEL), serratus anterior (SA), upper, middle and lower trapezius (UT, MT, LT), erector spinae (ES) and external oblique (EO) muscles was collected during 5-repetition max of each exercise. Average activation was calculated during the concentric and eccentric phases of each exercises. Activation ratios (DEL/INF, UT/LT, UT/MT, UT/SA) were also calculated. Linear mixed models compared the activation by muscle collapsed across CC and OC exercises. A paired t-test compared the activation of each muscle and the activation ratios (DEL/INF, UT/LT, UT/MT, UT/SA) between each pair of CC and OC exercises.ResultsThe INF, LT, ES, and EO had greater activation during both concentric (p = 0.03) and eccentric (p < 0.01) phases of CC versus OC exercises. Activation ratios were lower in CC exercises compared to OC exercises (DEL/INF, 3 pairs; UT/LT, 2 pairs; UT/MT, 1 pair; UT/SA, 3 pairs).ConclusionUpper extremity CC exercises generated greater activation of shoulder and trunk muscles compared to OC exercises. Some of the CC exercises produced lower activation ratios compared to OC exercises.  相似文献   

12.
Psoas major (PM) and quadratus lumborum (QL) muscles have anatomically discrete regions. Redistribution of activity between these regions has been observed in people with low back pain (LBP). We hypothesised that the bias of activity of specific regions of PM and QL towards trunk extension may change depending on whether LBP individuals have more or less erector spinae (ES) activity in an extended/upright lumbar posture. Ten volunteers with recurring episodes of LBP and nine pain-free controls performed isometric trunk efforts in upright sitting. LBP individuals were subgrouped into those with high and low ES electromyographic activity (EMG) when sitting with a lumbar lordosis. Fine-wire electrodes were inserted into fascicles of PM arising from the transverse process (PM-t) and vertebral body (PM-v) and anterior (QL-a) and posterior layers (QL-p) of QL. The LBP group with low ES EMG had greater bias of PM-t, PM-v and QL-p towards trunk extension. The LBP group with high ES activity showed less PM activity towards extension. These findings suggest redistribution of activity within and/or between these muscles with extensor moments. This is likely to be important to consider for effective clinical interventions for individuals with LBP.  相似文献   

13.
The purpose of this study was to examine the extent of activation in various trunk muscles during dynamic weight-training and isometric instability exercises. Sixteen subjects performed squats and deadlifts with 80% 1 repetition maximum (1RM), as well as with body weight as resistance and 2 unstable calisthenic-type exercises (superman and sidebridge). Electromyographic (EMG) activity was measured from the lower abdominals (LA), external obliques (EO), upper lumbar erector spinae (ULES), and lumbar-sacral erector spinae (LSES) muscle groups. Results indicated that the LSES EMG activity during the 80% 1RM squat significantly exceeded 80% 1RM deadlift LSES EMG activity by 34.5%. The LSES EMG activity of the 80% 1RM squat also exceeded the body weight squat, deadlift, superman, and sidebridge by 56, 56.6, 65.5, and 53.1%, respectively. The 80% 1RM deadlift ULES EMG activity significantly exceeded the 80% 1RM squat exercise by 12.9%. In addition, the 80% 1RM deadlift ULES EMG activity also exceeded the body weight squat, deadlift, superman, and sidebridge exercises by 66.7, 65.5, 69.3, and 68.6%, respectively. There were no significant changes in EO or LA activity. Therefore, the augmented activity of the LSES and ULES during 80% 1RM squat and deadlift resistance exercises exceeded the activation levels achieved with the same exercises performed with body weight and selected instability exercises. Individuals performing upright, resisted, dynamic exercises can achieve high trunk muscle activation and thus may not need to add instability device exercises to augment core stability training.  相似文献   

14.
ABSTRACT: Himes, MA, Selkow, NM, Gore, MA, Hart, JM, Saliba, SA. Transversus abdominis activation during a side-bridge exercise progression is similar in people with recurrent low back pain and healthy controls. J Strength Cond Res 26(11): 3106-3112, 2012-Low back pain (LBP) affects 70-80% of the population. The transversus abdominis (TrA) has been implicated as part of the cause of LBP. Prevention and rehabilitation of LBP often target the TrA using exercises such as the side bridge accompanied with the abdominal drawing-in maneuver (ADIM). However, it is unknown whether individuals with recurrent LBP, when they are in a period of no pain, are able to activate the TrA and healthy individuals during this exercise. The purpose of our study was to compare the activation ratio of the TrA during a 5-level side-bridge exercise progression. Twenty-three subjects with a history of recurrent, nonspecific LBP, but not experiencing an exacerbation of symptoms and 24 healthy controls volunteered. All the subjects performed the ADIM and side-bridge exercises with clinician feedback (verbal cueing). Each participant performed the side-bridge exercise progression while ultrasound images were taken. The subjects were only progressed if they successfully completed the previous level. The thickness of the TrA was measured in rested and contracted states at each exercise level to find the activation ratio (TrA contracted/TrA rest). Separate analyses of covariance did not reveal a difference in activation ratios between groups (p > 0.40) when the ratio at the lowest level was used as the covariate. The results from this study indicate that both groups were able to contract the TrA with verbal cueing during a side-bridge exercise progression. Because the TrA contracted similarly during exercise in both groups, the association of LBP with the TrA may be because of another mechanism, such as delayed activation in the feed-forward mechanism during activity or a lack of endurance of the TrA.  相似文献   

15.
The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain.  相似文献   

16.
This study used surface electromyography (EMG) to investigate the regions and patterns of activity of the external oblique (EO), erector spinae longissimus (ES), multifidus (MU) and rectus abdominis (RA) muscles during walking (W) and pole walking (PW) performed at different speeds and grades. Eighteen healthy adults undertook W and PW on a motorized treadmill at 60% and 100% of their walk-to-run preferred transition speed at 0% and 7% treadmill grade. The Teager-Kaiser energy operator was employed to improve the muscle activity detection and statistical non-parametric mapping based on paired t-tests was used to highlight statistical differences in the EMG patterns corresponding to different trials. The activation amplitude of all trunk muscles increased at high speed, while no differences were recorded at 7% treadmill grade. ES and MU appeared to support the upper body at the heel-strike during both W and PW, with the latter resulting in elevated recruitment of EO and RA as required to control for the longer stride and the push of the pole. Accordingly, the greater activity of the abdominal muscles and the comparable intervention of the spine extensors supports the use of poles by walkers seeking higher engagement of the lower trunk region.  相似文献   

17.
The purpose of this cross-sectional study was to evaluate the effect of unstable and unilateral resistance exercises on trunk muscle activation. Eleven subjects (6 men and 5 women) between 20 and 45 years of age participated. Six trunk exercises, as well as unilateral and bilateral shoulder and chest presses against resistance, were performed on stable (bench) and unstable (Swiss ball) bases. Electromyographic activity of the upper lumbar, lumbosacral erector spinae, and lower-abdominal muscles were monitored. Instability generated greater activation of the lower-abdominal stabilizer musculature (27.9%) with the trunk exercises and all trunk stabilizers (37.7-54.3%) with the chest press. There was no effect of instability on the shoulder press. Unilateral shoulder press produced greater activation of the back stabilizers, and unilateral chest press resulted in higher activation of all trunk stabilizers, when compared with bilateral presses. Regardless of stability, the superman exercise was the most effective trunk-stabilizer exercise for back-stabilizer activation, whereas the side bridge was the optimal exercise for lower-abdominal muscle activation. Thus, the most effective means for trunk strengthening should involve back or abdominal exercises with unstable bases. Furthermore, trunk strengthening can also occur when performing resistance exercises for the limbs, if the exercises are performed unilaterally.  相似文献   

18.
A relationship exists between lumbar paraspinal muscle fatigue and quadriceps muscle activation. The objective of this study was to determine whether hip and knee joint moments during jogging changed following paraspinal fatiguing exercise. Fifty total subjects (25 with self-reported history of low back pain) performed fatiguing, isometric lumbar extension exercise until a shift in EMG median frequency corresponding to a mild level of muscle fatigue was observed. We compared 3-dimensional external joint moments of the hip and knee during jogging before and after lumbar paraspinal fatigue using a 10-camera motion analysis system. Reduced external knee flexion, knee adduction, knee internal rotation and hip external rotation moments and increased external knee extension moments resulted from repetitive lumbar paraspinal fatiguing exercise. Persons with a self-reported history of LBP had larger knee flexion moments than controls during jogging. Neuromuscular changes in the lower extremity occur while resisting knee and hip joint moments following isolated lumbar paraspinal exercise. Persons with a history of LBP seem to rely more heavily on quadriceps activity while jogging.  相似文献   

19.
The purpose of this study was to examine the effectiveness of a commercial abdominal machine (Ab-Slide) and three common abdominal strengthening exercises (abdominal crunch, supine double leg thrust, and side bridge) on activating abdominal and minimizing extraneous (nonabdominal) musculature-namely, the rectus femoris muscle. We recruited 10 males and 12 females whose mean (+/- SD) percent body fat was 10.7 +/- 4 and 20.7% +/- 3.2%, respectively. Electromyographic (EMG) data were recorded using surface electrodes for the rectus abdominis, external oblique, internal oblique, and rectus femoris. We recorded peak EMG activity for each muscle during each of the four exercises and normalized the EMG values by maximum muscle contractions (% MVIC). A two-factor repeated-measures analysis of variance assessed differences in normalized EMG activity among the different exercise variations (p < 0.05). Post hoc analyses were performed using the Bonferroni-adjusted alpha to assess between-exercise pair comparisons (p < 0.002). Gender did not affect performance; hence, data were collapsed across gender. We found a muscle x exercise interaction (F9,189 = 5.2, p < 0.001). Post hoc analyses revealed six pairwise differences. The Ab-Slide elicited the greatest EMG activity for the abdominal muscles and the least for the rectus femoris. The supine double leg thrust could be a problem for patients with low-back pathology due to high rectus femoris muscle activity.  相似文献   

20.
People with a history of low back pain (LBP) are at high risk to encounter additional LBP episodes. During LBP remission, altered trunk muscle control has been suggested to negatively impact spinal health. As sudden LBP onset is commonly reported during trunk flexion, the aim of the current study is to investigate whether dynamic trunk muscle recruitment is altered in LBP remission. Eleven people in remission of recurrent LBP and 14 pain free controls performed cued trunk flexion during a loaded and unloaded condition. Electromyographic activity was recorded from paraspinal (lumbar and thoracic erector spinae, latissimus dorsi, deep and superficial multifidus) and abdominal muscles (obliquus internus, externus and rectus abdominis) with surface and fine-wire electrodes. LBP participants exhibited higher levels of co-contraction of flexor/extensor muscles, lower agonistic abdominal and higher antagonistic paraspinal muscle activity than controls, both when data were analyzed in grouped and individual muscle behavior. A sub-analysis in people with unilateral LBP (n = 6) pointed to opposing changes in deep and superficial multifidus in relation to the pain side. These results suggest that dynamic trunk muscle control is modified during LBP remission, and might possibly increase spinal load and result in earlier muscle fatigue due to intensified muscle usage. These negative consequences for spinal health could possibly contribute to recurrence of LBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号