首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signaling by the calcium-dependent phosphatase calcineurin profoundly influences the growth and gene expression of cardiac and skeletal muscle. Calcineurin binds to calsarcins, a family of muscle-specific proteins of the sarcomeric Z-disc, a focal point in the pathogenesis of human cardiomyopathies. We show that calsarcin-1 negatively modulates the functions of calcineurin, such that calcineurin signaling was enhanced in striated muscles of mice that do not express calsarcin-1. As a consequence of inappropriate calcineurin activation, mice with a null mutation in calsarcin-1 showed an excess of slow skeletal muscle fibers. The absence of calsarcin-1 also activated a hypertrophic gene program, despite the absence of hypertrophy, and enhanced the cardiac growth response to pressure overload. In contrast, cardiac adaptation to other hypertrophic stimuli, such as chronic catecholamine stimulation or exercise, was not affected. These findings show important roles for calsarcins as modulators of calcineurin signaling and the transmission of a specific subset of stress signals leading to cardiac remodeling in vivo.  相似文献   

2.
Calcineurin is required for skeletal muscle hypertrophy.   总被引:23,自引:0,他引:23  
  相似文献   

3.
4.
5.
6.
The molecular mechanisms controlling -adrenergic receptor agonist (BA)-induced skeletal muscle hypertrophy are not well known. We presently report that BA exerts a distinct muscle- and muscle fiber type-specific hypertrophy. Moreover, we have shown that pharmacologically or genetically attenuating extracellular signal-regulated kinase (ERK) signaling in muscle fibers resulted in decreases (P < 0.05) in fast but not slow fiber type-specific reporter gene expressions in response to BA exposure in vitro and in vivo. Consistent with these data, forced expression of MAPK phosphatase 1, a nuclear protein that dephosphorylates ERK1/2, in fast-twitch skeletal muscle ablated (P < 0.05) the hypertrophic effects of BA feeding (clenbuterol, 20 parts per million in water) in vivo. Further analysis has shown that BA-induced phosphorylation and activation of ERK occurred to a greater (P < 0.05) extent in fast myofibers than in slow myofibers. Analysis of the basal level of ERK activity in slow and fast muscles revealed that ERK1/2 is activated to a greater extent in fast- than in slow-twitch muscles. These data indicate that ERK signaling is differentially involved in BA-induced hypertrophy in slow and fast skeletal muscles, suggesting that the increased abundance of phospho-ERK1/2 and ERK activity found in fast-twitch myofibers, compared with their slow-twitch counterparts, may account, at least in part, for the fiber type-specific hypertrophy induced by BA stimulation. These data suggest that fast myofibers are pivotal in the adaptation of muscle to environmental cues and that the mechanism underlying this change is partially mediated by the MAPK signaling cascade. muscle fiber type; mitogen-activated protein kinase signaling pathways; mechanism  相似文献   

7.
8.
9.
10.
11.
Signals that determine fast- and slow-twitch phenotypes of skeletal muscle fibers are thought to stem from depolarization, with concomitant contraction and activation of calcium-dependent pathways. We examined the roles of contraction and activation of calcineurin (CN) in regulation of slow and fast myosin heavy chain (MHC) protein expression during muscle fiber formation in vitro. Myotubes formed from embryonic day 21 rat myoblasts contracted spontaneously, and approximately 10% expressed slow MHC after 12 d in culture, as seen by immunofluorescent staining. Transfection with a constitutively active form of calcineurin (CN*) increased slow MHC by 2.5-fold as determined by Western blot. This effect was attenuated 35% by treatment with tetrodotoxin and 90% by administration of the selective inhibitor of CN, cyclosporin A. Conversely, cyclosporin A alone increased fast MHC by twofold. Cotransfection with VIVIT, a peptide that selectively inhibits calcineurin-induced activation of the nuclear factor of activated T-cells, blocked the effect of CN* on slow MHC by 70% but had no effect on fast MHC. The results suggest that contractile activity-dependent expression of slow MHC is mediated largely through the CN-nuclear factor of activated T-cells pathway, whereas suppression of fast MHC expression may be independent of nuclear factor of activated T-cells.  相似文献   

12.
13.
14.
The protein phosphatase calcineurin is a signaling intermediate that induces the transformation of fast-twitch skeletal muscle fibers to a slow-twitch phenotype. This reprogramming of the skeletal muscle gene expression profile may have therapeutic applications for metabolic disease. Insulin-stimulated glucose uptake in skeletal muscle is both impaired in individuals with type II diabetes mellitus and positively correlated with the percentage of slow- versus fast-twitch muscle fibers. Using transgenic mice expressing activated calcineurin in skeletal muscle, we report that skeletal muscle reprogramming by calcineurin activation leads to improved insulin-stimulated 2-deoxyglucose uptake in extensor digitorum longus (EDL) muscles compared with wild-type mice, concomitant with increased protein expression of the insulin receptor, Akt, glucose transporter 4, and peroxisome proliferator-activated receptor-gamma co-activator 1. Transgenic mice exhibited elevated glycogen deposition, enhanced amino acid uptake, and increased fatty acid oxidation in EDL muscle. When fed a high-fat diet, transgenic mice maintained superior rates of insulin-stimulated glucose uptake in EDL muscle and were protected against diet-induced glucose intolerance. These results validate calcineurin as a target for enhancing insulin action in skeletal muscle.  相似文献   

15.
16.
There are two main differences regarding acetylcholinesterase (AChE) expression in the extrajunctional regions of fast and slow rat muscles: (1) the activity of AChE catalytic subunits (G1 form) is much higher in fast than in slow muscles, and (2) the activity of the asymmetric forms of AChE (A(8) and A(12)) is quite high extrajunctionally in slow muscles but virtually absent in fast muscles. The latter is due to the absence of the expression of AChE-associated collagen Q (ColQ) in the extrajunctional regions of fast muscle fibers, in contrast to its ample expression in slow muscles. We showed that both differences are caused by different neural activation patterns of fast vs. slow muscle fibers, which determine the respective levels of mRNA of both proteins. Whereas the changes in AChE mRNA levels in fast and slow muscles, as well as the levels of ColQ mRNA levels in slow muscles, observed in response to exposing either slow or fast muscles to different muscle activation patterns, are completely reversible, the extrajunctional suppression of ColQ expression in fast muscle fibers seems to be irreversible. Calcineurin signaling pathway in muscles is activated by high-average sarcoplasmic calcium concentration resulting from tonic low-frequency muscle fiber activation pattern, typical for slow muscle fibers, but is inactive in fast muscle fibers, which are activated by infrequent high-frequency bursts of neural impulses. Application to rats of two inhibitors of calcineurin (tacrolimus-FK506 and cyclosporin A) demonstrated that the mRNA levels of both the AChE catalytic subunit and ColQ in the extrajunctional regions of the soleus muscle are regulated by the calcineurin signaling pathway, but in a reciprocal way. Under the conditions of low calcineurin activity, AChE expression is enhanced and that of ColQ is suppressed, and vice versa. Our results also indicated that different, calcineurin-independent regulatory pathways are responsible for the reduction of AChE expression during muscle denervation, and for maintaining high ColQ expression in the neuromuscular junctions of fast muscle fibers.  相似文献   

17.
18.
19.
Skeletal muscle atrophy is a severe morbidity caused by a variety of conditions, including cachexia, cancer, AIDS, prolonged bedrest, and diabetes. One strategy in the treatment of atrophy is to induce the pathways normally leading to skeletal muscle hypertrophy. The pathways that are sufficient to induce hypertrophy in skeletal muscle have been the subject of some controversy. We describe here the use of a novel method to produce a transgenic mouse in which a constitutively active form of Akt can be inducibly expressed in adult skeletal muscle and thereby demonstrate that acute activation of Akt is sufficient to induce rapid and significant skeletal muscle hypertrophy in vivo, accompanied by activation of the downstream Akt/p70S6 kinase protein synthesis pathway. Upon induction of Akt in skeletal muscle, there was also a significant decrease in adipose tissue. These findings suggest that pharmacologic approaches directed toward activating Akt will be useful in inducing skeletal muscle hypertrophy and that an increase in lean muscle mass is sufficient to decrease fat storage.  相似文献   

20.
There are two main differences regarding acetylcholinesterase (AChE) expression in the extrajunctional regions of fast and slow rat muscles: (1) the activity of AChE catalytic subunits (G1 form) is much higher in fast than in slow muscles, and (2) the activity of the asymmetric forms of AChE (A8 and A12) is quite high extrajunctionally in slow muscles but virtually absent in fast muscles. The latter is due to the absence of the expression of AChE-associated collagen Q (ColQ) in the extrajunctional regions of fast muscle fibers, in contrast to its ample expression in slow muscles. We showed that both differences are caused by different neural activation patterns of fast vs. slow muscle fibers, which determine the respective levels of mRNA of both proteins. Whereas the changes in AChE mRNA levels in fast and slow muscles, as well as the levels of ColQ mRNA levels in slow muscles, observed in response to exposing either slow or fast muscles to different muscle activation patterns, are completely reversible, the extrajunctional suppression of ColQ expression in fast muscle fibers seems to be irreversible. Calcineurin signaling pathway in muscles is activated by high-average sarcoplasmic calcium concentration resulting from tonic low-frequency muscle fiber activation pattern, typical for slow muscle fibers, but is inactive in fast muscle fibers, which are activated by infrequent high-frequency bursts of neural impulses. Application to rats of two inhibitors of calcineurin (tacrolimus-FK506 and cyclosporin A) demonstrated that the mRNA levels of both the AChE catalytic subunit and ColQ in the extrajunctional regions of the soleus muscle are regulated by the calcineurin signaling pathway, but in a reciprocal way. Under the conditions of low calcineurin activity, AChE expression is enhanced and that of ColQ is suppressed, and vice versa. Our results also indicated that different, calcineurin-independent regulatory pathways are responsible for the reduction of AChE expression during muscle denervation, and for maintaining high ColQ expression in the neuromuscular junctions of fast muscle fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号