首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review sets out to summarize our current knowledge on the structural layout of the embryonic ventral nerve cord in decapod crustaceans and its development from stem cell to the mature structure. In Decapoda, neuronal stem cells, the neuroblasts, mostly originate from ectodermal stem cells, the ectoteloblast, via a defined lineage. The neuroblasts undergo repeated asymmetric division and generate ganglion mother cells. The ganglion mother cells later divide again to give birth to ganglion cells (neurons) and there is increasing evidence now that ganglion mother cells divide again not only once but repeatedly. Various other aspects of neuroblast proliferation such as their temporal patterns of mitotic activity and spatial arrangement as well as the relation of neurogenesis to the development of the segmental appendages and maturation of motor behaviors are described. The link between cell lineage and cell differentiation in Decapoda so far has only been established for the midline neuroblast. However, there are several other identified early differentiating neurons, the outgrowing neurites of which pioneer the axonal scaffold within the neuromeres of the ventral nerve cord. The maturation of identified neurons as examined by immunohistochemistry against their neurotransmitters or engrailed, is briefly described. These processes are compared to other Arthropoda (including Onychophora, Chelicerata, Diplopoda and Hexapoda) in order to shed light on variations and conserved motifs of the theme 'neurogenesis'. The question of a 'common plan for neuronal development' in the ventral nerve cords of Hexapoda and Crustacea is critically evaluated and the possibility of homologous neurons arising through divergent developmental pathways is discussed.  相似文献   

2.
It is well established that the brains of adult malacostracan crustaceans and winged insects display distinct homologies down to the level of single neuropils such as the central complex and the optic neuropils. We wanted to know if developing insect and crustacean brains also share similarities and therefore have explored how neurotransmitter systems arise during arthropod embryogenesis. Previously, Sintoni et al. (2007) had already reported a homology of an individually identified cluster of neurons in the embryonic crayfish and insect brain, the secondary head spot cells that express the Engrailed protein. In the present study, we have documented the ontogeny of the serotonergic system in embryonic brains of the Marbled Crayfish in comparison to Migratory Locust embryos using immunohistochemical methods combined with confocal laser-scan microscopy. In both species, we found a cluster of early emerging serotonin-immunoreactive neurons in the protocerebrum with neurites that cross to the contralateral brain hemisphere in a characteristic commissure suggesting a homology of this cell cluster. Our study is a first step towards a phylogenetic analysis of neurotransmitter system development and shows that, as for the ventral nerve cord, traits related to neurogenesis in the brain can provide valuable hints for resolving the much debated question of arthropod phylogeny.  相似文献   

3.
Previous studies of neurogenic activity in the thoracic neuromeres of indirect developing crustaceans indicated that the temporal patterns of neurogenesis can be correlated with the appearance of the thoracic appendages during larval and metamorphic development. To test further the idea that the temporal patterns of neurogenesis in crustaceans are related to their life histories, we examined neurogenesis in the ventral nerve cord of a direct developing crustacean, the freshwater crayfish Cherax destructor, whose life history contains neither larval stages nor metamorphoses. Neurogenesis was examined using the in vivo incorporation of bromodeoxyuridine into DNA. During late embryonic development the thoracic neuromeres of the crayfish contain arrays of mitotically active neuroblasts similar to those previously described in the spider crab and lobster. The arrays in the crayfish abdomen are, however, greatly reduced compared with those of the thorax. On hatching, both the thoracic and abdominal appendages of C. destructor are capable of movement. The pleopods, however, do not beat rhythmically until the second postembryonic stage whereas the pereiopods are not used in coordinated walking movements until the third stage. An examination of the time course of neurogenesis in the ventral nerve cord revealed that neurogenic activity in each neuromere ceases during or before the moult to the developmental stage in which its segmental appendage is first used in coordinated movements. These findings indicate that the patterns of neurogenesis in crustaceans are indeed related to the maturation of the segmental appendages and, in particular, to the maturation of motor behaviours.  相似文献   

4.
5.
6.
Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions – traditionally designated as ‘ventral organs’ – detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons – as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient posterior ganglia in the ventral nerve cord of Pseudopallene sp. and evaluate this finding in light of the often discussed reduction of a segmented ‘opisthosoma’ during pycnogonid evolution.  相似文献   

7.
Although mosquito genome projects have uncovered orthologues of many known developmental regulatory genes, extremely little is known about mosquito development. In this study, the role of semaphorin-1a (sema1a) was investigated during vector mosquito embryonic ventral nerve cord development. Expression of sema1a and the plexin A (plexA) receptor are detected in the embryonic ventral nerve cords of Aedes aegypti (dengue vector) and Anopheles gambiae (malaria vector), suggesting that Sema1a signaling may regulate mosquito nervous system development. Analysis of sema1a function was investigated through siRNA-mediated knockdown in A. aegypti embryos. Knockdown of sema1a during A. aegypti development results in a number of nerve cord phenotypes, including thinning, breakage, and occasional fusion of the longitudinal connectives, thin or absent commissures, and general distortion of the nerve cord. Although analysis of Drosophila melanogaster sema1a loss-of-function mutants uncovered many similar phenotypes, aspects of the longitudinal phenotypes differed between D. melanogaster and A. aegypti. The results of this investigation suggest that Sema1a is required for development of the insect ventral nerve cord, but that the developmental roles of this guidance molecule have diverged in dipteran insects.  相似文献   

8.
Loss of serotonergic and dopaminergic neurons may have serious implications for normal brain function. Drosophila models of neurodegenerative diseases utilize the short life-span and simple anatomy of the fly to characterize the molecular and genetic processes characteristic of each dysfunctional state. In fly embryonic and larval ventral nerve cords, serotonergic and dopaminergic neurons are positioned in a stereotypic pattern that is reorganized during metamorphosis. In this study, we examine the adult pattern of serotonergic and dopaminergic neurons within the adult fly ventral nerve cord. We find that the number of cells lost following metamorphosis is highly variable. Changes in cell number attributable to age are therefore likely to be highly masked by developmental variation. The source of this variation is probably apoptosis-based cell loss during pupal development.This work was supported by a Keck Scholars Award and NINDS R29 37322 to BGC and by the University of Virginia Medical Scientist Training Program to PAS.  相似文献   

9.
One of the long-standing questions in zoology is that on the phylogenetic relationships within the Arthropoda. Comparative studies on structure and development of the nervous system can contribute important arguments to this discussion. In the present report, the arrangement of serotonin- and engrailed-expressing cells was examined in the embryonic ventral nerve cord of the American lobster Homarus americanus Milne Edwards, 1873 (Malacostraca, Pleocyemata, Homarida), and the spatial relationship of these two cell classes was explored by a double-labelling approach. The goal of this study was to determine whether the lobster serotonergic neurons are homologous to similar cells present in representatives of the Hexapoda and other Arthropoda. The results indicate that, in fact, these neurons in the lobster ventral nerve cord have corresponding counterparts in many other mandibulate taxa. Based on the finding of these homologies, the arrangement of serotonergic neurons in a model trunk ganglion of the mandibulate ground pattern was reconstructed as comprising an anterior and a posterior pair of serotonergic neurons per hemiganglion, each cell with both an ipsilateral and a contralateral neurite. Starting from this ground pattern, the evolutionary diversification of this class of neurons within the Mandibulata is discussed.  相似文献   

10.
11.
Although mosquito genome projects uncovered orthologues of many known developmental regulatory genes, extremely little is known about the development of vector mosquitoes. Here, we investigate the role of the Netrin receptor frazzled (fra) during embryonic nerve cord development of two vector mosquito species. Fra expression is detected in neurons just prior to and during axonogenesis in the embryonic ventral nerve cord of Aedes aegypti (dengue vector) and Anopheles gambiae (malaria vector). Analysis of fra function was investigated through siRNA-mediated knockdown in Ae. aegypti embryos. Confirmation of fra knockdown, which was maintained throughout embryogenesis, indicated that microinjection of siRNA is an effective method for studying gene function in Ae. aegypti embryos. Loss of fra during Ae. aegypti development results in thin and missing commissural axons. These defects are qualitatively similar to those observed in Dr. melanogaster fra null mutants. However, the Aa. aegypti knockdown phenotype is stronger and bears resemblance to the Drosophila commissureless mutant phenotype. The results of this investigation, the first targeted knockdown of a gene during vector mosquito embryogenesis, suggest that although Fra plays a critical role during development of the Ae. aegypti ventral nerve cord, mechanisms regulating embryonic commissural axon guidance have evolved in distantly related insects.  相似文献   

12.
At embryonic stages, Olig3 is initially expressed in the dorsal-most region of the spinal cord, but later in the ventral marginal zone as well. Previous studies indicated that Olig3 controlled the patterning of dorsal spinal cord and loss of Olig3 function led to the re-specification of dI2 and dI3 neurons into dI4 interneurons. However, the role of Olig3 in regulating the development of ventral spinal cord has remained unknown. BrdU labeling demonstrated that ventral Olig3 was expressed in the post-mitotic neurons and Olig3+ cells seen at late embryonic stages were born at the earlier stage but remained in the marginal zone throughout embryogenesis. Loss-of-function and gain-of-function experiment indicated that Nkx2.2 regulated the expression of Olig3 in V3 interneurons. However, Olig3 mutation didn’t apparently affect the generation and migration of ventral neurons. These findings suggest that Olig3 plays different roles in regulating the development of dorsal and ventral spinal cord.  相似文献   

13.
Using a technique of retrograde axonal transport of horseradish peroxidase, labeled neurons were detected in the intermedialateral nucleus (pars principalis and pars funicularis), intercalatous spinal nucleus, and in the ventral horns of the spinal cord in cats. Afferent spinal transit pathways pass in all the above branches as well as the vertebral nerve. Bodies of the labeled neurons with branches passing in the vertebral nerve are located in the T2-T7 spinal ganglia, whereas those with branches passing in other nerves--are located in the C8-T8.  相似文献   

14.
15.
We have examined the development of pigment-dispersing hormone (PDH)-immunoreactive neurons in embryos of the American lobster Homarus americanus Milne Edwards, 1837 (Decapoda, Reptantia, Homarida) by using an antiserum against β-PDH. This peptide is detectable in the terminal medulla of the eyestalks and the protocerebrum where PDH immunoreactivity is present as early as 20% of embryonic development. During ontogenesis, an elaborate system of PDH-immunoreactive neurons and fibres develops in the eyestalks and the protocerebrum, whereas less labelling is present in the deuto- and tritocerebrum and the ventral nerve cord. The sinus gland is innervated by PDH neurites at hatching. This pattern of PDH immunoreactivity has been compared with that found in various insect species. Neurons immunoreactive to pigment-dispersing factor in the medulla have been shown to be a central component of the system that generates the circadian rhythm in insects. Our results indicate that, in view of the position of the neuronal somata and projection patterns of their neurites, the immunolabelled medulla neurons in insects have homologous counterparts in the crustacean eyestalk. Since locomotory and other activities in crustaceans follow distinct circadian rhythms comparable with those observed in insects, we suggest that PDH-immunoreactive medulla neurons in crustaceans are involved in the generation of these rhythms. This study was supported by Deutsche Forschungsgemeinschaft (DFG) grant Ha 2540 and National Science Foundation grant IBN 0344448. S.H. was a Heisenberg Fellow of the DFG during the experimental part of this study. Bill Hansson and the Max Planck Society provided support during the final period of work reported in this paper.  相似文献   

16.
The Drosophila ventral nerve cord is comprised of numerous neuronal lineages, each derived from a stereotypically positioned neuroblast (NB). At the embryonic stage the unique identities of each NB, and several of their neuronal progeny, are well characterized by spatial and temporal expression patterns of molecular markers. These patterns of expression are not preserved at the larval stage and thus the identity of adult-specific lineages remains obscure. Recent clonal analysis using MARCM has identified 24 adult-specific lineages arising from thoracic NBs at the larval stage. In this study, we have explored a role for the Delta protein in development of the post-embryonic Drosophila ventral nerve cord. We find that Delta expression identifies 7 of the 24 adult-specific lineages of the thoracic ganglia by being highly enriched in clusters of newly born post-mitotic neurons and their neurite bundles. The Delta lineages constitute the majority of bundles projecting to the ventral neuropil, consistent with a role in processing leg sensory information. Targeted knockdown of Delta in neurons using RNAi results in significantly decreased leg chemosensory response and a relatively unaffected leg mechanosensory response. Delta RNAi knockdown in Delta lineages also gives a more diffuse bundle terminal morphology while the overall path-finding of neurite bundles is unaffected. We also identify a male-specific Delta lineage in the terminal abdominal ganglia, implicating a role for Delta in development of sexually dimorphic neural networks. Examples of Delta-expressing neurites contacting Notch-expressing glia are also seen, but are not common to all Delta lineages. Altogether, these data reveal a fundamental pattern of Delta expression that is indicative of an underlying developmental program that confers identity to adult lineage neurons.  相似文献   

17.
The molecular and cellular mechanisms that allow adult-stage neurons to regenerate following damage are poorly understood. Recently, axons of motoneurons and mechanosensory neurons in adult C. elegans were found to regrow after being snipped by femtosecond laser ablation. Here, we explore the molecular determinants of adult-stage axon regeneration using the AVM mechanosensory neurons. The first step in AVM axon development is a pioneer axonal projection from the cell body to the ventral nerve cord. We show that regeneration of the AVM axon to the ventral nerve cord lacks the deterministic precision of initial axon development, requiring competition and pruning of unwanted axon branches. Nevertheless, axons of injured AVM neurons regrow to the ventral nerve cord with over 60% reliability in adult animals. In addition, in contrast to initial development, axon guidance during regeneration becomes heavily dependent on cytoplasmic protein MIG-10/Lamellipodin but independent of UNC-129/TGF-beta repellent and UNC-40/DCC receptor, and axon growth during regeneration becomes heavily dependent on UNC-34/Ena and CED-10/Rac actin regulators. Thus, C. elegans may be used as a genetic system to characterize novel cellular and molecular mechanisms underlying adult-stage nervous system regeneration.  相似文献   

18.
The displacement of immature neurons from their place of origin in the germinal epithelium toward their adult positions in the nervous system appears to involve migratory pathways or guides. While the importance of radial glial fibers in this process has long been recognized, data from recent investigations have suggested that other mechanisms might also play a role in directing the movement of young neurons. We have labeled autonomic preganglionic cells by microinjections of horseradish peroxidase (HRP) into the sympathetic chain ganglia of embryonic rats in order to study the migration and differentiation of these spinal cord neurons. Our results, in conjunction with previous observations, suggest that the migration pattern of preganglionic neurons can be divided into three distinct phases. In the first phase, the autonomic motor neurons arise in the ventral ventricular zone and migrate radially into the ventral horn of the developing spinal cord, where, together with somatic motor neurons, they form a single, primitive motor column (Phelps P. E., Barber R. P., and Vaughn J. E. (1991). J. Comp. Neurol. 307:77-86). During the second phase, the autonomic motor neurons separate from the somatic motor neurons and are displaced dorsally toward the intermediate spinal cord. When the preganglionic neurons reach the intermediolateral (IML) region, they become progressively more multipolar, and many of them undergo a change in alignment, from a dorsoventral to a mediolateral orientation. In the third phase of autonomic motor neuron development, some of these cells are displaced medially, and occupy sites between the IML and central canal. The primary and tertiary movements of the preganglionic neurons are in alignment with radial glial processes in the embryonic spinal cord, an arrangement that is consistent with a hypothesis that glial elements might guide autonomic motor neurons during these periods of development. In contrast, during the second phase, the dorsal translocation of preganglionic neurons occurs in an orientation perpendicular to radial glial fibers, indicating that glial elements are not involved in the secondary migration of these cells. The results of previous investigations have provided evidence that, in addition to glial processes, axonal pathways might provide a substrate for neuronal migration. Logically, therefore, it is possible that the secondary dorsolateral translocation of autonomic preganglionic neurons could be directed along early forming circumferential axons of spinal association interneurons, and this hypothesis is supported by the fact that such fibers are appropriately arrayed in both developmental time and space to guide this movement.  相似文献   

19.
20.
The Drosophila embryo provides a useful model system to study the mechanisms that lead to pattern and cell diversity in the central nervous system (CNS). The Drosophila CNS, which encompasses the brain and the ventral nerve cord, develops from a bilaterally symmetrical neuroectoderm, which gives rise to neural stem cells, called neuroblasts. The structure of the embryonic ventral nerve cord is relatively simple, consisting of a sequence of repeated segmental units (neuromeres), and the mechanisms controlling the formation and specification of the neuroblasts that form these neuromeres are quite well understood. Owing to the much higher complexity and hidden segmental organization of the brain, our understanding of its development is still rudimentary. Recent investigations on the expression and function of proneural genes, segmentation genes, dorsoventral-patterning genes and a number of other genes have provided new insight into the principles of neuroblast formation and patterning during embryonic development of the fly brain. Comparisons with the same processes in the trunk help us to understand what makes the brain different from the ventral nerve cord. Several parallels in early brain patterning between the fly and the vertebrate systems have become evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号