首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Grape berry, a nonclimacteric fruit, during ripening turns from green, hard and acidic to coloured, soft and sweet. Many studies have focused on dynamic changes of mRNA levels, metabolites, sugars or individual proteins, but this is the first report of a proteomic approach applied to the screening of the most prominent variations that take place during berry ripening. Vitis vinifera cv. 'Nebbiolo Lampia' berries were collected at 10-day intervals, starting 1 month after flowering to complete ripe stage; total protein extracts from deseeded berries were separated by 2-DE. A total of 730 spots were detected in the 2-DE gels. 118 protein spots, differentially expressed during berry development, were subjected to MALDI-TOF analysis. Ninety-three of them were identified, corresponding to 101 proteins. The majority of proteins were linked to metabolism, energy and protein synthesis and fate. In comparison to published surveys of major berry proteins, fewer proteins related to stress response and more proteins related to cell structure were differentially expressed. Our data confirm a general decrease of glycolysis during ripening, and an increase of PR proteins in the range of 20-35 kDa. They furthermore suggest that oxidative stress decreases during ripening while extensive cytoskeleton rearrangement takes place in this period.  相似文献   

2.
Grapevine (Vitis vinifera L.) is an economically important fruit crop. Quality-determining grape components, such as sugars, acids, flavours, anthocyanins, tannins, etc., are accumulated during the different grape berry development stages. Thus, correlating the proteomic profiles with the biochemical and physiological changes occurring in grape is of paramount importance to advance the understanding of the berry development and ripening processes. Here, the developmental analysis of V. vinifera cv. Muscat Hamburg berries is reported at protein level, from fruit set to full ripening. A top-down proteomic approach based on differential in-gel electrophoresis (DIGE) followed by tandem mass spectrometry led to identification and quantification of 156 and 61 differentially expressed proteins in green and ripening phases, respectively. Two key points in development, with respect to changes in protein level, were detected: end of green development and beginning of ripening. The profiles of carbohydrate metabolism enzymes were consistent with a net conversion of sucrose to malate during green development. Pyrophosphate-dependent phosphofructokinase is likely to play a key role to allow an unrestricted carbon flow. The well-known change of imported sucrose fate at the beginning of ripening from accumulation of organic acid (malate) to hexoses (glucose and fructose) was well correlated with a switch in abundance between sucrose synthase and soluble acid invertase. The role of the identified proteins is discussed in relation to their biological function, grape berry development, and to quality traits. Another DIGE experiment comparing fully ripe berries from two vintages showed very few spots changing, thus indicating that protein changes detected throughout development are specific.  相似文献   

3.
The practice of postharvest withering is commonly used to correct quality traits and sugar concentration of high quality wines. To date, changes in the metabolome during the berry maturation process have been well documented; however, the biological events which occur at the protein level have yet to be fully investigated. To gain insight into the postharvest withering process, we studied the protein expression profiles of grape (Corvina variety) berry development focusing on withering utilizing a two-dimensional differential in gel electrophoresis (2D-DIGE) proteomics approach. Comparative analysis revealed changes in the abundance of numerous soluble proteins during the maturation and withering processes. On a total of 870 detected spots, 90 proteins were differentially expressed during berry ripening/withering and 72 were identified by MS/MS analysis. The majority of these proteins were related to stress and defense activity (30%), energy and primary metabolism (25%), cytoskeleton remodelling (7%), and secondary metabolism (5%). Moreover, this study demonstrates an active modulation of metabolic pathways throughout the slow dehydration process, including de novo protein synthesis in response to the stress condition and further evolution of physiological processes originated during ripening. These data represent an important insight into the withering process in terms of both Vitis germplasm characterization and knowledge which can assist quality improvement.  相似文献   

4.
Discovery‐based proteomics studies have an important role in the understanding of the biochemical processes that occur during grape berry ripening. The ripening process is relevant in determining grape berry quality. For a proteome analysis of grape berry ripening, Kambiranda et al. (2018) applied a label‐free mass spectrometry–based quantitative approach. The authors reported the identification of proteins associated with the production flavor, aroma and ethylene production. Despite the valuable contribution of discovery‐based proteomics studies, the picture is still incomplete. Future efforts in gaining proteome coverage would benefit the identification of proteins associated with grape berry quality traits.  相似文献   

5.
High purity berry plasma membranes (PMs) of Vitis vinifera L. cv. Cabernet Sauvignon were isolated by two-phase partitioning of microsome fractions at different stages of berry ripening. PM proteins resolvable by the detergent cocktail of CHAPS and ASB-14 were separated by two-dimensional electrophoresis. A total of 119 protein spots from pre-véraison berry PMs on 2-D gels detected with silver staining were subjected to MALDI-TOF mass spectrometry analysis. Sixty-two spots were identified as putative PM proteins, with 1-6 predicted transmembrane helices, including true PM proteins such as ATP synthase, ABC transporters, and GTP-binding proteins reported in plants. They were then grouped into eight functional categories, mainly involved in transport, metabolism, signal transduction, and protein synthesis. Another 11 spots were identified as proteins of unknown function. The véraison and post-véraison samples stained 98 and 86 spots on the gels, respectively. During the berry ripening process, total PM protein content gradually decreased. Among all identified proteins, 12 showed significant differences in terms of their relative abundance. Increasing ubiquitin proteolysis and cytoskeleton proteins were observed from pre-véraison to post-véraison. Zeatin O-glucosyltransferase peaked at véraison, while ubiquitin-conjugating enzyme E2-21 was down-regulated at this stage. This proteome research provides the first information on PM protein characterization during the grape berry ripening process.  相似文献   

6.
An in vivo experimental system-called the 'berry-cup' technique-was developed to study sugar phloem unloading and the accumulation of sugar in ripening grape berries. The berry-cup system consists of a single peeled grape berry immersed in a buffer solution in a cup prepared from a polypropylene syringe. A small cross-incision (2 mm in length) is made on the stylar remnant of a berry during its ripening phase, the skin of the berry then being easily peeled off, exposing the dorsal vascular bundles without damaging either these or the pulp tissue of the berry. The sites of sugar phloem unloading are thus made directly accessible and may be regulated by the buffer solution. In addition, the unloaded photoassimilates are easily transported into the buffer solution in the berry-cup. With the berry-cup technique, it takes 60 min to purge the sugar already present in the apoplast, after which the amount of sugar in the buffer solution is a direct measure of the sugar unloading from the grape berry phloem. The optimum times for sampling were 20 or 30 min, depending on the type of experiment. Sugar phloem unloading was significantly inhibited by the inclusion of either 7.5 mm NaF or 2.5 mm PCMB in the buffer solution. This study indicates that sugar phloem unloading in ripening grape berries is via the apoplastic network and that the process requires the input of energy. The system was shown to be an appropriate experimental system with which to study sugar phloem unloading in ripening grape berries, and was applied successfully to the study of berry sugar unloaded from grapevines subjected to water stress. The results showed that water deficiency inhibits sugar unloading in grape berries.  相似文献   

7.
We tested the common assumption that fleshy fruits become dependent on phloem water supply because xylem inflow declines at the onset of ripening. Using two distinct grape genotypes exposed to drought stress, we found that a sink‐driven rise in phloem inflow at the beginning of ripening was sufficient to reverse drought‐induced berry shrinkage. Rewatering accelerated berry growth and sugar accumulation concurrently with leaf photosynthetic recovery. Interrupting phloem flow through the peduncle prevented the increase in berry growth after rewatering, but interrupting xylem flow did not. Nevertheless, xylem flow in ripening berries, but not berry size, remained responsive to root or shoot pressurization. A mass balance analysis on ripening berries sampled in the field suggested that phloem water inflow may exceed growth and transpiration water demands. Collecting apoplastic sap from ripening berries showed that osmotic pressure increased at distinct rates in berry vacuoles and apoplast. Our results indicate that the decrease in xylem inflow at the onset of ripening may be a consequence of the sink‐driven increase in phloem inflow. We propose a conceptual model in which surplus phloem water bypasses the fruit cells and partly evaporates from the berry surface and partly moves apoplastically to the xylem for outflow.  相似文献   

8.
9.
Grape berries are considered recalcitrant materials in proteomic analysis, because berry tissues contain large amounts of secondary metabolites, especially phenolic compounds, which severely interfere with protein extraction and electrophoresis separation. We report hereby a PVPP/TCA-based protein extraction protocol for grape berries. Phenolic compounds in berry extracts were removed with repeated PVPP cleanups, and proteins were recovered with TCA precipitation. Protein resolution in 2-D gels was gradually improved with the increase of PVPP cleanup steps. By the protocol, about 760 protein spots of berry tissues were clearly resolved in 2-D gels with CBB staining. This protocol was also used to analyze β-1,3-glucanase (EC 3.2.1.39) in berry tissues. An anti-synthetic peptide antibody was prepared against 15 amino acid sequence residing on the surface of β-1,3-glucanase molecule. It detected two major spots in 2-D blots of berry extracts. The spots were identified by MALDI-TOF analysis as β-1,3-glucanase. The present study validates that β-1,3-glucanase is present in higher abundance in berry skins than in pulps, and in red berries than in white berries. Therefore, β-1,3-glucanase displays a tissue-specific expression. The preferential accumulation of β-1,3-glucanase in skins may be relevant to berry ripening.  相似文献   

10.
Jorge I  Navarro RM  Lenz C  Ariza D  Jorrín J 《Proteomics》2006,6(Z1):S207-S214
Major proteins of the holm oak leaf proteome have been previously identified using a combination of 2-DE, MS analysis and BLAST similarity search (Jorge et al., Proteomics 2005, 5, 222-234). That study, conducted with field samples from mature trees, revealed the existence of a great variability in the 2-DE protein map, with qualitative as well as quantitative changes, both analytical and biological. A similar study has been carried out with 2-year-old seedlings to analyze and study: (i) changes in the 2-DE protein profile at different tree developmental stages; (ii) the 2-DE protein map variability between three different Spanish provenances; and (iii) variations in the 2-DE protein profile in response to drought stress. Although the protein profile of leaves from seedlings and mature trees was fairly similar, the biological variance found was lower in the former. In the present study, new proteins have been identified. At least four different protein spots differentiated Spanish provenances, two of them identified as an ATP synthase alpha chain, and a 2,3-bisphosphoglycerate-independent phosphoglycerate mutase. Fourteen different protein spots were qualitatively variable between well-watered and drought-stressed seedlings, with some of them corresponding to enzymes of carbohydrate and protein metabolism. Data presented indicated the mobilization of storage proteins and carbohydrates, as well as photosynthesis inhibition under drought conditions.  相似文献   

11.
In an attempt to improve the detection of peroxisome proliferation as a biomarker in environmental pollution assessment, we have applied a novel approach based on peroxisomal proteomics. Peroxisomal proteins from digestive glands of mussels Mytilus galloprovincialis were analyzed using 2-DE and MS. We have generated a reference 2-DE map from samples obtained in a well-studied reference area and compared this with peroxisomal proteomes from other sequenced genomes. In addition, by comparing 2-DE maps from control samples with samples obtained in a polluted area, we have characterized the peroxisome proliferation expression pattern associated with exposure to a polluted environment. Over 100 spots were reproducibly resolved per 2-DE map; 55 differentially expressed spots were quantitatively detected and analyzed, and 14 of these showed an increase in protein expression of more than fourfold. Epoxide hydrolase, peroxisomal antioxidant enzyme, and sarcosine oxidase (SOX) have been identified by ESI MS/MS, and acyl-CoA oxidase, multifunctional protein, and Cu,Zn-superoxide dismutase were immunolocalized by Western blotting. Our results indicate that a peroxisomal protein pattern associated to marine pollutant exposure can be generated, and this approach may have a greater potential as biomarker than traditional, single-protein markers.  相似文献   

12.
Proteomic analysis offers a new approach to identify a broad spectrum of genes that are expressed in living systems. We applied a proteomic approach to study changes in wheat grain in response to drought, a major environmental parameter adversely affecting development and crop yield. Three wheat genotypes differing in genetic background were cultivated in field under well-watered and drought conditions by following a randomized complete block design with four replications. The overall effect of drought was highly significant as determined by grain yield and total dry matter. About 650 spots were reproducibly detected and analyzed on 2-DE gels. Of these, 121 proteins showed significant change under drought condition in at least one of the genotypes. Mass spectrometry analysis using MALDI-TOF/TOF led to the identification of 57 proteins. Two-thirds of identified proteins were thioredoxin (Trx) targets, in accordance with the link between drought and oxidative stress. Further, because of contrasting changes in the tolerant and susceptible genotypes studied, several proteins emerge as key participants in the drought response. In addition to providing new information on the response to water deprivation, the present study offers opportunities to pursue the breeding of wheat with enhanced drought tolerance using identified candidate genetic markers. The 2-DE database of wheat seed proteins is available for public access at http://www.proteome.ir.  相似文献   

13.
Proteome analysis of grape skins during ripening   总被引:3,自引:0,他引:3  
The characterization of proteins isolated from skin tissue is apparently an essential parameter for understanding grape ripening as this tissue contains the key compounds for wine quality. It has been particularly difficult to extract proteins from skins for analysis by two-dimensional electrophoresis gels and, therefore, a protocol for this purpose has been adapted. The focus was on the evolution of the proteome profile of grape skin during maturation. Proteome maps obtained at three stages of ripening were compared to assess the extent to which protein distribution differs in grape skin during ripening. The comparative analysis shows that numerous soluble skin proteins evolve during ripening and reveal specific distributions at different stages. Proteins involved in photosynthesis, carbohydrate metabolisms, and stress response are identified as being over-expressed at the beginning of colour-change. The end of colour-change is characterized by the over-expression of proteins involved in anthocyanin synthesis and, at harvest, the dominant proteins are involved in defence mechanisms. In particular, increases in the abundance of different chitinase and beta-1,3-glucanase isoforms were found as the berry ripens. This observation can be correlated with the increase of the activities of both of these enzymes during skin ripening. The differences observed in proteome maps clearly show that significant metabolic changes occur in grape skin during this crucial phase of ripening. This comparative analysis provides more detailed characterization of the fruit ripening process.  相似文献   

14.
Berry diameter was monitored during dry-down and rewatering cycles and pressurization of the root system of Vitis vinifera (cv. Merlot) and Vitis labruscana (cv. Concord) to test changes in xylem functionality during grape ripening. Prior to veraison (onset of ripening), berries maintained their size under declining soil moisture until the plants had used 80% of the transpirable soil water, began to shrink thereafter, and recovered rapidly after rewatering. By contrast, berry diameter declined slowly but steadily during post-veraison water stress and did not recover after rewatering; irrigation merely prevented further shrinking. Preconditioning vines with a period of water stress after flowering did not influence the berries' reaction to subsequent changes in transpirable soil water. Pressurizing the root system led to concomitant changes in berry diameter only prior to veraison, although some post-veraison Concord, but not Merlot, berries cracked under root pressurization. The xylem-mobile dye basic fuchsin, infused via the shoot base, moved throughout the berry vasculature before veraison, but became gradually confined to the brush area during ripening. When the dye was infused through the stylar end of attached berries, it readily moved back to the plant both before and after veraison. Our work demonstrated that berry-xylem conduits retain their capacity for water and solute transport during ripening. It is proposed here that apoplastic phloem unloading coupled with solute accumulation in the berry apoplast may be responsible for the decline in xylem water influx into ripening grape berries. Instead, the xylem may serve to recycle excess phloem water back to the shoot.  相似文献   

15.
16.
Viral infections are known to have a detrimental effect on grapevine yield and performance, but there is still a lack of knowledge about their effect on the quality and safety of end products. Vines of Vitis vinifera cv. Nebbiolo clone 308, affected simultaneously by Grapevine leafroll-associated virus 1 (GLRaV-1), Grapevine virus A (GVA), and Rupestris stem pitting associated virus (RSPaV), were subjected to integrated analyses of agronomical performance, grape berry characteristics, instrumental texture profile, and proteome profiling. The comparison of performance and grape quality of healthy and infected vines cultivated in a commercial vineyard revealed similar shoot fertility, number of clusters, total yield, with significant differences in titratable acidity, and resveratrol content. Also some texture parameters such as cohesiveness and resilience were altered in berries of infected plants. The proteomic analysis of skin and pulp visualized about 400 spots. The ANOVA analysis on 2D gels revealed significant differences among healthy and virus-infected grape berries for 12 pulp spots and 7 skin spots. Virus infection mainly influenced proteins involved in the response to oxidative stress in the berry skin, and proteins involved in cell structure metabolism in the pulp.  相似文献   

17.

Background  

The ripening of grape berry is generally regulated by abscisic acid (ABA), and has no relationship with ethylene function. However, functional interaction and synergism between ABA and ethylene during the beginning of grape berry ripening (véraison) has been found recently.  相似文献   

18.
During grape berry (Vitis vinifera L.) ripening, sucrose transported from the leaves is accumulated in the berry vacuoles as glucose and fructose. To study the involvement of invertase in grape berry ripening, we have cloned two cDNAs (GIN1 and GIN2) from berries. The cDNAs encode translation products that are 62% identical to each other and both appear to be vacuolar forms of invertase. Both genes are expressed in a variety of tissues, including berries, leaves, roots, seeds, and flowers, but the two genes have distinct patterns of expression. In grape berries, hexose accumulation began 8 weeks postflowering and continued until the fruit was ripe at 16 weeks. Invertase activity increased from flowering, was maximal 8 weeks postflowering, and remained constant on a per berry basis throughout ripening. Expression of GIN1 and GIN2 in berries, which was high early in berry development, declined greatly at the commencement of hexose accumulation. The results suggest that although vacuolar invertases are involved in hexose accumulation in grape berries, the expression of the genes and the synthesis of the enzymes precedes the onset of hexose accumulation by some weeks, so other mechanisms must be involved in regulating this process.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号