首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We compared the harmonic content of tidal flows measured simultaneously at the mouth and chest wall in spontaneously breathing very low birth weight infants (n = 16, 1,114 +/- 230 g, gestation age: 28 +/- 2 wk). Airway opening flows were measured via face mask-pneumotachograph (P-tach), whereas chest wall flows were derived from respiratory inductance plethysmography (RIP) excursions. Next, for each, we computed two spectral shape indexes: 1) harmonic distortion (k(d); k(d,P-tach) and k(d,RIP), respectively) defines the extent to which flows deviated from a single sine wave, and 2) the exponent of the power law (s; s(P-tach) and s(RIP), respectively), describing the spectral energy vs. frequency. P-tach and RIP flow spectra exhibited similar power law functional forms consistently in all infants. Also, mouth [s(P-tach) = 3.73 +/- 0.23% (95% confidence interval), k(d,P-tach) = 38.8 +/- 4.6%] and chest wall (s(RIP) = 3.51 +/- 0.30%, k(d,RIP) = 42.8 +/- 4.8%) indexes were similar and highly correlated (s(RIP) = 1.17 x s(P-tach) + 0.85; r(2) = 0.81; k(d,RIP) = 0.90 x k(d,P-tach) + 8.0; r(2) = 0.76). The corresponding time to peak tidal expiratory flow-to-expiratory time ratio (0.62 +/- 0.08) was higher than reported in older infants. The obtained s and k(d) values are similar to those reported in older and/or larger chronic lung disease infants, yet appreciably lower than for 1-mo-old healthy infants of closer age and/or size; this indicated increased complexity of tidal flows in very low birth weight babies. Importantly, we found equivalent flow spectral data from mouth and chest wall tidal flows. The latter are desirable because they avoid face mask artificial effects, including leaks around it, they do not interfere with ventilatory support delivery, and they may facilitate longer measurements that are useful in control of breathing assessment.  相似文献   

2.
Recent studies have suggested a close association between total respiratory compliance (Crs) and tidal volume in anesthetized paralyzed infants who are being artificially ventilated. To investigate this further, the multiple occlusion technique was used to measure Crs in 20 anesthetized infants and young children (aged 1-25 mo) before elective surgery. Measurements were made after intubation 1) during spontaneous breathing (SB), 2) after administration of a non-depolarizing muscle relaxant with tidal volume and frequency mimicking that during SB, and 3) with the child still paralyzed but tidal volume approximately double that during SB. Compared with values obtained during SB, there was no significant change in Crs after paralysis when ventilation matched the child's own pattern (P greater than 0.2). When ventilated with the larger tidal volumes, the infants showed a highly significant increase in Crs (mean 62%, range 14-158%, P less than 0.0001). These results may have implications not only for studies performed during anesthesia but also when infants were monitored in the intensive care setting. Values of Crs obtained in ventilated infants may reflect both the mechanical behavior of the respiratory system and the pattern of ventilation at the time of measurement.  相似文献   

3.
Ren H  Bandyopadhyay S  Allison WS 《Biochemistry》2006,45(19):6222-6230
The alpha(3)(betaM(222)S/Y(345)W)(3)gamma double-mutant subcomplex of the F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)), free of endogenous nucleotides, does not entrap inhibitory MgADP in a catalytic site during turnover. It hydrolyzes 100 nM-2 mM ATP with a K(m) of 31 microM and a k(cat) of 220 s(-)(1). Fluorescence titrations of the introduced tryptophans with MgADP or MgATP revealed that both Mg-nucleotide complexes bind to the catalytic site of the highest affinity with K(d)()1 values of less than 1 nM and bind to the site of intermediate affinity with a common K(d)2 value of about 12 nM. The K(d)3 values obtained for the catalytic site of the lowest affinity from titrations with MgADP and MgATP are 25 and 37 microM, respectively. The double mutant hydrolyzes 200 nM ATP with a first-order rate of 1.5 s(-)(1), which is 0.7% of k(cat). Hence, it does not hydrolyze ATP at a significant rate when the catalytic site of intermediate affinity is saturated and the catalytic site of the lowest affinity is minimally occupied. After the addition of stoichiometric MgATP to the alpha(3)(betaM(222)S/Y(345)W)(3)gamma subcomplex, one-third of the tryptophan fluorescence remains quenched after 10 min. The product [(3)H]ADP remains bound when the wild-type and double-mutant subcomplexes hydrolyze substoichiometric [(3)H]ATP. In contrast, (32)P(i) is not retained when the wild-type subcomplex hydrolyzes substoichiometric [gamma-(32)P]ATP. This precludes assessment of the equilibrium at the high-affinity catalytic site when the wild-type TF(1) subcomplex hydrolyzes substoichiometric ATP.  相似文献   

4.
Studies on the genetic control of immune response to sperm whale myoglobin were initiated. As demonstrated in this paper, the T lymphocyte proliferative response to whale myoglobin is under H-2-linked Ir gene control. Mice of H-2d, H-2f, and H-2s haplotypes were high responders to the myoglobin, whereas haplotypes H-2b, H-2k, H-2p, H-2q, and H-2r were low responders. The Ir gene(s) was localized between H-2K and H2D regions, since the recombinant strain A.TL (KsIkSkDd) was a low responder and A.TH (KsIsSsDd) was a high responder. Further studies with recombinant strains revealed that the expression of the high-responder I-Ad or Ias alleles was sufficient to give a good response, since strains D2.GD (d d b b b b b b) and B10.HTT (s s s s k k k d) were high responders. The expression of the I-Cd allele in strains B10.A (k k k k k d d d) and B10.A(5R) (b b b k k d d d) also gave high response, and thus suggested a second Ir gene, derived from the H-2d haplotype. The finding that expression of the I-Cs allele in B10.S(8R) (k k ? ? s s s s) did not result in high response suggests the lack of the second Ir gene in the high-responder H-2s haplotype.  相似文献   

5.
Congenital lactase deficiency (CLD) is an autosomal recessive, gastrointestinal disorder characterized by watery diarrhea starting during the first 1-10 d of life, in infants fed lactose-containing milks. Since 1966, 42 patients have been diagnosed in Finland. CLD is the most severe form of lactase deficiency, with an almost total lack of lactase-phlorizin hydrolase (LPH) activity on jejunal biopsy. In adult-type hypolactasia, the most common genetic enzyme deficiency in humans, this enzyme activity is reduced to 5%-10%. Although the activity of intestinal LPH has been found to be greatly reduced in both forms, the molecular pathogenesis of lactase deficiencies is unknown. On the basis of the initial candidate-gene approach, we assigned the CLD locus to an 8-cM interval on chromosome 2q21 in 19 Finnish families. At the closest marker locus, a specific allele 2 was present in 92% of disease alleles. On the basis of a genealogical study, the CLD mutation was found to be enriched in sparsely populated eastern and northern Finland, because of a founder effect. The results of both the genealogical study and the haplotype analysis indicate that one major mutation in a novel gene causes CLD in the Finnish population. Consequently, the critical region could be restricted further, to an approximately 350-kb interval, by ancient-haplotype and linkage-disequilibrium analyses. Surprisingly, the LPH gene was shown to lie outside the critical CLD region, excluding it as a causative gene for CLD. The LPH locus was found to reside >2 Mb from the critical CLD region.  相似文献   

6.
The purpose of this study was to examine whether cardiorespiratory responses to combined rhythmic exercise (60 contractions · min–1) was affected by different combinations of upper and lower limb exercise in seven healthy women. Six different rhythmic exercises were compared: 6-min rhythmic handgrip at 10% of isometric maximal voluntary contraction (MVC) (H10); 6-min rhythmic plantar flexion at 10% MVC (P10); exhausting rhythmic handgrip at 50% MVC (H50); exhausting rhythmic plantar flexion at 50% MVC (P50); H50 was added to P10 (P1OH50); and P50 was added to H10 (H10P50). Exercise duration, after handgrip was combined with plantar flexion (P10H50), was shorter than that of H50, although the exercise duration of HIOP50 was not significantly different from P50. No significant difference was found between the difference from rest in oxygen uptake ( O2) during H10P50 and the sum of O2 during H10 and P50. Also, the differences from rest in forearm blood flow ( FBF) and calf blood flow ( CBF) during H10P50 were not significantly different from FBF in H10 and from CBF in P50. In contrast, O2 in P10H50 was lower than the sum of O2 in P10 and H50 (P < 0.05), and J FBF in P10H50 was lower than that in H50 (P < 0.05) , while CBF was not significantly different between P1OH50 and P10. The changes in heart rate from rest (d HR) during the combined exercises were lower than the sums of HR in the corresponding single exercises (P < 0.05). These results demonstrated an inhibitory summation of several cardiorespiratory responses to combined exercise resulting in a reduction in exercise performance which would seem to occur easily when upperlimb exercise is added to lower limb exercise.  相似文献   

7.
Persistent expression of pro-inflammatory cytokines is believed to play a major role in the pathogenesis of chronic lung disease (CLD) in premature infants. Inhibition of pro-inflammatory cytokine production in the lungs of preterm newborns may result in the attenuation of CLD. Curcumin is a naturally occurring phenolic compound derived from the food spice tumeric with broad based in vitro anti-inflammatory properties. In this study lung inflammatory cells from preterm newborns at risk for the development of CLD were derived via modified broncho-alveolar lavage and stimulated ex vivo with lipopolysaccharide (LPS) (10 ng/ml). Curcumin was added to these cultures at 0, 0.5 and 20 uM concentrations. Pro-inflammatory cytokine, TNFalpha, IL-1beta and IL-8 protein was measured from the culture supernatants 12 hours post culture. For control, adult peripheral blood mononuclear cells (PBMC) were cultured under the same conditions. Both neonatal lung inflammatory cells and adult PBMC produced high levels of pro-inflammatory cytokines in response to LPS. Curcumin produced significant inhibition of IL-1beta and IL-8 but minimal inhibition of TNFalpha expression by preterm lung inflammatory cells at 20 uM concentrations. Adult PBMC expression of IL-8 was significantly inhibited by curcumin at 20 uM concentrations. Therefore, curcumin inhibits pro-inflammatory cytokine production (TNFalpha, IL-1beta and IL-8) by lung inflammatory cells ex vivo. Pathways involved with curcumin regulation of these cytokines are developmentally intact and functional in premature infants. Curcumin may be effective as a therapeutic agent in the attenuation of CLD.  相似文献   

8.
Our previous study revealed that in F1 mice raised by crossing C3H/He or AKR/J mice with various H-2-congenic B10-series strains, parental H-2k spleen cells (SC) could not induce the graft-vs-host reaction (GvHR)-associated immunosuppression (GAIS). We also elucidated that a limited number of non-H-2 genes of parental C3H/He or AKR/J mice that had been incorporated into the F1 hybrids determined the F1 resistance to the GAIS, and the present study was done to explore the mechanism implicated in this type of F1 resistance to GAIS. SC from B10.AL mice carrying an rH-2 (K:k I:k S:k D:d) haplotype but not SC from H-2K B10.BR (k k k k) mice induced GAIS of in vitro CTL responses to third-party alloantigens in H-2k/d (C3H/He x B10.D2)F1 recipients mice. Further, SC from H-2k/a (C3H/He x B10.A)F1 mice carrying heterozygous C3H/B10 non-H-2 background but not SC from the same H-2k/a (B10.BR x B10.A)F1 mice but carrying homozygous B10/B10 background induced GAIS in H-2k/d (C3H/He x B10.D2)F1 recipients. Although C3H/He-, B10.BR-, and C3H.OH (d d d k)-SC were incapable of inducing GAIS in (C3H/He x B10.D2)F1 (k/d k/d k/d k/d) recipients, they were all good inducers of GAIS in (C3H.OH x B10.BR)F1 (d/k d/k d/k k/k) recipients. Exactly the same pattern of co-operative non-H-2 AKR and H-2D region-gene control of GAIS was observed on GvHR induced in H-2k/d (AKR/J x B10.D2)F1 recipients. These results suggest that the non-H-2 genes of C3H/He or AKR/J strain inhibit the functional expression of certain antigenic determinant(s) when it is encoded by heterozygous but not homozygous gene(s) linked tightly to H-2D region of k haplotype. Thus, the F1 resistance to GAIS is mediated by immune response of F1 recipients who miss the antigenic determinant(s) against that expressed on cell surface of GvHR-inducing T lymphocytes.  相似文献   

9.
The transient ventilatory responses to hypercapnia were studied in nine healthy preterm infants. We administered 4% CO2 in air for at least 7 min during quiet sleep and measured frequency (f), inspiratory time (TI), expiratory time (TE), tidal volume (VT), and minute ventilation (VI). Frequency increased over the first 2 min of CO2 inhalation (P less than 0.05) and then decreased to control values (P less than 0.05). This response was secondary to changes in TE, which decreased over the first 2 min (P less than 0.05) and then returned to control values, whereas TI did not change. The late increase in TE was associated with an increased percent of breaths exhibiting retardation of expiratory flow (braking) (P less than 0.05). These breaths had longer TE than the breaths without braking (P less than 0.05). Exponential curves made to fit the increases in VI and VT revealed that only 67% of the infants reached 90% of steady state for both VI and VT over the 7-min study period. The time to 90% of steady state was always shorter for VI than VT (P less than 0.05) due to the transient changes in f. The results indicate that the transient changes of f in response to hypercapnia are secondary to changes in TE, which appear unique to human infants. We speculate that the expiratory braking that develops during the course of CO2 inhalation increases lung volume, resulting in prolongation of TE via mechanoreceptor-mediated reflexes.  相似文献   

10.
The diagnosis of the obstructive sleep apnea syndrome relies on polysomnography. Bilateral anterior magnetic phrenic stimulation (BAMPS) mimics the dissociation between upper airway (UA) muscles and diaphragm commands that leads to UA closure during sleep. We evaluated BAMPS as a mean to identify obstructive sleep apnea syndrome patients through the characterization of the UA dynamics in 28 consecutive awake patients (18 apneic and 10 nonapneic). Driving pressure (Pd) and instantaneous flow (V) were recorded in response to BAMPS to determine the point of flow limitation (Vimax) and of minimal flow (Vimin) and the flow-pressure relationship [Vi = (k(1) x Pd) + (k(2) x Pd(2))]. Vimax, Vimin, UA resistance at Vi(min), and the coefficient of the flow-pressure relationship (k(1)) were correlated with apnea-hypopnea index (respectively, R = -0.735, P < 0.0001; R = -0.584, P = 0.001; R = 0.474, P = 0.01; and R = -0.567, P < 0.01). Body mass index was also correlated with apnea-hypopnea index (R = 0.500, P < 0.01). Apneic patients had a lower Vimax (Vimax = 678 +/- 386 vs. 1,247 +/- 271 ml/s; P < 0.001), a lower Vimin (Vimin = 460 +/- 313 vs. 822 +/- 393 ml/s; P < 0.05) and a lower k(1) (k(1) = 162 +/- 67 vs. 272 +/- 112 ml x cmH(2)O x s(-1); P < 0.01) than nonapneic ones. Using a classification and regression tree approach, we found that a Vimax of <803 ml/s (n = 12) selected only apneic patients. When Vimax of >803 ml/s (n = 16), a k(1) of >266.7 ml. cmH(2)O x s(-1) identified only nonapneic patients (n = 5). In 11 cases, Vimax > 803 ml/s and k(1) < 266.7 ml. cmH(2)O x s(-1). These included five nonapneic and six apneic patients. We conclude that UA dynamic properties studied with BAMPS during wakefulness significantly differ between nonapneic and apneic patients.  相似文献   

11.
We have developed a gas exchange simulation system (GESS) to assess the quality control in measurements of metabolic gas exchange. The GESS simulates human breathing from rest to maximal exercise. It approximates breath-by-breath waveforms, ventilatory output, gas concentrations, temperature and humidity during inspiration and expiration. A programmable motion control driving two syringes allows the ventilation to be set at any tidal volume (V T), respiratory frequency (f), flow waveform and period of inspiration and expiration. The GESS was tested at various combinations of V T (0.5–2.5 l) and f (10–60 stroke · min−1) and at various fractional concentrations of expired oxygen (0.1294–0.1795); and carbon dioxide (0.0210–0.0690) for a pre-set flow waveform and for expired gases at the same temperature and humidity as room air. Expired gases were collected in a polyethylene bag for measurement of volume and gas concentrations. Accuracy was assessed by calculating the absolute and relative errors on parameters (error = measured−predicted). The overall error in the gas exchange values averaged less than 2% for oxygen uptake and carbon dioxide output, which is within the accuracy of the Douglas bag method. Accepted: 4 June 1998  相似文献   

12.
According to recent simulations [ Langmuir 16 , 7975 (2000)], the flocculation rate ( k f ) of concentrated oil in water (O/W) emulsions interacting through van der Waals forces, can reach values considerably higher than the one expected for a very dilute system of non-interacting spheres (5.49 2 10 -18 m 3 /s). Similar calculations at a volume fraction J =0.001 using 64 particles only, already show a k f =5.83 2 10 -18 m 3 /s, reasonably close to the theoretical prediction. In this report Brownian Dynamics (BD) simulations are used to study the effect of the volume fraction and the drop size distribution (DSD) on the flocculation rate. First, the dependence of k f with the maximum value of the thermal interaction between the particles and the solvent is studied. Following, the variation of the flocculation rate is studied as a function of polydispersity for J =0.15. As expected, there is a strong dependence of k f on J . Faster and slower aggregation rates are observed depending on the characteristics of the DSD.  相似文献   

13.
During breathing under sedation via a two-way valve, airflow (V), volume (delta V), and airway pressure (P) were recorded in eight normal (N) infants, seven with reversible obstructive airway disease (ROAD), and seven with chronic lung disease (CLD). Intermittently, expiratory volume clamping (EVC) was applied, involving selective occlusion of the expiratory valve for three to five breaths. The latter produced cumulative increases in delta V that, due to progressive recruitment of the Hering-Breuer reflex, were accompanied by increasing expiratory plateaus in P (i.e., apneas). The resultant passive inflation delta V-P relationships were closely approximated by the expression: delta V = aP2 + bP + c, wherein a represented the pressure-related changes in chord compliance (Crs), b the Crs at P = 0, and c the difference between the dynamic end-expiratory and relaxation volumes of the respiratory system. Relative to N, the ROAD and CLD infants had significantly reduced weight-specific values of a/kg, their b/kg values were increased, whereas the c/kg measurements did not significantly vary. Moreover, for each subject we determined the net Crs/kg obtaining at P = 20 cmH2O (i.e., Crs20/kg), an estimate of the net deflation compliance; the passive respiratory time constant (tau rs) based on the slope of the expired delta V/V relationship; and the respiratory system conductance (Grs/kg). Relative to N, the mean Crs20/kg was significantly reduced only in the infants with CLD and, due to increases in tau rs, both patient groups depicted significantly diminished values of Grs/kg, suggesting the presence of airways obstruction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Lung volumes in sex-, age-, height-, and weight-matched Black subjects are 10-15% lower than those in Caucasians. To determine whether this decreased lung volume affected the ventilatory adaptation to exercise, minute ventilation (VE), its components, frequency (f) and tidal volume (VT), and breathing pattern were observed during incremental cycle-ergometer exercise. Eighteen Caucasian (age 8-30 yr) and 14 Black (age 8-25 yr) subjects were studied. Vital capacity (VC) was lower (P less than 0.001) in the Black subjects [90.6 +/- 8.6 (SD) vs. 112.9 +/- 9.9% predicted], whereas functional residual capacity/total lung capacity was higher (P less than 0.05). VE, mixed expired O2 and CO2, VT, f, and inspiratory (TI), expiratory (TE), and total respiratory cycle (TT) duration were measured during the last 30 s of each 2-min load. Statistical comparisons with increasing power output were made at rest and from 0.6 to 2.4 W/kg in 0.3-W/kg increments. VE was higher in Blacks at all work loads and reached significance (P less than 0.05) at 0.6 and 1.5 W/kg. VE/VO2 was also higher throughout exercise, reaching significance (P less than 0.01) at 1.2, 1.5, and 1.8 W/kg. The Black subjects attained any given level of VE with a higher f (P less than 0.001) and lower VT. TI and TE were shortened proportionately so that TI/TT was not different. Differences in lung volume and the ventilatory response to exercise in these Black and Caucasian subjects suggest differences in the respiratory pressure-volume relationships or that the Black subjects may breathe higher on their pressure-volume curve.  相似文献   

15.
Mtb (Mycobacterium tuberculosis) FprA (flavoprotein reductase A) is an NAD(P)H-dependent FAD-binding reductase that is structurally related to mammalian adrenodoxin reductase, and which supports the catalytic function of Mtb cytochrome P450s. Trp(359), proximal to the FAD, was investigated in light of its potential role in controlling coenzyme interactions, as observed for similarly located aromatic residues in diflavin reductases. Phylogenetic analysis indicated that a tryptophan residue corresponding to Trp(359) is conserved across FprA-type enzymes and in adrenodoxin reductases. W359A/H mutants of Mtb FprA were generated, expressed and the proteins characterized to define the role of Trp(359). W359A/H mutants exhibited perturbed UV-visible absorption/fluorescence properties. The FAD semiquinone formed in wild-type NADPH-reduced FprA was destabilized in the W359A/H mutants, which also had more positive FAD midpoint reduction potentials (-168/-181 mV respectively, versus the standard hydrogen electrode, compared with -230 mV for wild-type FprA). The W359A/H mutants had lower ferricyanide reductase k(cat) and NAD(P)H K(m) values, but this led to improvements in catalytic efficiency (k(cat)/K(m)) with NADH as reducing coenzyme (9.6/18.8 muM(-1).min(-1) respectively, compared with 5.7 muM(-1).min(-1) for wild-type FprA). Stopped-flow spectroscopy revealed NAD(P)H-dependent FAD reduction as rate-limiting in steady-state catalysis, and to be retarded in mutants (e.g. limiting rate constants for NADH-dependent FAD reduction were 25.4 s(-1) for wild-type FprA and 4.8 s(-1)/13.4 s(-1) for W359A/H mutants). Diminished mutant FAD content (particularly in W359H FprA) highlighted the importance of Trp(359) for flavin stability. The results demonstrate that the conserved Trp(359) is critical in regulating FprA FAD binding, thermodynamic properties, catalytic efficiency and coenzyme selectivity.  相似文献   

16.
We examined the effects of dynamic one-legged knee extension exercise on mean blood velocity (MBV) and muscle interstitial metabolite concentrations in healthy young subjects (n = 7). Femoral MBV (Doppler), mean arterial pressure (MAP) and muscle interstitial metabolite (adenosine, lactate, phosphate, K(+), pH, and H(+); by microdialysis) concentrations were measured during 5 min of exercise at 30 and 60% of maximal work capacity (W(max)). MAP increased (P < 0.05) to a similar extent during the two exercise bouts, whereas the increase in MBV was greater (P < 0.05) during exercise at 60% (77.00 +/- 6.77 cm/s) compared with 30% W(max) (43.71 +/- 3.71 cm/s). The increase in interstitial adenosine from rest to exercise was greater (P < 0.05) during the 60% (0.80 +/- 0.10 microM) compared with the 30% W(max) bout (0.57 +/- 0.10 microM). During exercise at 60% W(max), interstitial K(+) rose at a greater rate than during exercise at 30% W(max) (P < 0.05). However, pH increased (H(+) decreased) at similar rates for the two exercise intensities. During exercise, interstitial lactate and phosphate increased (P < 0.05) with no difference observed between the two intensities. After 5 min of recovery, MBV decreased to baseline levels after exercise at 30% W(max) (4.12 +/- 1.10 cm/s), whereas MBV remained above baseline levels after exercise at 60% W(max) (Delta19.46 +/- 2.61 cm/s; P < 0.05). MAP and interstitial adenosine, K(+), pH, and H(+) returned toward baseline levels. However, interstitial lactate and phosphate continued to increase during the recovery period. Thus an increase in exercise intensity resulted in concomitant changes in MBV and muscle interstitial adenosine and K(+), whereas similar changes were not observed for MAP or muscle interstitial pH, lactate, or phosphate. These data suggest that K(+) and/or adenosine may play an active role in the regulation of skeletal muscle blood flow during exercise.  相似文献   

17.
Because the presence of bronchial smooth muscle reactivity in infants remains controversial, airway reactivity was assessed in 10 normal, asymptomatic male infants less than 15 mo of age by measuring the changes that occurred in the maximal expiratory flows at functional residual capacity (VmaxFRC) during a methacholine bronchial challenge test. Sleeping infants inhaled doubling concentrations of methacholine by 2 min of tidal breathing, starting with a concentration of 0.075 mg/ml, and the bronchial challenge was stopped when VmaxFRC decreased by at least 40%. The threshold concentration of methacholine required to produce a decrease in VmaxFRC by 2 SD's of the control value was 0.43 mg/ml (0.11-0.90). By a methacholine concentration of 1.2 mg/ml, all infants decreased VmaxFRC by at least 40% (range 40-75%), and the mean dose required to produce a 40% decrease was 0.72 mg/ml. The airway reactivity was not related to base-line flows. During the methacholine challenge, no infant developed wheezing, but the percent oxygen saturation for the group decreased significantly (P less than 0.05) from 94 to 92%. Following the methacholine, the infants inhaled the bronchodilator metaproterenol, and 10 min later, VmaxFRC returned to base line. This study demonstrates that infants exhibit airway reactivity as evidenced by bronchoconstriction with methacholine and the subsequent bronchodilation with metaproterenol.  相似文献   

18.
We hypothesized that the maximum mechanical power outputs that can be maintained during all-out sprint cycling efforts lasting from a few seconds to several minutes can be accurately estimated from a single exponential time constant (k(cycle)) and two measurements on individual cyclists: the peak 3-s power output (P(mech max)) and the maximum mechanical power output that can be supported aerobically (P(aer)). Tests were conducted on seven subjects, four males and three females, on a stationary cycle ergometer at a pedal frequency of 100 rpm. Peak mechanical power output (P(mech max)) was the highest mean power output attained during a 3-s burst; the maximum power output supported aerobically (P(aer)) was determined from rates of oxygen uptake measured during a progressive, discontinuous cycling test to failure. Individual power output-duration relationships were determined from 13 to 16 all-out constant load sprints lasting from 5 to 350 s. In accordance with the above hypothesis, the power outputs measured during all-out sprinting efforts were estimated to within an average of 34 W or 6.6% from P(mech max), P(aer), and a single exponential constant (k(cycle) = 0.026 s(-1)) across a sixfold range of power outputs and a 70-fold range of sprint trial durations (R2 = 0.96 vs. identity, n = 105; range: 180 to 1,136 W). Duration-dependent decrements in sprint cycling power outputs were two times greater than those previously identified for sprint running speed (k(run) = 0.013 s(-1)). When related to the respective times of pedal and ground force application rather than total sprint time, decrements in sprint cycling and running performance followed the same time course (k = 0.054 s(-1)). We conclude that the duration-dependent decrements in sprinting performance are set by the fractional duration of the relevant muscular contractions.  相似文献   

19.
To determine the effect of a single breath of 100% O2 on ventilation, 10 full-term [body wt 3,360 +/- 110 (SE) g, gestational age 39 +/- 0.4 wk, postnatal age 3 +/- 0.6 days] and 10 preterm neonates (body wt 2,020 +/- 60 g, gestational age 34 +/- 2 wk, postnatal age 9 +/- 2 days) were studied during active and quiet sleep states. The single-breath method was used to measure peripheral chemoreceptor response. To enhance response and standardize the control period for all infants, fractional inspired O2 concentration was adjusted to 16 +/- 0.6% for a control O2 saturation of 83 +/- 1%. After 1 min of control in each sleep state, each infant was given a single breath of O2 followed by 21% O2. Minute ventilation (VE), tidal volume (VT), breathing frequency (f), alveolar O2 and CO2 tension, O2 saturation (ear oximeter), and transcutaneous O2 tension were measured. VE always decreased with inhalation of O2 (P less than 0.01). In quiet sleep, the decrease in VE was less in full-term (14%) than in preterm (40%) infants (P less than 0.001). Decrease in VE was due primarily to a drop in VT in full-term infants as opposed to a fall in f and VT in preterm infants (P less than 0.05). Apnea, as part of the response, was more prevalent in preterm than in full-term infants. In active sleep the decrease in VE was similar both among full-term (19%) and preterm (21%) infants (P greater than 0.5). These results suggest greater peripheral chemoreceptor response in preterm than in full-term infants, reflected by a more pronounced decrease in VE with O2. The results are compatible with a more powerful peripheral chemoreceptor contribution to breathing in preterm than in full-term infants.  相似文献   

20.
We cloned, expressed, and purified a chimeric fusion between a soluble green fluorescent protein (smGFP) and the calmodulin binding protein calspermin. We have shown that the fusion protein, labeled smGN, has a K(i) in the calmodulin-dependent cyclic nucleotide phosphodiesterase activity assay of 1.97 nM, i.e., 3800 times smaller than that of the commonly used calmodulin inhibitor W7. Association and dissociation rate constants (k(a) and k(d)) and the dissociation equilibrium constant (K(D)) of smGN for calmodulin were determined using surface plasmon resonance (SPR). The k(a)=1.24 x 10(6)M(-1)s(-1), the k(d)=5.49 x 10(-3)s(-1), and the K(D)=4.42 x 10(-9)M. We also found that the GFP moiety was important for successfully binding calspermin to the surface of the CM5 flow cell at a sufficiently high concentration for SPR, and that this procedure may be used for SPR analysis of other acidic polypeptides, whose pI< or =4. To determine whether smGN might also bind to other calmodulin-like proteins in a heterologous system, we purified proteins from a plant total cell extract or a plant total protein extract by affinity chromatography against smGN. The purified proteins were identified as calmodulins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and liquid chromatography-tandem mass spectrometry, indicating a high level of specificity. We conclude that the high affinity and specific binding between smGN and calmodulin make it an easily localized recombinant alternative to chemical calmodulin inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号