首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthers are tetrasporangiate inEmilia sonchifolia andNotonia grandiflora and bisporangiate inGynura nitida. The male archesporium consists of a single row of 6–8 hypodermal cells. Development of anther walls is according to the Dicotyledonous type. The tapetum corresponds to the periplasmodial type. Both tetrahedral and isobilateral pollen tetrads are produced. The pollen grains at the time of anther dehiscence are three-celled inG. nitida andE. sonchifolia;N. grandiflora is male sterile. All the three species have Polygonum type embryo sacs with variable antipodal cells. InG. nitida andE. sonchifolia fertilization is porogamous, endosperm development is of the cellular type, and embryo development closely follows that ofSenecio vulgaris (Souèges 1920a, b).  相似文献   

2.
The male and female gametophytes formation, fertilisation, and embryo development were observed inSolidago canadensis andConyza stricta. The anther is tetrasporangiate and its wall development conforms to the Dicotyledonous type. Simultaneous cytokinesis in pollen mother cells results in tetrahedral or isobilateral tetrads. Pollen polymorphism is a common feature inS. canadensis. The ovule is anatropous, unitegmic and tenuinucellate showing an ovular vascular strand. The female archesporium is hypodermal and single celled. The development of the embryo sac is of the Polygonum type. InS. canadensis seed set is completely absent and multiplication occurs by vegetative propagation. InC. stricta fertilisation is progamous. Triple fusion and syngamy occur more or less simultaneously. Endosperm is cellular and the embryogeny corresponds to the Asterad type. A part of the thesis accepted for the Ph. D. degree of the Andhra University.  相似文献   

3.
New combinations for three species ofPolypleurum have been proposed. The Apinagia type of embryo sac is recorded for the first time in a species ofPolypleurum, P. filifolium. The Dicraea type of embryo sac found inP. dichotomum andP. munnarensis has been reinterpreted and renamed as the Polypleurum type. The embryo sac types met with in the family are discussed. The nucellar plasmodium organizes before the embryo sac attains maturity in all the three investigated species.  相似文献   

4.
The embryology ofHeliotropium scabrum andH. strigosum has been studied. The development of the anthers follows the dicotyledonous type, the tapetal cells become binucleate. The pollen grains are shed at the two-celled stage. Megaspore tetrads are linear and the development of the megagametophyte corresponds with the Polygonum type. The endosperm is cellular. The embryo development follows the Onagrad Type, i.e. the Capsella variation inH. scabrum and the Nicotiana variation of the Solanad Type inH. strigosum. The pericarp is differentiated into a one-layered epicarp with bulbous-based, unicellular hair, a 5–6-layered chlorenchymatous mesocarp and a 6–7-layered endocarp. The seed coat consists only of the thickened portions of the epidermis.  相似文献   

5.
The embryology ofLiparis paradoxa andL. rostrata has been studied. The young anther wall consists of an epidermis, endothecium, three middle layers and secretory tapetum with uninucleate cells. In the mature anther, two or three sub-epidermal layers develop fibrous thickenings. The anther wall development corresponds to the massive type. Simultaneous cytokinesis results in decussate, isobilateral, linear, T-shaped and tetrahedral pollen tetrads. The pollinia are compact and at anthesis the pollen grains are 2-celled. Ovules are anatropous, bitegmic and tenuinucellate. Both the integuments are dermal in origin and 2-layered. Development of female gametophyte is of the monosporic, 8-nucleate type. Double fertilization occurs. The primary endosperm nucleus degenerates. The mature embryo is organized from the derivatives of tiers 1, 1, m, and n. Its development conforms to a variation of the Onagrad type. The seed coat is formed entirely by the outer layer of the outer integument. There are three sterile and three fertile valves in the ovary. In the prefertilization stages valves consist of parenchymatous cells. After fertilization, the sterile valves become sclerenchymatous whereas the fertile valves remain parenchymatous. The embryological characters support the disputed systematic position ofLiparis within subtribeLiparidinae ofEpidendreae.  相似文献   

6.
The embryology ofStegnosperma halimifolium andS. watsonii has been studied in detail. The tapetum is of the secretory type and its cells become multinucleate. Simultaneous cytokinesis in the pollen mother cells follows meiosis. The ripe pollen grains are 3-celled. The ovule is crassinucellate, bitegmic and amphitropous, with the micropyle formed by the inner integument alone. The female archesporium is one celled, and the parietal tissue 3–5 layered. The embryo sac development conforms to thePolygonum type. A central strand, 6 or 7 cells thick, differentiates inside the nucellus and extends from the base of the embryo sac to the chalazal region. The endosperm is nuclear. The embryogeny conforms to the Caryophyllad type. The seed coat is formed by the outer epidermis of the outer integument and the inner epidermis of the inner integument. Based on this evidence and other data, the status of the genus as an independent family,Stegnospermataceae (Stegnospermaceae) is confirmed. Apparently, it forms a connecting link betweenPhytolaccaceae andCaryophyllaceae.  相似文献   

7.
Anther and ovule development of the theaceous Ternstroemioideae is reported for the first time on the basis of eight specles of three generaAdinandra, Cleyera andEurya. Anthers of these three genera are similar and can be characterized by the following traits: tapetum of glandular type, anther dehiscing latrorse-introrse, both connective and anther epidermis heavily tanniniferous, and connective and even anther wall layers having abundant druses. Their ovules are also very similar in being bitegmic and tenuinucellate, and in having a micropyle formed by the inner integument only, three cell-layered integuments, a raphe bundle terminating at chalaza, usually amphitropous or less often campylotropous ovule, embryo sac formation of Polygonum type, ephemeral antipodal cells, and tanniniferous ovule epidermis. Such ovules are readily distinguishable from those of Camellioideae and all other families. It is suggested that the three genera studied are closely related, and that the degree of embryological specialization is highest inAdinandra and lowest inEurya. On the basis of the significant embryological discrepacies, the Ternstroemioideae seem to have diverged rather distantly from the other core-subfamily Camellioideae of the Theaceae.  相似文献   

8.
During microsporogenesis sporopollenin becomes accumulated independently by the only two sporopollenin-producing cell types in the higher plants—the anther tapetum and the microspores—not only within the exine, but also within the orbicules. In Spermatophytes usually only a single orbicule type is found, but sometimes, e.g., inEuphorbia palustris, two different types exist within a single species. Very interestingly, most orbicules are strikingly similar in their structure, sculpture, shape and dimension to the respective ektexine: e.g., smooth sporopollenin globules are found near the totally smooth exines ofEupomatia laurina andPentaphragma sinense respectively, while inDelonix elata andEuphorbia palustris the orbicules often look like some incomplete tectum pieces. All these parallelisms can be attributed to the homologous and therefore highly similar genetic information to form sporopollenin in the sporogeneous tissue and the anther tapetum. The orbicules should be seen neither as sporopollenin storage, as sporopollenin transfer vehicle, nor as sporopollenin surplus.  相似文献   

9.
The paper presents a comparative account of embryo development inPycreus pumilus Nees.,Cyperus alternifolius Willd.,Mariscus paniceus Vahl. andRemirea maritima Abul., belonging to the tribeCypereae. Embryogeny follows the Juncus variation of the Onagrad type or conforms to Period I, Series A2, Megarchetype IV. InPycreus andRemirea the precocious differentiation of dermatogen initials is followed by that of plerome and periblem elements. Mature embryos ofPycreus, Mariscus, andRemirea are identical withCyperus. Embryogeny and structure of mature embryo support the fusion of these taxa withCyperus. Embryogeny in SomeCyperaceae 1.  相似文献   

10.
The floral vasculature in three allied genera,Plagiorhegma, Jeffersoria andAchyls is investigated, and the results are compared with those ofEpimedium andVancouveria which are related closely toPlagiorhegma andJeffersonia. The vasculature in the receptacle ofPlagiorhegma andJeffersonia is similar, but that ofAchlys is much simpler. Slightly different trace patterns are observed in the sepals ofPlagiorhegma andJeffersonia. InJeffersonia, the 3-trace condition leaving 2 or 3 gaps is most frequently observed, but inPlagiorhegma traces of a double nature leaving a single gap are more frequent. The traces to the innermost sepals, petals and stamens are usually of a double nature leaving a single gap in both genera. Regular division and fusion are not observed in the receptacular stele. The vascular differentiation between sepals and petals is more advanced inPlagiorhegma andJeffersonia than inEpimedium andVancouveria. InAchlys, the traces are all staminal and single throughout their course. Two parts recognized in the pistils ofPlagiorhegma, Jeffersonia andAchlys are traversed by independent vasculature. The comparisons of pistil morphology including vasculature ofPlagiorhegma, Jeffersonia, Achlys, Epimedium andVancouveria lead to the interpretation that the pistils are based on the same morphological plan. The probable evolutionary trend in pistil is then suggested in these five genera.  相似文献   

11.
Intergeneric crosses were made between representatives of the genomically-defined generaElymus, Agropyron, Elytrigia, Pseudoroegneria, andThinopyrum. The genomic constitution ofElytrigia repens, the type species ofElytrigia, is shown to be SSH, a genomic combination otherwise found only inElymus. The S genome ofPseudoroegneria has almost always a dominant influence on the morphology of the taxa of which it is a component.Wang (1989) showed that the J genome inThinopyrum and the S genome have considerable homoeology, with a mean c-value of 0.35 in diploid SJ hybrids. A genetic coherence from S to SJe, Je, JeJb, and Jb can be expected, agreeing with the continuous morphologic variation pattern observed. Because of the absence of morphological discontinuities between the taxa,Pseudoroegneria (S),Elymus (SH, SY, sometimes with additional genomes),Elytrigia (SSH, SSHX), andThinopyrum (SJ, SJJ, J) are best treated as a single genus,Elymus, following the generic concept ofMelderis in Flora Europaea and Flora of Turkey. The basic genomic constituents ofElymus will then be the S and/or J genomes.Agropyron, with diploids, tetraploids, and hexaploids based on the P genome is morphologically distinct from other genera inTriticeae. In a few species ofElymus andPseudoroegneria, a P genome is an additional constituent. In these cases the P genome has a negligible morphological influence. Therefore, it seems reasonable to maintainAgropyron as a separate genus.  相似文献   

12.
The embryo sac formation, endosperm formation, and embryo development in all species of JapaneseMitella andM. diphylla of North America were studied. Monosporic 8-nucleate embryo sac formation of thePolygonum type was found in all the species. In endosperm formation, the Cellular type was found in all species of sect.Mitellaria, and the Helobial type inM. nuda, M. diphylla, andM. integripetala. The Helobial type inM. integripetala was somewhat aberrant and approximated to the Cellular type. In embryo development, three types were distinguishable in sect.Mitellaria: Type A (most of the species), Type B (M. acerina) and Type C (M. pauciflora andM. furusei var.furusei). Type B is an intermediate type between A and C.Mitella integripetala also shows Type A, and the types ofM. nuda andM. diphylla are similar to Type A, except for the shape of suspensor. From outgroup comparison, Type A is suggested to be primitive and Type C to be most derivative in sect.Mitellaria. The affinity of some species in sect.Mitellaria is discussed from the embryogenic data obtained.  相似文献   

13.
InMalaxis saprophyta, anther wall development corresponds to the Monocotyledonous type. The uninucleate tapetum is of secretory type and the endothecium develops U- and V-shaped thickenings on the inner tangential and radial walls. Cytokinesis is simultaneous; tetrahedral, isobilateral and T-shaped tetrads are formed which are compactly aggregated in pollinia. At anthesis the microspore tetrads are 2-celled. The ovule is anatropous, bitegmic and both integuments are dermal in origin. A single hypodermal cell develops directly into a megaspore mother cell. Embryo sac development is predominantly monosporic and less often bisporic. Irrespective of the type of development, the mature embryo sac is 6-nucleate. Although double fertilization occurs, the primary endosperm nucleus degenerates. Embryogeny is of the Onagrad type. The mature embryo lacks differentiation into cotyledon, plumule and radicle. The reticulate seed coat is formed entirely by the outer layer of outer integument. There are three sterile and three fertile valves in the ovary. Although initially parenchymatous, the entire three sterile valves in the ovary and the upper half of the three fertile valves become sclerified after fertilization. The embryological characters support the disputed systematic position ofMalaxis within subtribeMalaxidinae ofEpidendreae.  相似文献   

14.
Embryological characters of Siparunaceae, which are poorly understood, were studied on the basis of two constituent genera, an African Glossocalyx and a South American Siparuna, to better understand their evolution within Laurales. These two genera have many embryological characteristics in common with the other lauralean families. Noticeably, they share the multi-celled ovule archesporium (uncertain in Glossocalyx) as a synapomorphy with all the other lauralean families except Lauraceae, the anthers dehisced by valves as a synspomorphy with all the other lauralean families except Calycanthaceae and Monimiaceae, and the bisporangiate anther as a synapomorphy with Gomortegaceae and Atherospermataceae. Siparunaceae are, however, distinct from all other laularean families in having unitegmic ovules that were derived from bitegmic ovules, probably due to an elimination of the outer integument. Likewise, the lack of the testa (i.e., developed outer integument), the "endotegmic" seed coat, and the perichalazal seed at maturity are also characteristics of Siparunaceae. Within the family, Siparuna differs from Glossocalyx in having plural tetrads of megaspores and plural, starchy-rich, one-nucleate, tubular embryo sacs (autapomorphies). On the other hand, Glossocalyx is characterized by having bilaterally flattened seeds (autapomorphy). Although functional aspects of those autapomorphies are uncertain, both Glossocalyx and Siparuna show evolution in different embryological characters.  相似文献   

15.
利用石蜡切片技术,对百合科植物开口箭(Tupistra chinensis Baker)大小孢子发生及雌雄配子体发育进程进行胚胎学观察分析,以明确开口箭胚胎发育的特征,为百合科植物的研究提供生殖生物学依据。结果表明:(1)开口箭花药具有4个药室,花药壁的发育方式为基本型,由表皮、药室内壁、中层及绒毡层组成;绒毡层发育类型为分泌型,到四分体花药阶段绒毡层细胞开始解体退化,花药成熟时完全消失。(2)花粉母细胞减数分裂为连续型,依次形成二分体、四分体,四分体为左右对称形;成熟花粉为2-细胞花粉,具单萌发沟。(3)子房3室,倒生型胚珠6枚,双珠被,薄珠心;在花部的分化早期,由珠心顶端表皮下方分化出雌性孢原细胞,孢原细胞经过一次平周分裂形成周缘细胞和造孢细胞,造孢细胞发育为大孢子母细胞;大孢子母细胞第一次减数分裂后形成二分体,珠孔端的二分体孢子退化,合点端的二分体孢子继续第二次分裂,形成两个子细胞依次发育为二核胚囊、四核胚囊和八核胚囊;开口箭的胚囊发育类型为葱型。  相似文献   

16.
Two of the five species ofOliniaceae (Olinia emarginata andO. ventosa), a monotypic and problematic family of theMyrtales, were investigated embryologically.Oliniaceae clearly agree with otherMyrtales in their basic embryological characteristics, and are characterized further by having an ephemeral endothecium, a campylotropous ovule, and a thick, three-five-layered, outer integument. A combination of these three characteristic features is unknown elsewhere inMyrtales, so that embryological features do not support a close relationship with any other member of the order. Shared distinctive anther characteristics (i.e. ephemeral endothecium) suggest thatOliniaceae are derived from the common ancestor ofCrypteroniaceae s. str.,Rhynchocalycaceae, Alzateaceae, andPenaeaceae.  相似文献   

17.
Scilla persica and 5 species of the so-calledS. hohenackeri group, namely,S. furseorum, S. puschkinioides, S. vvedenskyi, S. hohenackeri, andS. greilhuberi, have been investigated embryologically with special reference to embryo sac and endosperm development.Polygonum-type embryo sac development was stated inS. puschkinioides andS. greilhuberi. 8-nucleate, normally structured embryo sacs, which could not be specified further due to sparse availability of the material, were stated inS. furseorum, S. vvedenskyi, andS. hohenackeri. InS. persica the embryo sac develops according to the bisporicAllium-type. In most species endosperm development was stated to be nuclear, exceptS. hohenackeri, where the type could not be specified. Other traits of possible taxonomic significance are the number of layers in the outer integument, which is mostly 4, or 5–6 inS. furseorum, and the occurrence of polyploid versus haploid and early degenerating antipodal nuclei, the latter occurring only inS. persica andS. furseorum. These embryological characters may be useful for assessing taxonomic relationship of the present species with other allied groups withinScilla, in particular, theS. siberica alliance,S. messeniaca, and theS. bifolia alliance. TheAllium-type embryo sac, which occurs inS. persica, is also characteristic for theS. siberica alliance, and may be a common derived character. Lack of antipodal polyploidization, as characteristic forS. persica andS. furseorum, occurs also in theS. siberica alliance, and is perhaps another common derived trait indicating phylogenetic relationship. Nuclear endosperm development is more frequent in spring-flowering squills than helobial development, which has previously been stated inS. messeniaca, some species of theS. siberica alliance, and inS. litardierei. While helobial endosperm may be primitive forHyacinthaceae in general, it may, by reversal, also occur as a derived character, at least in some species of theS. siberica alliance.  相似文献   

18.
The host range specificity ofAgrobacterium with five tea cultivars and an unrelated species (Artemisia parviflora) having extreme surface characteristics was evaluated in the present study. The degree ofAgrobacterium infection in the five cultivars of tea was affected by leaf wetness, micro-morphology and surface chemistry. Wettable leaf surfaces of TV1, Upasi-9 andKangra jat showed higher rate (75%) ofAgrobacterium infection compared to Upasi-10 and ST-449, whereas non-wettable leaves ofA. parviflora showed minimum (25%) infection. This indicated that the leaves with glabrous surface having lower 8 (larger surface area covered by water droplet), higher phenol and wax content were more suitable forAgrobacterium infection. Caffeine fraction of tea promotedAgrobacterium infection even in leaves poor in wax (Upasi-10), whereas caffeine-free wax inhibited bothAgrobacterium growth and infection. Thus, study suggests the importance of leaf surface features in influencing theAgrobacterium infection in tea leaf explants. Our study also provides a basis for the screening of a clone/cultivar of a particular species most suitable forAgrobacterium infection the first step inAgrobacterium-mediated genetic transformation.  相似文献   

19.
The floral development of representatives of six genera ofCistaceae has been studied. Calyx development involves the formation of a ring primordium in several taxa. Androecium development in species with intermediate or higher stamen numbers starts with the formation of a ring meristem on which the stamens are initiated in a centrifugal direction. In many taxa five alternipetalous leading stamen primordia can be observed. In the apetalous (cleistogamous) flowers ofTuberaria inconspicua androecium development appears to be unordered; this is probably due to the lack of petals. InLechea intermedia (also cleistogamous) the corolla is trimerous and three complex stamen primordia are produced, which give rise either to one or three stamens. Relationships withinCistaceae are discussed. Floral development inCistaceae is compared with that in otherMalvanae. Among the eight families ofMalvanae from which information on floral development is availableCochlospermaceae andBixaceae exhibit the greatest similarities toCistaceae. InCistaceae the leading stamen primordia are alternipetalous. InBixa the same condition seems to be present. InMalvales s. str. mostTiliaceae also show earliest stamen initiation in alternipetalous sectors, whereas the stamens of the innermost alternipetalous position are retarded early or even suppressed inSterculiaceae, Bombacaceae, andMalvaceae. WithinMalvales s. str. the diversity of androecial developmental patterns seems to decrease inBombacaceae andMalvaceae due to increasing synorganization in the mature androecium. The derivation of polyandry inMalvanae from diplo- or obdiplostemony is discussed by comparison with the sister clades ofMalvanae as shown in recentrbcL studies (i.e.Sapindales, Rutales, the glucosinolate producing clade, andMyrtales).  相似文献   

20.
Chromosome numbers are polyploid, 2n = 28 inBrunellia comocladiifolia andB. mexicana, and 2n = 46 inCaryocar brasiliense, C. microcarpum andC. villosum. The chromosome are small in both genera, with a length of ca. 1,6-0,4µm. Interphase nuclei correspond to the prochromosomal and the chromocentric type, respectively. This is in conformance with the systematic placement ofBrunelliaceae intoCunoniales, and ofCaryocaraceae intoTheales. Brunellia exhibits affinities to various other orders ofRosidae (andHamamelididae), and is suggested to be primarily apetalous. On a comparative basis, the chromosome numbers found in both families are interpreted as paleopolyploid (4 x and 6 x). This apparently is in correspondence with their rather primitive features, systematic isolation, relatively depauperate status, and evidently great age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号