首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
[3H]Retinoic acid (RA) and [3H]retinol bind in an unsaturable manner to isolated nuclei from Nulli-SCC1 and PCC4.aza1R embryonal carcinoma (EC) cells. When nuclei are challenged with the same labeled retinoids on their respective binding proteins (CRABP and CRBP), much less binding is observed and the binding is saturable. RA-CRABP does not compete with [3H]retinol-CRBP for binding to specific Nulli-SCC1 nuclear sites, whereas retinol-CRBP (but not apo-CRBP) actually potentiates the binding of [3H]RA-CRABP to these nuclei. The binding of [3H]RA-CRABP and [3H]retinol-CRBP is not dramatically affected by prior removal of the outer nuclear membrane with Triton X-100. However, treatment with the detergent after the binding reaction is complete removes about half of the bound [3H]RA-CRABP and almost all of the bound [3H]retinol-CRBP. We measured specific retinoid-binding activities in nucleoplasmic extracts of Nulli-SCC1 and PCC4.aza1R cells. The only readily detectable specific binding activity in nucleoplasmic extracts from untreated cells was for [3H]retinol in PCC4.aza1R preparations. Nucleoplasmic extracts from Nulli-SCC1 and PCC4.aza1R cells pretreated with RA had considerable levels of specific [3H]RA-binding activity with little or no increase in [3H]retinol binding. By contrast, similar extracts from Nulli-SCC1 cells treated with retinol bound large amounts of both [3H]retinol and [3H]RA. Under the same conditions, PCC4.aza1R extracts also contained [3H]RA-binding activity with no increase in [3H]retinol binding above the high endogenous levels. Although these results might reflect translocation of binding proteins from cytoplasm to nucleus, other interpretations must be considered since we often observed an increase, rather than the expected reduction, in cytoplasmic retinoid-binding protein levels.  相似文献   

2.
Cellular retinoic acid-binding protein (CRABP), a potential mediator of retinoic acid action, enables retinoic acid to bind in a specific manner to nuclei and chromatin isolated from testes of control and vitamin A-deficient rats. The binding of retinoic acid was followed after complexing [3H]retinoic acid with CRABP purified from rat testes. The binding was specific, saturable, and temperature dependent. If CRABP charged with nonlabeled retinoic acid was included in the incubation, binding of radioactivity was diminished, whereas inclusion of free retinoic acid, or the complex of retinol with cellular retinol binding protein (CRBP) or serum retinol binding protein had no effect. Approximately 4.0 X 10(4) specific binding sites for retinoic acid were detected per nucleus from deficient animals. The number of binding sites observed was influenced by vitamin A status. Refeeding vitamin A-deficient rats (4 h) with retinoic acid lowered the amount of detectable binding sites in the nucleus. CRABP itself did not remain bound to these sites, indicating a transfer of retinoic acid from its complex with CRABP to the nuclear sites. Further, CRBP, the putative mediator of retinol action, was found to enable retinol to be bound to testicular nuclei, in an interaction similar to the binding of retinol to liver nuclei described previously.  相似文献   

3.
F9 teratocarcinoma cells contain a cellular retinoic acid-binding protein (CRABP) that may mediate the retinoic acid-induced differentiation of this cell line. Specific [3H]retinoic acid binding to CRABP in F9 stem cell cytosol is protein-dependent, reaches equilibrium within 4 h at 4 degrees C, and yields 643 +/- 105 fmol of [3H]retinoic acid per mg of protein with an apparent dissociation constant of 9.2 +/- 1.1 nM. When F9 stem cells are grown in the presence of either dibutyryl cyclic AMP or sodium butyrate, CRABP activity is stimulated 2-4-fold. The effect of these drugs on CRABP activity is both time and concentration-dependent, resulting in an increase in the number of binding sites for [3H]retinoic acid with no change in their affinity. The new [3H]retinoic acid-binding sites have a sedimentation coefficient of 2 S and are not displaced by excess retinol. When F9 stem cells are grown in the presence of cyclic 8-bromo-AMP or cholera toxin, no increase in CRABP activity is observed. We conclude that the stimulation of CRABP activity by dibutyryl cyclic AMP may result from the action of butyrate. In addition, the stimulation of retinoic acid-induced F9 cell differentiation by cyclic AMP analogs (Strickland, S., Smith, K.K., and Marotti, K.R. (1980) Cell 21, 347-355) and the inhibition of this differentiation by butyrate (Levine R. A., Campisi, J., Wang, S.-Y., and Gudas, L. J. (1984) Dev. Biol. 105, 443-450) are not correlated with increases or decreases, respectively, in the level of CRABP activity.  相似文献   

4.
P Maly  P Dráber 《FEBS letters》1992,311(2):102-106
RAC65 is a mutant clone of mouse embryonal carcinoma cells, P19, which does not undergo terminal differentiation upon treatment with retinoic acid (RA). RAC65 cells express a truncated RA receptor alpha (RAR alpha) which, however, does not fully explain their defect. Here we show that RAC65 cells exhibit an additional defect in RAR alpha mRNA which may reflect a defect in RNA splicing. The parental and mutant cells also differ in their capacities to bind [3H]RA into nuclear fractions and in expression of cellular RA binding protein (CRABP) mRNA after treatment with RA. The combined data suggest that the defect in RAC65 RAR alpha results in reduced expression of the CRABP gene after RA treatment and, therefore, increased flow of RA into the nucleus.  相似文献   

5.
Retinoids bearing azido photoaffinity-labeling groups (azidoretinoids) have potential as probes for investigating the molecular mechanisms of action of all-trans-retinoic acid (RA) as mediated by its cellular retinoic acid-binding protein (CRABP) and nuclear receptor proteins. Two new azidoretinoids, 3-azido-4-[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1E- propen-1-yl]-benzonic acid and 4-(4-azido-5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-anthracenyl)be nzoic acid were synthesized, and evaluated for their in vitro biological potency, and binding affinity for CRABP. Like RA, these aromatic azides had significant activity in modulating cell differentiation in retinoid-deficient hamster tracheal organ culture (ED500.02 nM and 0.03 nM, respectively) and in the inhibition of the induction of ornithine decarboxylase in mouse epidermis (ED50 7.0 nmol and 0.5 nmol, respectively). They also possessed high binding affinity for CRABP (ID50 0.9 microM and 0.85 microM, respectively). The tritiated aromatic azides were further evaluated for their ability to bind covalently to CRABP after photolysis. On photolysis at -78 degrees C, the two radiolabeled azidoretinoids formed stable adducts with CRABP. Treatment of the adducts with either RA or p-chloromercuriphenylsulfonic acid (CMPS) and subsequent dialysis did not cause any dissociation, indicating the formation of a covalent bond. In contrast, treatment of the unirradiated complexes with RA or CMPS led to dissociation of the complex. Synthesis of affinity labels and characterization of CRABP-retinoid complexes should provide useful information on the ligand-binding regions and insights into the mechanism of action of RA.  相似文献   

6.
1. An [3H]oestradiol-exchange method was developed for the determination of oestradiol-receptor complexes in the nuclear fraction of immature rat testicular tissue. This method permits the determination of nuclear oestradiol-receptor sites in the presence of a relatively large amount of non-specific oestradiol binding present in testicular nuclei. After incubation of nuclei for 60min at 20 degrees C in the presence of [3H]oestradiol with or without a 1000-fold excess of non-radioactive diethylstilboestrol, specific binding can be determined quantitatively in the KCl-extractabe fraction, which contains 40% of the total receptor population. 2. The amount of receptor-bound steroid present in the 0.4m-KCl extract of testicular neclei remained constant during incubation at 20 degrees C. For uterine nuclei incubated with [3H]oestradiol at 37 degrees C a shift of specifically bound [3H]oestradiol occurred from the KCl-soluble fraction to the KCl-insoluble fraction. 3. In intact rat testis, about 20% of the total receptor concentration was present in its nuclear form. Hypophysectomy 5 days before measurement resulted in a twofold decrease in the amount of receptor, which was present mainly in the cytosol. After injection of choriogonadotropin to intact animals, the total receptor concentration increased threefold. 4. This nuclear exchange method might be useful for determination of occupied specific receptor sites in tissues with relatively low contents of specific receptors.  相似文献   

7.
A method for saturation analysis of cellular retinoic acid and retinol binding proteins, CRABP and CRBP, respectively, in cultured cells and human tumor samples, and its application to a retinoic acid resistant subline of the human neuroblastoma LA-N-5 cell line is described. Assessment of retinoid binding was accomplished by incubation of cytosols with increasing concentrations of [3H]retinoid (28-43 Ci/mmol; 1 Ci = 37 GBq) for 24 h. Bound retinoid was separated from free retinoid by adsorption with dextran-coated charcoal. Nonspecific binding was quantitated in parallel incubations which had been treated with p-chloromercuribenzene sulfonate (PCMBS), resulting in selective elimination of sulfhydryl-dependent ligand binding to both CRABP and CRBP. Quantitation was accomplished by Scatchard analysis of specific (PCMBS sensitive) binding. Employing this technique, specific retinoid binding was attributed to the presence of 2S macromolecules which displayed the known properties of CRABP and CRBP, namely ligand specificity, saturability, high ligand affinity, and PCMBS sensitivity. The apparent dissociation constants (Kd) for retinoic acid binding in cytosols prepared from murine 3T6 fibroblasts, rat testes, and a human ovarian tumor were 7, 11, and 35 nM, respectively. These preparations also bound retinol with high affinity, exhibiting Kds of 12, 26, and 48 nM, respectively. A retinoic acid resistant subline of LA-N-5 cells designated LA-N-5-R9 was established by long-term culture in the presence of 10(-6) M retinoic acid. This subline is resistant to the effects of retinoic acid in that it requires a 10-fold higher concentration of retinoic acid for 50% inhibition of growth than the parent line and displays no retinoic acid induced morphologic differentiation. Saturation analysis of CRABP in the parent and resistant subline reveal no significant alteration in either CRABP content or affinity. These results indicate that resistance to retinoic acid induced differentiation in LA-N-5-R9 occurs distal to CRABP binding or that CRABP does not mediate this response to retinoic acid.  相似文献   

8.
We report the first application of high pressure liquid chromatography (HPLC) in the rapid detection of cellular retinoic acid binding protein (CRABP) and cellular retinol binding protein (CRBP). Cytosols from cultured cells (3T6 and MCF-7) or from tumors (melanoma and ovarian) were labeled with [3H]retinoic acid (30 Ci/mmol) and [3H]retinol (43 Ci/mmol) and analyzed via HPLC employing a 60 cm TSK 3000 sw column. In each case CRABP and CRBP were readily detectable at an elution volume of 22.5 ml, consistent with their molecular weights of 14,600. Identity of the binding protein peaks was established by saturability, specificity, and selective inhibition of binding by an organomercurial. Thus, this method, which resolves CRABP and CRBP in crude mixtures from the majority of cytosolic proteins, should be a valuable tool in the evaluation of vitamin A-binding protein interactions and their biological significance.  相似文献   

9.
Retinoic acid (RA) binding has been detected in the nuclei of a subclone (CL-1) of human submandibular adenocarcinoma cell line HSG conditioned to grow in a serum-free defined medium. Competition assay confirmed the specificity of the RA binding. Scatchard analysis showed the binding molecule to have a high affinity and low capacity. From the analyses by gel-filtration and glycerol density gradient centrifugation, the nuclear binding molecule appears to be distinct from cellular RA binding protein (CRABP) in terms of molecular weight. Furthermore, immunoblotting analysis revealed a band (Mr 47,000) reactive with specific antibody to RA receptor (RAR) alpha in the gel containing the nuclear fraction of CL-1 cells. Northern blotting analysis with specific cDNA probes revealed the expression of RAR alpha and RAR gamma in CL-1 cells. These results indicate that CL-1 cells express two types of RAR subtype, suggesting that these receptor molecules may mediate biological effects of RA. Treatment of CL-1 cells with RA resulted in an increase in the incorporation of [3H]thymidine into TCA-insoluble materials. The maximal increase was observed at 10(-6) M around 48 h. Previously, we demonstrated the autocrine growth of HSG cells mediated by epidermal growth factor (EGF) receptors and EGF-like molecules (Kurokawa et al. (1989) Cancer Res. 49, 5136-5142) and showed that RA had no significant effect on the secretion of the EGF-like molecule. RA induced an increase in [125I]EGF binding to CL-1 cells. The increase in the EGF binding was maximal at 24 h at 10(-6) M RA. RA also increased the amount of [3H]leucine-labeled EGF receptor dose-dependently. No significant change was observed in total protein synthesis of CL-1 cells by treatment with RA. These results suggest that RA stimulates the growth of CL-1 cells by increasing EGF receptor levels.  相似文献   

10.
A one-step procedure to detect cellular [3H]retinol and [3H]retinoic acid binding proteins (CRBP and CRABP) from rat testis cytosolic extract was devised. The procedure is based on anion-exchange high-performance liquid chromatography of the cytosolic fraction on columns of Mono Q, which permits elution of CRABP and CRBP at 12 and 22 min, respectively.  相似文献   

11.
12.
Autoradiographic studies of [3H]aldosterone [( 3H-A] and [3H]dexamethasone binding sites in intact target cells (isolated collecting tubules of rabbit and rat kidney) revealed an almost exclusive nuclear localization of the hormone-receptor complexes. In the present work we compared the nucleo-cytoplasmic repartition of [3H]A-receptor complexes studied in parallel by biochemical and autoradiographic methods. In addition, the thermo-dependency of the nuclear translocation was examined. Kidney pyramids were incubated in vitro with [3H]A (2 X 10(-9) M) in the presence or absence of a 100-fold excess unlabelled A, at 30 degrees C for 1 h or 4 degrees C for 2 h. Then tissue was processed for isolation of nuclear and cytoplasmic fractions, on the one hand, or for obtention of microdissected tubular segments on which autoradiographs on dry films were performed. Autoradiographs showed that the specific labelling was almost exclusively nuclear without significant cytoplasmic labelling, at both 30 or 4 degrees C. This indicates that almost all binding sites migrated rapidly into nuclei, and that this translocation did not depend on temperature. In contrast, parallel biochemical experiments yielded classical results, that is, at 30 degrees C, the presence of specific binding sites in both cytoplasm and nuclei with a predominance in cytoplasm. At 4 degrees C, the cytoplasmic binding was unchanged, but nuclear binding was drastically reduced, indicating thermodependency of nuclear translocation, when studied by biochemical methods including cell disruption. Autoradiographic results thus questioned the classical notion of thermo-dependent nuclear translocation of aldosterone-receptor complexes, based on results obtained by biochemical methods.  相似文献   

13.
Incubation of chick embryo skin and mouse colon tumour 26 with [3H]retinoic acid resulted in the formation of a complex of retinoic acid and its cellular binding protein both in cytosol and in nuclei. Formation of the ligand--protein complex was temperature-dependent and increased with increases in retinoic acid concentration in the incubation medium. About 3--8% of the ligand present in the cytosol was associated with the nuclei.  相似文献   

14.
15.
Cellular retinoic acid-binding proteins (CRABPs) are carrier proteins thought to play a crucial role in the transport and metabolism of all-trans-retinoic acid (atRA) and its derivatives within the cell. This report describes a novel photoaffinity-based binding assay involving competition between potential ligands of CRABP and [(3)H]atRA or [(3)H]-9-cis-RA for binding to the atRA-binding sites of CRABP I and II. Photoaffinity labeling of purified CRABPs with [(3)H]atRA was light- and concentration-dependent, saturable, and protected by several retinoids in a concentration-dependent manner, indicating that binding occurred in the CRABP atRA-binding site. Structure-function relationship studies demonstrated that oxidative changes to the atRA beta-ionone ring did not affect ligand potency. However, derivatives lacking a terminal carboxyl group and some cis isomers did not bind to CRABPs. These studies also identified two novel ligands for CRABPs: 5,6-epoxy-RA and retinoyl-beta-D-glucuronide (RAG). The labeling of both CRABPs with 9-cis-RA occurred with much lower affinity. Experimental evidence excluded nonspecific binding of RAG to CRABPs and UDP-glucuronosyltransferases, the enzymes responsible for RAG synthesis. These results established that RAG is an effective ligand of CRABPs. Therefore, photoaffinity labeling with [(3)H]atRA can be used to identify new ligands for CRABP and retinoid nuclear receptors and also provide information concerning the identity of amino acid(s) localized in the atRA-binding site of these proteins.  相似文献   

16.
17.
The cellular retinoic acid (RA) binding proteins I and II (CRABPI and CRABPII), intracellular proteins which bind retinoic acid with high affinity, are involved in the actions of RA, though their exact roles are not fully understood. We have generated several genetically engineered AB1 cell lines in which both alleles of the CRABPI gene have been deleted by homologous recombination. We have used these CRABPI knockout cell lines to examine the consequences of functional loss of CRABPI on RA-induced gene expression and RA metabolism in the murine embryonic stem cell line, AB1, which undergoes differentiation in response to RA. Complete lack of CRABPI results in decreased intracellular [3H]RA concentrations under conditions in which external concentrations of [3H]RA are low (1-10nM) and in an altered distribution of [3H] polar metabolites of [3H]RA in the cell and in the medium. Fewer [3H] polar metabolites are retained within the CRABPI(-/-) cells compared to the wild-type cells. These data suggest that CRABPI functions to regulate the intracellular concentrations of retinoic acid and to maintain high levels of oxidized retinoic acid metabolites such as 4-oxoretinoic acid within cells.  相似文献   

18.
D S Colvard  E M Wilson 《Biochemistry》1984,23(15):3479-3486
The partially purified 4.5S [3H]dihydrotestosterone receptor binds to nuclear matrix isolated from rat Dunning prostate tumor with properties similar to those reported for androgen receptor binding in intact nuclei [Colvard, D.S., & Wilson, E.M. (1984) Biochemistry (preceding paper in this issue)] in that it requires Zn2+ and mercaptoethanol, is saturable, and is temperature dependent and of high affinity (Ka approximately 10(13) M-1). On a milligrams of DNA equivalent basis, the extent of matrix binding of androgen receptor (700 fmol of receptor bound/mg of matrix protein) is similar to that of intact nuclei, corresponding to approximately 1400 sites/nucleus. Association rate constants (ka) for 4.5S androgen receptor binding to matrix at 0, 15, and 25 degrees C are 2.7 X 10(5), 1.2 X 10(6), and 2.4 X 10(6) M-1 min-1, respectively, indicating an energy of activation of 15 kcal/mol. Up to 50% of matrix-bound receptor is extractable in buffer containing 3 mM ethylenediaminetetraacetic acid plus either 0.4 M KCl or 5 mM pyridoxal 5'-phosphate. A protein fraction designated 8S androgen receptor promoting factor that promotes conversion of the 4.5S androgen receptor to 8 S [Colvard, D. S., & Wilson, E. M. (1981) Endocrinology (Baltimore) 109, 496-504] has been further purified and found to inhibit the binding of the 4.5S androgen receptor to isolated nuclei and nuclear matrix in a concentration-dependent manner. The results support the hypothesis that the 8S steroid receptor is a complex of the activated 4.5S androgen receptor with a non-steroid binding protein that renders the receptor incapable of binding in nuclei.  相似文献   

19.
It has been suggested that cellular retinoic acid-binding protein (II) (CRABP(II)) may have a role in the movement of retinoic acid (RA) to its nuclear receptors, thereby enhancing the action of RA in the cells in which it is expressed. RA has also been shown to increase expression of CRABP(II). Previous work from our laboratory has shown that 17 beta-estradiol (E2) administration to prepubertal female rats leads to acquisition of the ability of the lining epithelium to synthesize RA as well as to express CRABP(II). To determine whether this appearance of CRABP(II) was dependent on the production of RA, both E2 and RA were administered to ovariectomized rats. E2 administration induced expression of the CRABP(II) gene in the uterus within 4 h, and this induction was not inhibited by prior administration of puromycin, indicating that the induction was direct. In contrast, RA caused no change in CRABP(II) message level, even at times as late as 48 h after administration. Isolation and analysis of 4.5 kb of the 5'-flanking region of the gene revealed no apparent E2-response element. Using this portion of the gene to drive expression of the luciferase gene in transfected cells allowed identification of a region containing an imperfect estrogen-response element and estrogen-response element half-site, necessary for E2-driven induction. A possible Sp1 binding site in the 5'-flanking region of the CRABP(II) gene was also required for this induction. The ability of E2 to induce expression of CRABP(II) suggests that it can enhance the activity of RA, directly affecting expression of retinoid-responsive genes.  相似文献   

20.
G Shyamala 《Biochemistry》1975,14(2):437-444
The specific interaction of glucocorticoids with nuclei of mouse mammary tumor was studied in vitro by incubation of the tissue with [3H]dexamethasone at 25 degrees. It was demonstrated that the mammary tumors contain a limited number of specific nuclear binding sites which were saturated with low hormone concentrations (10-8 M)9 The concentrations of specific binding sites in the nuclei were related to the concentration of cytoplasmic binding sites of unincubated tissues and varied between individual tumors. The binding component in the nuclei appeared to be a protein and was easily solubilized with 0.4 M KCl containing buffers. The ability of various corticoids to block the nuclear localization of the steroid correlated well with their glucocorticoid potency. Estradiol and progesterone at concentrations of 10-6 M were also effective in competing for the glucocorticoid receptor binding sites. However, while the glucocorticoids such as hydrocortisone and corticosterone translocated to nuclear sites also specific for dexamethasone, estradiol and progesterone competed for the cytoplasmic binding sites and did not translocate to the nucleus. The possible significance of the interaction of various steroids with the glucocorticoid receptors in mammary tumors is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号