首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The maintenance of invertebrate diversity within agricultural environments can enhance a number of agronomically important processes, such as nutrient cycling and biological pest control. However, few Australian studies have been undertaken which specifically address the effects of commercial management regimes on rice field biodiversity. In this study, we compared aquatic macroinvertebrate communities within Australian rice fields cultivated under three commercial management regimes: conventional-aerial (agrochemicals applied, aerially sown), conventional-drill (agrochemicals applied, directly drill-sown) and organic-drill (agrochemical-free, directly drill-sown). These comparisons were undertaken using a combination of community assessment approaches, including morphospecies richness, abundance, diversity and community composition. In general, greater biodiversity existed within macroinvertebrate communities that developed under organic management regimes than under conventional regimes (i.e., higher morphospecies richness and Shannon diversity). Although there were significant differences in several parameters across management regimes early in the rice-growing season, as the growing season progressed the invertebrate communities that developed in the different management regimes became more similar. Only community composition analyses showed significant differences late in the growing season, with functional differences across aquatic faunal assemblages suggested by increased predator abundance in communities sampled from the organic management regime. In order to improve biodiversity within these aquatic environments, management techniques need to be examined individually and the most disruptive processes identified. Alternative management procedures can then be developed that minimise biodiversity loss whilst still delivering required agronomic outcomes.  相似文献   

2.
3.
4.
1. Use of the natural ratios of carbon and nitrogen stable isotopes as tracers of trophic interactions has some clear advantages over alternative methods for food web analyses, yet is limited to situations where organic materials of interest have adequate isotopic separation between potential sources. This constrains the use of natural abundance stable isotope approaches to a subset of ecosystems with biogeochemical conditions favourable to source separation. 2. Recent studies suggest that stable hydrogen isotopes (δD) could provide a robust tracer to distinguish contributions of aquatic and terrestrial production in food webs, but variation in δD of consumers and their organic food sources are poorly known. To explore the utility of the stable hydrogen isotope approach, we examined variation in δD in stream food webs in a forested catchment where variation in δ13C has been described previously. 3. Although algal δD varied by taxa and, to a small degree, between sites, we found consistent and clear separation (by an average of 67‰) from terrestrial carbon sources. Environmental conditions known to affect algal δ13C, such as water velocity and stream productivity did not greatly influence algal δD, and there was no evidence of seasonal variation. In contrast, algal δ13C was strongly affected by environmental factors both within and across sites, was seasonally variable at all sites, and partially overlapped with terrestrial δ13C in all streams with catchment areas larger than 10 km2. 4. While knowledge of isotopic exchange with water and trophic fractionation of δD for aquatic consumers is limited, consistent source separation in streams suggests that δD may provide a complementary food web tracer to δ13C in aquatic food webs. Lack of significant seasonal or spatial variation in δD is a distinct advantage over δ13C for applications in many aquatic ecosystems.  相似文献   

5.
Limited data from terrestrial ecosystems suggest that invasive species can affect energy flow and nutrient cycling in invaded systems. This is likely also true for aquatic ecosystems, yet little information is available on food web effects of invasive macrophytes. This study examined the effects of dominant invasive Eurasian watermilfoil on lake trophic structure and energy flow. Stable isotopes of carbon and nitrogen were used to compare trophic structure in invaded and uninvaded lakes and macrophyte stands. Contribution of native and invasive macrophytes, their epiphyton and detritus to the upper trophic level of lacustrine food webs was partitioned using mixing models. Carbon isotope values of macroinvertebrate consumers were similar to macrophyte-associated production in stands from which they were collected. However, contribution of Eurasian watermilfoil and its epiphyton to higher trophic level was negligible, and littoral fish derived most of their energy from sources associated with native macrophytes, despite their lower abundance. This means that littoral fish may depend on the remaining patches of native macrophytes in lakes invaded by non-native plants. Considering previous findings, these results show that the assessment of ecosystem-level processes is needed to understand the entire range of impacts of invasive species.  相似文献   

6.
Structure of tropical river food webs revealed by stable isotope ratios   总被引:7,自引:0,他引:7  
Fish assemblages in tropical river food webs are characterized by high taxonomic diversity, diverse foraging modes, omnivory, and an abundance of detritivores. Feeding links are complex and modified by hydrologic seasonality and system productivity. These properties make it difficult to generalize about feeding relationships and to identify dominant linkages of energy flow. We analyzed the stable carbon and nitrogen isotope ratios of 276 fishes and other food web components living in four Venezuelan rivers that differed in basal food resources to determine 1) whether fish trophic guilds integrated food resources in a predictable fashion, thereby providing similar trophic resolution as individual species, 2) whether food chain length differed with system productivity, and 3) how omnivory and detritivory influenced trophic structure within these food webs. Fishes were grouped into four trophic guilds (herbivores, detritivores/algivores, omnivores, piscivores) based on literature reports and external morphological characteristics. Results of discriminant function analyses showed that isotope data were effective at reclassifying individual fish into their pre-identified trophic category. Nutrient-poor, black-water rivers showed greater compartmentalization in isotope values than more productive rivers, leading to greater reclassification success. In three out of four food webs, omnivores were more often misclassified than other trophic groups, reflecting the diverse food sources they assimilated. When fish δ15N values were used to estimate species position in the trophic hierarchy, top piscivores in nutrient-poor rivers had higher trophic positions than those in more productive rivers. This was in contrast to our expectation that productive systems would promote longer food chains. Although isotope ratios could not resolve species-level feeding pathways, they did reveal how top consumers integrate isotopic variability occurring lower in the food web. Top piscivores, regardless of species, had carbon and nitrogen profiles less variable than other trophic groups.  相似文献   

7.
8.
Most ecosystems are recipients of allochthonous materials that enhance in situ productivity. Recent theoretical and empirical studies suggest that low to moderate inputs can stabilize food webs. However, depending on the trophic levels that use the resource, food webs can become unstable as inputs increase. Where large amounts of agricultural resources are transferred to natural habitats, trophic dynamics change: trophic cascades can occur and rare or uncommon species can become invasive. Rates of change in species abundances can also be amplified by the effects of changes in legislation and management practices on subsidized consumers.  相似文献   

9.
10.
Two stable isotopes δ13C and δ15N were used to identify the energy sources and trophic relationships of the main freshwater macroinvertebrates in a floodplain lake of the Beni River (Bolivian Amazonia). Four energy sources (seston, bottom sediment, periphyton, and aquatic macrophytes) and macroinvertebrate communities were collected during three periods of the river hydrological cycle. Macroinvertebrates showed greater temporal variation in isotope values than their food sources. Six trophic chains were identified: four were based on seston, periphyton, C3 macrophytes, and bottom sediments, and the last two chains on a combination of two carbon sources. One mixed seston and periphyton sources during the wet season while the other mixed periphyton and macrophytes sources during the wet and dry seasons. Periphyton was the most important energy source supporting the highest number of trophic levels and consumers. The macrophytic contribution was only significant during the dry season. Bottom sediments constituted a marginal energy source. As each season is associated with different physical and chemical conditions, processes organizing macroinvertebrate food web structure in the Beni floodplain seem strongly linked to hydrological seasonality.  相似文献   

11.
Alpine streams can exhibit naturally high levels of flow intermittency. However, how flow intermittency in alpine streams affects ecosystem functions such as food web trophic structure is virtually unknown. Here, we characterized the trophic diversity of aquatic food webs in 28 headwater streams of the Val Roseg, a glacierized alpine catchment. We compared stable isotope (δ13C and δ15N) trophic indices to high temporal resolution data on flow intermittency. Overall trophic diversity, food chain length and diversity of basal resource use did not differ to a large extent across streams. In contrast, gradient and mixing model analysis indicated that primary consumers assimilated proportionally more periphyton and less allochthonous organic matter in more intermittent streams. Higher coarse particulate organic matter (CPOM) C:N ratios were an additional driver of changes in macroinvertebrate diets. These results indicate that the trophic base of stream food webs shifts away from terrestrial organic matter to autochthonous organic matter as flow intermittency increases, most likely due to reduced CPOM conditioning in dry streams. This study highlights the significant, yet gradual shifts in ecosystem function that occur as streamflow becomes more intermittent in alpine streams. As alpine streams become more intermittent, identifying which functional changes occur via gradual as opposed to threshold responses is likely to be vitally important to their management and conservation.  相似文献   

12.
  1. It is often assumed that invertebrate consumers in small tropical streams are dependent on allochthonous sources, although recent studies indicate that algae can form the base of food webs in tropical streams. Fish in tropical streams can feed across several trophic levels and the origin and path of energy and nutrient flow is uncertain for many species.
  2. We collected fish, insects, periphyton, and leaf litter from 20 streams across four Atlantic Forest catchments. We analysed stomach contents of fish to define trophic guild and fish dietary trophic position. We also analysed stable isotopes of carbon and nitrogen of fish and their resources to identify the main basal resources of the food web and to estimate trophic positions and identify the path of energy flow.
  3. We found that autochthonous sources were the primary resource base for fish communities. Trophic positions estimated from diet and isotopes were similar and correlated for insectivore and algivore–insectivore fish, but not for algivore–detritivore or omnivore fish. Using path analysis, fish classified as algivore–detritivores appear to have derived their biomass through a diet of primary consumer insects and periphytic algae and thus, are more likely to play a trophic role as algivore–insectivores in these streams. However, omnivores probably derived much of their biomass from aquatic insects.
  4. Our findings support other studies of tropical systems in which the main basal resource is autochthonous, even in small streams. We also show that the assignment to a specific trophic guild for some fish species, based on gut contents, does not reflect what they assimilate into their bodies. In some species, food sources that are uncommon can make a disproportionately important contribution to their biomass.
  5. This study affirms the important role of inconspicuous algal resources in aquatic food webs, even in small forested streams, and demonstrates the effectiveness of taking a combined approach of diet analysis, isotopic tracing, and modelling to resolve food web pathways where the level of omnivory is high.
  相似文献   

13.
Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13C as compared to plant litter. This ‘detrital shift’ likely reflects preferential uptake of 13C‐enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15N and 13C relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15N resulting in overlap in isotope ratios between soil‐dwelling detritivores and litter‐dwelling predators. By contrast, 13C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non‐vascular plants may play an important role in fuelling soil food webs. The trophic niche of most high‐rank animal taxa spans at least two trophic levels, implying the use of a wide range of resources. Therefore, to identify trophic species and links in food webs, low‐rank taxonomic identification is required. Despite overlap in feeding strategies, stable isotope composition of the high‐rank taxonomic groups reflects differences in trophic level and in the use of basal resources. Different taxonomic groups of predators and decomposers are likely linked to different pools of organic matter in soil, suggesting different functional roles and indicating that trophic niches in soil animal communities are phylogenetically structured. During last two decades studies using stable isotope analysis have elucidated the trophic structure of soil communities, clarified basal food resources of the soil food web and revealed links between above‐ and belowground ecosystem compartments. Extending the use of stable isotope analysis to a wider range of soil‐dwelling organisms, including microfauna, and a larger array of ecosystems provides the perspective of a comprehensive understanding of the structure and functioning of soil food webs.  相似文献   

14.
15.
We used compound-specific isotope analysis of carbon isotopes in amino acids (AAs) to determine the biosynthetic source of AAs in fish from major tributaries to California's Sacramento-San Joaquin river delta (i.e., the Sacramento, Cosumnes and Mokelumne rivers). Using samples collected in winter and spring between 2016 and 2019, we confirmed that algae are a critical component of floodplain food webs in California's Central Valley. Results from bulk stable isotope analysis of carbon and nitrogen in producers and consumers were adequate to characterize a general trophic structure and identify potential upstream and downstream migration into our study site by American shad Alosa sapidissima and rainbow trout Oncorhynchus mykiss, respectively. However, owing to overlap and variability in source isotope compositions, our bulk data were unsuitable for conventional bulk isotope mixing models. Our results from compound-specific carbon isotope analysis of AAs clearly indicate that algae are important sources of organic matter to fish of conservation concern, such as Chinook salmon Oncorhynchus tshawytscha in California's Central Valley. However, algae were not the exclusive source of energy to metazoan food webs. We also revealed that other sources of AAs, such as bacteria, fungi and higher plants, contributed to fish as well. While consistent with the well-supported notion that algae are critical to aquatic food webs, our results highlight the possibility that detrital subsidies might intermittently support metazoan food webs.  相似文献   

16.
Stable carbon and nitrogen isotope ratios were used to elucidate primary carbon sources and trophic relationships of the fish and shrimp community in the Klong Ngao mangrove ecosystem, southern Thailand. There were no significant differences in isotopic compositions of biota between mangrove and offshore sites (Welch–Aspin test). The δ15N values of eight fish species and two shrimp species at both sites were also not significantly different by the test, meaning that at both sites they feed on the same diets due to the discharge of large quantities of mangrove sediments. The δ15N isotopic enrichment of consumers suggested that there are four trophic levels in the Klong Ngao food web, with at least two fish species capable of switching feeding strategies and thus altering their apparent trophic positions. Phytoplankton culture experiments indicated that mangrove-derived sediments could play an important role in stimulating phytoplankton growth for low turbidity offshore areas, thus providing an alternate food source. The isotopic associations among sources and consumers indicated that mangroves were the major carbon source supporting aquatic food webs in the Klong Ngao ecosystem.  相似文献   

17.
18.
Climate change and the intensification of land use practices are causing widespread eutrophication of subarctic lakes. The implications of this rapid change for lake ecosystem function remain poorly understood. To assess how freshwater communities respond to such profound changes in their habitat and resource availability, we conducted a space‐for‐time analysis of food‐web structure in 30 lakes situated across a temperature‐productivity gradient equivalent to the predicted future climate of subarctic Europe (temperature +3°C, precipitation +30% and nutrient +45 μg L?1 total phosphorus). Along this gradient, we observed an increase in the assimilation of pelagic‐derived carbon from 25 to 75% throughout primary, secondary and tertiary consumers. This shift was overwhelmingly driven by the consumption of pelagic detritus by benthic primary consumers and was not accompanied by increased pelagic foraging by higher trophic level consumers. Our data also revealed a convergence of the carbon isotope ratios of pelagic and benthic food web endmembers in the warmest, most productive lakes indicating that the incorporation of terrestrial derived carbon into aquatic food webs increases as land use intensifies. These results, reflecting changes along a gradient characteristic of the predicted future environment throughout the subarctic, indicate that climate and land use driven eutrophication and browning are radically altering the function and fuelling of aquatic food webs in this biome.  相似文献   

19.
Glacier retreat is occurring across the world, and associated river ecosystems are expected to respond more rapidly than those in flowing waters in other regions. The river environment directly downstream of a glacier snout is characterised by extreme low water temperature and unstable channel sediments but these habitats may become rarer with widespread glacier retreat. In these extreme environments food web dynamics have been little studied, yet they could offer opportunities to test food web theories using highly resolved food webs owing to their low taxonomic richness. This study examined the interactions of macroinvertebrate and diatom taxa in the Ödenwinkelkees river, Austrian central Alps between 2006 and 2011. The webs were characterised by low taxon richness (13–22), highly connected individuals (directed connectance up to 0.19) and short mean food chain length (2.00–2.36). The dominant macroinvertebrates were members of the Chironomidae genus Diamesa and had an omnivorous diet rich in detritus and diatoms as well as other Chironomidae. Simuliidae (typically detritivorous filterers) had a diet rich in diatoms but also showed evidence of predation on Chironomidae larvae. Food webs showed strong species-averaged and individual size structuring but mass-abundance scaling coefficients were larger than those predicted by metabolic theory, perhaps due to a combination of spatial averaging effects of patchily distributed consumers and resources, and/or consumers deriving unquantified resources from microorganisms attached to the large amounts of ingested rock fragments. Comparison of food web structural metrics with those from 62 published river webs suggest these glacier-fed river food web properties were extreme but in line with general food web scaling predictions, a finding which could prove useful to forecast the effects of anticipated future glacier retreat on the structure of aquatic food webs.  相似文献   

20.
Widespread omnivory in aquatic food webs has been recognized to compromise interpretation of Lindeman’s “pyramid of energy” wherein organism biomass is constrained into rigidly delineated trophic levels. A compilation of global, pre-1997 stable nitrogen isotope data for aquatic food webs produced vertical energy profiles that were ataxonomic and therefore similar to Elton’s “pyramid of numbers” which he believed to be based on size-structured feeding relationships. Further, the present secondary-analysis confirms findings from other recent data compilations in suggesting that aquatic animals in real food webs are rarely found above the fifth or sixth broadly based trophic category. Therefore, δ15N analysis of food webs permits a reconciliation between theoreticians and empiricists by assuming a middle position in estimates made of the vertical length of food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号