首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 948 毫秒
1.
Novel strategies for efficient delivery of small interfering RNA (siRNA) molecules with a potential for targeting are required for development of RNA interference (RNAi) therapeutics. Here, we present a strategy that is based on delivery of siRNA molecules through the endocytic pathway, in order to develop a method for site-specific gene silencing. To achieve this, we combined the use of cationic lipids and photochemical internalization (PCI). Using the human S100A4 gene as a model system, we obtained potent gene silencing in four tested human cancer cell lines following PCI induction when using the cationic lipid jetSI-ENDO. Gene silencing was shown at both the RNA and protein levels, with no observed PCI toxicity when using the jetSI reagent and an optimized PCI protocol. This novel induction method opens for in vivo site-specific delivery of siRNA molecules toward a sequence of interest.  相似文献   

2.
We here demonstrate for the first time that 5-carboxytetramethylrhodamine (TAMRA) covalently linked to nuclear localization signal (NLS)-conjugated peptide nucleic acids (PNAs) are photosensitizers (PSs) with the capacity to initiate photochemical damage to endocytic membranes, resulting in release of endocytosed material into cytosol. Our results show that TAMRA/PNA/NLS conjugates work as multifunctional molecules by offering cellular uptake, PNA-directed gene silencing, and the possibility for targeting in a light-controlled manner. In addition to PNA-directed gene silencing, we demonstrate that TAMRA/PNA/NLS molecules may function as a PS for light-controlled release of small interfering RNA molecules from the endocytic pathway when combined with an appropriate carrier. Using these strategies, we could silence the S100A4 gene at both protein and mRNA levels in a light-controlled manner, without any detectable reduction in cell viability. Our data demonstrate the possibility for light-controlled delivery of macromolecules entrapped within endocytic vesicles using multifunctional TAMRA/PNA/NLS molecules as PSs.  相似文献   

3.
Sequence-specific DNA-binding molecules such as triple helix-forming oligonucleotides (TFOs) provide a means for inducing site-specific mutagenesis and recombination at chromosomal sites in mammalian cells. However, the utility of TFOs is limited by the requirement for homopurine stretches in the target duplex DNA. Here, we report the use of pseudo-complementary peptide nucleic acids (pcPNAs) for intracellular gene targeting at mixed sequence sites. Due to steric hindrance, pcPNAs are unable to form pcPNA–pcPNA duplexes but can bind to complementary DNA sequences by Watson–Crick pairing via double duplex-invasion complex formation. We show that psoralen-conjugated pcPNAs can deliver site-specific photoadducts and mediate targeted gene modification within both episomal and chromosomal DNA in mammalian cells without detectable off-target effects. Most of the induced psoralen-pcPNA mutations were single-base substitutions and deletions at the predicted pcPNA-binding sites. The pcPNA-directed mutagenesis was found to be dependent on PNA concentration and UVA dose and required matched pairs of pcPNAs. Neither of the individual pcPNAs alone had any effect nor did complementary PNA pairs of the same sequence. These results identify pcPNAs as new tools for site-specific gene modification in mammalian cells without purine sequence restriction, thereby providing a general strategy for designing gene targeting molecules.  相似文献   

4.
5.
6.
Summary In this chapter, we describe an approach using a peptide nucleic acid (PNA) clamp to directly and irreversibly modify plasmid DNA, without affecting either its supercoiled conformation or its ability to be efficiently transcribed. This strategy enables investigators to 'functionalize' their gene of interest by direct coupling of ligands (fluorophores, peptide, proteins, sugars or oligonucleotides) to plasmid DNA. This approach provides versatile tools to study the mechanisms of gene delivery and to circumvent some of the main obstacles of synthetic gene delivery systems, such as specific targeting and efficient delivery. The proof-of-principal of PNA-dependent gene chemistry (PDGC) was demonstrated with a fluorescently labeled PNA that allowed generation of a highly fluorescent preparation of plasmid DNA that was functionally and conformationally intact. Fluorescent-PNA/DNA was used to identify critical parameters involved in naked DNA and non-viral gene delivery technology. The greatest potential of PDGC lies in the ability to attach specific ligands (e.g., peptides, proteins) to the plasmid DNA in order to overcome cellular barriers of non-viral gene delivery systems. In this regard, specific examples of ligands coupled to DNA are described and their effect on increasing the efficacy of gene therapy is presented.  相似文献   

7.
In this chapter, we describe an approach using a peptide nucleic acid (PNA) clamp to directly and irreversibly modify plasmid DNA, without affecting either its supercoiled conformation or its ability to be efficiently transcribed. This strategy enables investigators to `functionalize' their gene of interest by direct coupling of ligands (fluorophores, peptide, proteins, sugars or oligonucleotides) to plasmid DNA. This approach provides versatile tools to study the mechanisms of gene delivery and to circumvent some of the main obstacles of synthetic gene delivery systems, such as specific targeting and efficient delivery. The proof-of-principal of PNA-dependent gene chemistry (PDGC) was demonstrated with a fluorescently labeled PNA that allowed generation of a highly fluorescent preparation of plasmid DNA that was functionally and conformationally intact. Fluorescent-PNA/DNA was used to identify critical parameters involved in naked DNA and non-viral gene delivery technology. The greatest potential of PDGC lies in the ability to attach specific ligands (e.g., peptides, proteins) to the plasmid DNA in order to overcome cellular barriers of non-viral gene delivery systems. In this regard, specific examples of ligands coupled to DNA are described and their effect on increasing the efficacy of gene therapy is presented.  相似文献   

8.
Molecular vehicles for targeted drug delivery   总被引:2,自引:0,他引:2  
Targeted drug delivery by cell-specific cytokines and antibodies promises greater drug efficacy and reduced side effects. We describe a novel strategy for assembly of drug delivery vehicles that does not require chemical modification of targeting proteins. The strategy relies on a noncovalent binding of standardized "payload" modules to targeting proteins expressed with a "docking" tag. The payload modules are constructed by linking drug carriers to an adapter protein capable of binding to a docking tag. Using fragments of bovine ribonuclease A as an adapter protein and a docking tag, we have constructed vascular endothelial growth factor (VEGF) based vehicles for gene delivery and for liposome delivery. Assembled vehicles displayed remarkable selectivity in drug delivery to cells overexpressing VEGF receptors. We expect that our strategy can be employed for targeted delivery of many therapeutic or imaging agents by different recombinant targeting proteins.  相似文献   

9.
The B-cell lymphoma/leukemia-2 (bcl-2) proto-oncogene has been associated with the transformation of benign lesions to malignancy, disease progression, poor prognosis, reduced survival, and development of resistance to radiation and chemotherapy in many types of cancer. The objective of this work was to synthesize an antisense peptide nucleic acid (PNA) complementary to the first six codons of the bcl-2 open reading frame, conjugated to a membrane-permeating peptide for intracellular delivery, and modified with a bifunctional chelating agent for targeting imaging and therapeutic radiometals to tumors overexpressing bcl-2. Four peptide-PNA constructs were synthesized by a combination of manual and automated stepwise elongation techniques, including bcl-2 antisense conjugates and nonsense conjugates with no complementarity to any known mammalian gene or DNA sequence. The PNA sequences were synthesized manually by solid-phase 9-fluorenylmethoxycarbonyl (Fmoc) techniques. Then a fully protected lysine monomer, modified with 1,4,7,10-tetraazacyclododecane-N,N',N',N'"-tetraacetic acid (DOTA) for radiometal chelation, was coupled manually to each PNA sequence. Synthesis of the DOTA-PNA conjugates was followed by automated elongation with a peptide sequence (PTD-4-glycine, PTD-4-G), known to mediate cellular internalization of impermeable effector molecules, or its retro-inverso analogue (ri-PTD-4-G). Preparation of the four conjugates required an innovative synthetic strategy, using mild acid conditions to generate hydrophobic, partially deprotected intermediates. These intermediates were purified by semipreparative reversed-phase HPLC and completely deprotected to yield pure peptide-PNA conjugates in 6% to 9% overall yield. Using modifications of this synthetic strategy, the ri-PTD-4-G conjugate of bcl-2 antisense PNA was prepared using a lysine derivative of tetramethylrhodamine (TMR) for fluorescence microscopy. Plasma stability studies showed that (111)In-DOTA-labeled ri-PTD-4-G-anti-bcl-2 PNA was stable for 168 h at 37 degrees C, unlike the conjugate containing the parent peptide sequence. Scanning confocal fluorescence microscopy of TMR-labeled ri-PTD-4-G-anti-bcl-2 PNA in Raji lymphoma cells demonstrated that the retro-inverso peptide was active in membrane permeation and mediated cellular internalization of the antisense PNA into the cytoplasm, where high concentrations of bcl-2 mRNA are expected to be present.  相似文献   

10.
Peptide nucleic acid (PNA) binding-mediated gene regulation   总被引:2,自引:0,他引:2  
Wang G  Xu XS 《Cell research》2004,14(2):111-116
  相似文献   

11.
The aim of this study was to compare the potential of two plant lectins [peanut agglutinin (PNA) and wheat germ agglutinin (WGA)], monoclonal antibody (anti-Thy-1.2), its F(ab')(2) fragments, and galactosamine as targeting moieties bound to the polymer drug carrier to deliver a xenobiotic, doxorubicin, to selected cancer cell lines. We have used primary (SW 480, HT 29) and metastatic (SW 620) human colorectal cancer cell lines and a transfectant, genetically engineered SW 620 cell line with mouse gene Thy-1.2 (SW 620/T) to test the possibility of marking human cancer with xenogeneic mouse gene and use it for effective site-specific targeting. The targeting moieties and doxorubicin were conjugated to a water-soluble copolymer based on N-(2-hydroxypropyl)methacrylamide (HPMA) acting as a carrier responsible for controlled intracellular release of the targeted drug. FACS analysis showed a strong binding of WGA-FITC to all tested cell lines. Binding of PNA-FITC was considerably weaker. The in vitro antiproliferative effect of lectin-targeted HPMA carrier-bound doxorubicin evaluated as [(3)H]TdR incorporation reflected both the intensity of the binding and the different sensitivity of the tested cancer cells lines to doxorubicin. The antiproliferative effect of conjugates targeted with WGA was comparable to that with the conjugates targeted with the anti-Thy-1.2 monoclonal antibody or their F(ab')(2) fragments. The magnitude of the cytotoxic effect of HPMA-doxorubicin targeted with PNA was lower in all tested cell lines. While the conjugates with WGA were more cytotoxic, the conjugates with PNA were more specific as their binding is limited to cancer cells and to the sites of inflammation. Noncytotoxic conjugates with a very low concentration of doxorubicin and targeted with PNA, anti-Thy-1.2, or their F(ab')(2) fragments exerted in some lines (SW 480, SW 620) low mitogenic activity. The Thy-1.2 gene-transfected SW 620 metastatic colorectal cancer cell line was sensitive to the antiproliferative effect of Thy-1.2-targeted doxorubicin as was shown for the Thy-1. 2(+) EL4 cell line and for Thy-1.2(+) concanavalin A-stimulated mouse T lymphocytes. These results represent the first indication of the suitability of transfection of human cancer cells with selected targeting genes for site-specific therapy of malignancies.  相似文献   

12.
A new antisense peptide-peptide nucleic acid (peptide-PNA) conjugate, designed for targeting bcl-2 expression, has been radiolabeled, characterized, and evaluated for bcl-2 mRNA binding in a cell-free system. A PNA complementary to the first six codons of the bcl-2 gene was synthesized by standard solid-phase Fmoc chemistry and conjugated to a new derivative of 1,4,7,10-tetraazacyclododecane-N,N',N",N'"-tetraacetic acid (DOTA) that allows macrocyclic radiometal chelates to be incorporated into any sequence position of a peptide-PNA conjugate. The DOTA-PNA conjugate was then coupled to a membrane-permeating transduction peptide, PTD-4, designed for intracellular delivery of the radiolabeled PNA. The conjugate was characterized by HPLC and ESI-MS and labeled with (111)In and (90)Y to high specific activities (>1000 Ci/mmol) with high radiochemical purity. Northern blot analysis showed that (90)Y-PTD-4-K(DOTA)-anti-bcl-2-PNA bound specifically to as little as 50 fmol of bcl-2 mRNA, a result equivalent to that obtained with the analogous (32)P-labeled DNA antisense oligonucleotide. Thus, the mRNA targeting properties of (111)In- and (90)Y-PTD-4-K(DOTA)-anti-bcl-2-PNA demonstrate potential for diagnostic imaging and targeted radiotherapy applications in bcl-2-positive cancers.  相似文献   

13.
Summary In this chapter, we describe an approach using a peptide nucleic acid (PNA) clamp to directly and irreversibly modify plasmid DNA, without affecting either its supercoiled conformation or its ability to be efficiently transcribed. This strategy enables investigators to functionalize their gene of interest by direct coupling of ligands (fluorophores, peptide, proteins, sugars or oligonucleotides) to plasmid DNA. This approach provides versatile tools to study the mechanisms of gene delivery and to circumvent some of the main obstacles of synthetic gene delivery systems, such as specific targeting and efficient delivery. The proof-of-principal of PNA-dependent gene chemistry (PDGC) was demonstrated with a fluorescently labeled PNA that allowed generation of a highly fluorescent preparation of plasmid DNA that was functionally and conformationally intact. Fluorescent-PNA/DNA was used to identify critical parameters involved in naked DNA and non-viral gene delivery technology. The greatest potential of PDGC lies in the ability to attach specific ligands (e.g., peptides, proteins) to the plasmid DNA in order to overcome cellular barriers of non-viral gene delivery systems. In this regard, specific examples of ligands coupled to DNA are described and their effect on increasing the efficacy of gene therapy is presented  相似文献   

14.
Peptide nucleic acid (PNA) is known to bind with extraordinarily high affinity and sequence-specificity to complementary nucleic acid sequences and can be used to suppress gene expression. However, effective delivery into cells is a major obstacle to the development of PNA for gene therapy applications. Here, we present a novel method for the in vitro delivery of antigene PNA to cells. By using a nucleocapsid protein derived from Simian virus 40, we have been able to package PNA into pseudovirions, facilitating the delivery of the packaged PNA into cells. We demonstrate that this system can be used effectively to suppress gene expression associated with multidrug resistance in cancer cells, as shown by RT-PCR, flow cytometry, Western blotting, and cell viability under chemotherapy. The combination of PNA with the SV40-based delivery system is a method for suppressing a gene of interest that could be broadly applied to numerous targets.  相似文献   

15.
Kaihatsu K  Huffman KE  Corey DR 《Biochemistry》2004,43(45):14340-14347
Peptide nucleic acids (PNAs) offer a distinct option for silencing gene expression in mammalian cells. However, the full value of PNAs has not been realized, and the rules governing the recognition of cellular targets by PNAs remain obscure. Here we examine the uptake of PNAs and PNA-peptide conjugates by immortal and primary human cells and compare peptide-mediated and DNA/lipid-mediated delivery strategies. We find that both peptide-mediated and lipid-mediated delivery strategies promote entry of PNA and PNA-peptide conjugates into cells. Confocal microscopy reveals a punctate distribution of PNA and PNA-peptide conjugates regardless of the delivery strategy used. Peptide D(AAKK)(4) and a peptide containing a nuclear localization sequence (NLS) promote the spontaneous delivery of antisense PNAs into cultured cells. The PNA-D(AAKK)(4) conjugate inhibits expression of human caveolin 1 (hCav-1) in both HeLa and primary endothelial cells. DNA/lipid-mediated delivery requires less PNA, while peptide-mediated delivery is simpler and is less toxic to primary cells. The ability of PNA-peptide conjugates to enter primary and immortal human cells and inhibit gene expression supports the use of PNAs as antisense agents for investigating the roles of proteins in cells. Both DNA/lipid-mediated and peptide-mediated delivery strategies are efficient, but the compartmentalized localization of PNAs suggests that improving the cellular distribution may lead to increased efficacy.  相似文献   

16.
A potential barrier to the development of genetically targeted adenovirus (Ad) vectors for cell-specific delivery of gene therapeutics lies in the fact that several types of targeting protein ligands require posttranslational modifications, such as the formation of disulfide bonds, which are not available to Ad capsid proteins due to their nuclear localization during assembly of the virion. To overcome this problem, we developed a new targeting strategy, which combines genetic modifications of the Ad capsid with a protein bridge approach, resulting in a vector-ligand targeting complex. The components of the complex associate by virtue of genetic modifications to both the Ad capsid and the targeting ligand. One component of this mechanism of association, the Fc-binding domain of Staphylococcus aureus protein A, is genetically incorporated into the Ad fiber protein. The ligand is comprised of a targeting component fused with the Fc domain of immunoglobulin, which serves as a docking moiety to bind to these genetically modified fibers during the formation of the Ad-ligand complex. The modular design of the ligand solves the problem of structural and biosynthetic compatibility with the Ad and thus facilitates targeting of the vector to a variety of cellular receptors. Our study shows that targeting ligands incorporating the Fc domain and either an anti-CD40 single-chain antibody or CD40L form stable complexes with protein A-modified Ad vectors, resulting in significant augmentation of gene delivery to CD40-positive target cells. Since this gene transfer is independent of the expression of the native Ad5 receptor by the target cells, this strategy results in the derivation of truly targeted Ad vectors suitable for tissue-specific gene therapy.  相似文献   

17.
Steric blocking peptide nucleic acid (PNA) oligonucleotides have been used increasingly for redirecting RNA splicing particularly in therapeutic applications such as Duchenne muscular dystrophy (DMD). Covalent attachment of a cell-penetrating peptide helps to improve cell delivery of PNA. We have used a HeLa pLuc705 cell splicing redirection assay to develop a series of PNA internalization peptides (Pip) conjugated to an 18-mer PNA705 model oligonucleotide with higher activity compared to a PNA705 conjugate with a leading cell-penetrating peptide being developed for therapeutic use, (R-Ahx-R)4. We show that Pip–PNA705 conjugates are internalized in HeLa cells by an energy-dependent mechanism and that the predominant pathway of cell uptake of biologically active conjugate seems to be via clathrin-dependent endocytosis. In a mouse model of DMD, serum-stabilized Pip2a or Pip2b peptides conjugated to a 20-mer PNA (PNADMD) targeting the exon 23 mutation in the dystrophin gene showed strong exon-skipping activity in differentiated mdx mouse myotubes in culture in the absence of an added transfection agent at concentrations where naked PNADMD was inactive. Injection of Pip2a-PNADMD or Pip2b-PNADMD into the tibealis anterior muscles of mdx mice resulted in ~3-fold higher numbers of dystrophin-positive fibres compared to naked PNADMD or (R-Ahx-R)4-PNADMD.  相似文献   

18.
19.
Chronic obstructive lung disease (COPD) is a common cause of death in industrialized countries often induced by exposure to tobacco smoke. A substantial number of patients with COPD also suffer from pulmonary hypertension that may be caused by hypoxia or other hypoxia-independent stimuli - inducing pulmonary vascular remodeling. The Ca2+ binding protein, S100A4 is known to play a role in non-COPD-driven vascular remodeling of intrapulmonary arteries. Therefore, we have investigated the potential involvement of S100A4 in COPD induced vascular remodeling. Lung tissue was obtained from explanted lungs of five COPD patients and five non-transplanted donor lungs. Additionally, mice lungs of a tobacco-smoke-induced lung emphysema model (exposure for 3 and 8 month) and controls were investigated. Real-time RT-PCR analysis of S100A4 and RAGE mRNA was performed from laser-microdissected intrapulmonary arteries. S100A4 immunohistochemistry was semi-quantitatively evaluated. Mobility shift assay and siRNA knock-down were used to prove hypoxia responsive elements (HRE) and HIF binding within the S100A4 promoter. Laser-microdissection in combination with real-time PCR analysis revealed higher expression of S100A4 mRNA in intrapulmonary arteries of COPD patients compared to donors. These findings were mirrored by semi-quantitative analysis of S100A4 immunostaining. Analogous to human lungs, in mice with tobacco-smoke-induced emphysema an up-regulation of S100A4 mRNA and protein was observed in intrapulmonary arteries. Putative HREs could be identified in the promoter region of the human S100A4 gene and their functionality was confirmed by mobility shift assay. Knock-down of HIF1/2 by siRNA attenuated hypoxia-dependent increase in S100A4 mRNA levels in human primary pulmonary artery smooth muscle cells. Interestingly, RAGE mRNA expression was enhanced in pulmonary arteries of tobacco-smoke exposed mice but not in pulmonary arteries of COPD patients. As enhanced S100A4 expression was observed in remodeled intrapulmonary arteries of COPD patients, targeting S100A4 could serve as potential therapeutic option for prevention of vascular remodeling in COPD patients.  相似文献   

20.
A novel method for sequence specific double strand DNA cleavage using PNA (peptide nucleic acid) targeting is described. Nuclease S1 digestion of double stranded DNA gives rise to double strand cleavage at an occupied PNA strand displacement binding site, and under optimized conditions complete cleavage can be obtained. The efficiency of this cleavage is more than 10 fold enhanced when a tandem PNA site is targeted, and additionally enhanced if this site is in trans rather than in cis orientation. Thus in effect, the PNA targeting makes the single strand specific nuclease S1 behave like a pseudo restriction endonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号