首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Inter-individual variability in weight gain and loss under energy surfeit and deficit conditions, respectively, are well recognized but poorly understood phenomena. We documented weight loss variability in an intensively supervised clinical weight loss program and assessed skeletal muscle gene expression and phenotypic characteristics related to variable response to a 900 kcal regimen. Matched pairs of healthy, diet-compliant, obese diet-sensitive (ODS) and diet-resistant (ODR) subjects were defined as those in the highest and lowest quintiles for weight loss rate. Physical activity energy expenditure was minimal and comparable. Following program completion and weight stabilization, skeletal muscle biopsies were obtained. Gene expression analysis of rectus femoris and vastus lateralis indicated upregulation of genes and gene sets involved in oxidative phosphorylation and glucose and fatty acid metabolism in ODS compared with ODR. In vastus lateralis, there was a higher proportion of oxidative (type I) fibers in ODS compared with ODR women and lean controls, fiber hypertrophy in ODS compared with ODR women and lean controls, and lower succinate dehydrogenase in oxidative and oxidative-glycolytic fibers in all obese compared with lean subjects. Intramuscular lipid content was generally higher in obese versus lean, and specifically higher in ODS vs. lean women. Altogether, our findings demonstrate differences in muscle gene expression and fiber composition related to clinical weight loss success.  相似文献   

5.
6.
M J Morgan  P T Loughna 《FEBS letters》1989,255(2):427-430
Work induced hypertrophy of the slow postural soleus and the fast phasic plantaris muscles was produced by tenotomy of the synergistic gastrocnemius muscle. Increases in weight of both muscles were associated with proportionately even larger increases in total RNA and mRNA levels. Alterations in levels of specific myosin heavy chain (MHC) isoform mRNAs were measured using the slot blot procedure with radioactively labelled oligonucleotides as probes. Type 1 MHC gene expression was unaffected in both muscles by work overload, whereas type 2a was deinduced in the soleus and type 2b was deinduced in the plantaris. The neonatal MHC gene was transiently reinduced in the plantaris.  相似文献   

7.
8.
Calcineurin-dependent pathways have been implicated in the hypertrophic response of skeletal muscle to functional overload (OV) (Dunn, S.E., J.L. Burns, and R.N. Michel. 1999. J. Biol. Chem. 274:21908-21912). Here we show that skeletal muscles overexpressing an activated form of calcineurin (CnA*) exhibit a phenotype indistinguishable from wild-type counterparts under normal weightbearing conditions and respond to OV with a similar doubling in cell size and slow fiber number. These adaptations occurred despite the fact that CnA* muscles displayed threefold higher calcineurin activity and enhanced dephosphorylation of the calcineurin targets NFATc1, MEF2A, and MEF2D. Moreover, when calcineurin signaling is compromised with cyclosporin A, muscles from OV wild-type mice display a lower molecular weight form of CnA, originally detected in failing hearts, whereas CnA* muscles are spared this manifestation. We also show that OV-induced growth and type transformations are prevented in muscle fibers of transgenic mice overexpressing a peptide that inhibits calmodulin from signaling to target enzymes. Taken together, these findings provide evidence that both calcineurin and its activity-linked upstream signaling elements are crucial for muscle adaptations to OV and that, unless significantly compromised, endogenous levels of this enzyme can accommodate large fluctuations in upstream calcium-dependent signaling events.  相似文献   

9.
Members of the heat shock protein 90 (Hsp90) family of molecular chaperones play important roles in allowing a select group of intracellular signaling molecules reach and maintain functionally active conformations. We have previously shown that hsp90alpha gene expression in early zebrafish embryos is restricted to a subgroup of paraxial-mesoderm derived somitic cells prior to muscle formation and that the gene is downregulated in mature trunk and tail muscle fibers. Here we have compared the expression of the hsp90alpha gene to muscle regulatory genes during development of slow and fast muscle fibers in normal embryos and in embryos carrying mutations which affect somitic muscle formation. We show that hsp90alpha is first expressed early during the development of slow somitic muscle progenitors shortly following myoD activation and at a point prior to or co-incident with the expression of other known muscle regulatory genes. Expression of hsp90alpha is also activated in the midline of flh mutants when these cells switch from a notochord to a muscle fate. Conversely, expression is not detectable in cells of the paraxial mesoderm lineage which fail to converge in spt mutants and which do not activate expression of other muscle specific marker genes. Finally, expression of hsp90alpha is downregulated in slow muscle fibers by 24 h of age but becomes detectable in the later developing fast fibers at this time. Thus, hsp90alpha is expressed in developing muscle progenitors during short temporal and spatial windows of both slow and fast fiber lineages in the zebrafish somite.  相似文献   

10.
11.
Gene delivery to skeletal muscle is a promising strategy for the treatment of muscle disorders and for the local or systemic secretion of therapeutic proteins. However, current DNA delivery technologies have to be improved. We report very efficient luciferase gene transfer into muscle fibres obtained through the delivery of squarewave electric pulses of moderate field strength (100–200 V/cm) and of long duration (20 ms) to muscle previously injected with plasmid DNA. This intramuscular ‘electrotransfer’ method increases reporter gene expression by more than 100 times. It is noteworthy that this expression remains high and stable for at least 9 months. Moreover, intramuscular electrotransfer strongly decreases the interindividual variability usually observed after plasmid DNA injection into muscle fibres. Therefore, DNA electrotransfer in muscle possesses broad potential applications in gene therapy and for physiological, pharmacological and developmental studies.  相似文献   

12.
Stimulation of glucose transport in skeletal muscle by hypoxia   总被引:5,自引:0,他引:5  
Hypoxia caused a progressive cytochalasin B-inhibitable increase in the rate of 3-O-methylglucose transport in rat epitrochlearis muscles to a level approximately six-fold above basal. Muscle ATP concentration was well maintained during hypoxia, and increased glucose transport activity was still present after 15 min of reoxygenation despite repletion of phosphocreatine. However, the increase in glucose transport activity completely reversed during a 180-min-long recovery in oxygenated medium. In perfused rat hindlimb muscles, hypoxia caused an increase in glucose transporters in the plasma membrane, suggesting that glucose transporter translocation plays a role in the stimulation of glucose transport by hypoxia. The maximal effects of hypoxia and insulin on glucose transport activity were additive, whereas the effects of exercise and hypoxia were not, providing evidence suggesting that hypoxia and exercise stimulate glucose transport by the same mechanism. Caffeine, at a concentration too low to cause muscle contraction or an increase in glucose transport by itself, markedly potentiated the effect of a submaximal hypoxic stimulus on sugar transport. Dantrolene significantly inhibited the hypoxia-induced increase in 3-O-methylglucose transport. These effects of caffeine and dantrolene suggest that Ca2+ plays a role in the stimulation of glucose transport by hypoxia.  相似文献   

13.
14.
15.
16.
17.
18.
Welle S  Tawil R  Thornton CA 《PloS one》2008,3(1):e1385
There is sexual dimorphism of skeletal muscle, the most obvious feature being the larger muscle mass of men. The molecular basis for this difference has not been clearly defined. To identify genes that might contribute to the relatively greater muscularity of men, we compared skeletal muscle gene expression profiles of 15 normal men and 15 normal women by using comprehensive oligonucleotide microarrays. Although there were sex-related differences in expression of several hundred genes, very few of the differentially expressed genes have functions that are obvious candidates for explaining the larger muscle mass of men. The men tended to have higher expression of genes encoding mitochondrial proteins, ribosomal proteins, and a few translation initiation factors. The women had >2-fold greater expression than the men (P<0.0001) of two genes that encode proteins in growth factor pathways known to be important in regulating muscle mass: growth factor receptor-bound 10 (GRB10) and activin A receptor IIB (ACVR2B). GRB10 encodes a protein that inhibits insulin-like growth factor-1 (IGF-1) signaling. ACVR2B encodes a myostatin receptor. Quantitative RT-PCR confirmed higher expression of GRB10 and ACVR2B genes in these women. In an independent microarray study of 10 men and 9 women with facioscapulohumeral dystrophy, women had higher expression of GRB10 (2.7-fold, P<0.001) and ACVR2B (1.7-fold, P<0.03). If these sex-related differences in mRNA expression lead to reduced IGF-1 activity and increased myostatin activity, they could contribute to the sex difference in muscle size.  相似文献   

19.
20.
Molecular and Cellular Biochemistry - Skeletal muscle contains various myofiber types closely associated with satellite stem cells, vasculature, and neurons, thus making it difficult to perform...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号