首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Geometric Clutch model of ciliary and flagellar beating uses the transverse force (t-force) that develops between the outer doublets of the axoneme as the regulator for activating and deactivating the dynein motors and organizing the flagellar beat. The version of the model described here adds detail to the formulations used in the two previous versions as follows: (1) In place of two opposing sets of dyneins, the new model has four sets of dyneins, corresponding to two sets on each side of the axoneme acting in series. (2) The four sets of dyneins are each subdivided into two ranks representing inner and outer arm dyneins. (3) The force produced by each dynein is governed by a force-velocity relationship that is independently specified for the inner and outer arms. Consistent with the original model, the new version of the Geometric Clutch model can simulate both the effective and recovery stroke phases of the ciliary beat using a single uniform algorithm. In addition, the new version can operate with the outer arms disabled. Under this condition, the simulation exhibits a beat pattern similar to the original but the beat frequency is reduced to approximately one third. These results are contingent on using force-velocity relationships for the inner and outer arms similar to those described by Brokaw [1999: Cell Motil. Cytoskeleton 42:134-148], where the inner arms contribute most of the driving force at low shear velocities. This constitutes the first examination of the effects of the force-velocity characteristics of dynein on a cilia-like beat in a theoretical framework.  相似文献   

2.
Mutants with outer dynein arm defects or deficiencies all show a major reduction in beat frequency to about half the normal value; some of these mutants show an additional decrease in sliding velocity associated with reduced shear amplitude and an additional reduction in beat frequency, as well as other more minor modifications of the normal forward mode bending pattern. New mutants (ida98, pf30), which appear to be deficient in a subset of inner dynein arms show a reduction in sliding velocity that is primarily associated with a reduction in shear amplitude, with only a small reduction in beat frequency. These differences in motility phenotype between inner and outer dynein arm mutants suggest that inner and outer dynein arms may have distinct functions. The relatively large decrease in sliding velocity associated with partial loss of inner arms is consistent with earlier observations on pf23, a nonmotile mutant lacking inner arms, suggesting that inner arms may have an essential function in motility. The ability to generate reverse mode bending patterns is retained in some inner or outer dynein arm mutants, but appears to be decreased in those mutants which show reduced shear amplitude for the forward mode bending pattern.  相似文献   

3.
Ciliary beat frequency is primarily regulated by outer arm dyneins (22 S dynein). Chilcote and Johnson (Chilcote, T. J., and Johnson, K. A. (1990) J. Biol. Chem. 256, 17257-17266) previously studied isolated Tetrahymena 22 S dynein, identifying a protein p34, which showed cAMP-dependent phosphorylation. Here, we characterize the molecular biochemistry of p34 further, demonstrating that it is the functional ortholog of the 22 S dynein regulatory light chain, p29, in Paramecium. p34, thiophosphorylated in isolated axonemes in the presence of cAMP, co-purified with 22 S dynein and not with inner arm dynein (14 S dynein). Isolated 22 S dynein containing phosphorylated p34 showed approximately 70% increase in in vitro microtubule translocation velocity compared with its unphosphorylated counterpart. Extracted p34 rebound to isolated 22 S dynein from either Tetrahymena or Paramecium but not to 14 S dynein from either ciliate. Binding of radiolabeled p34 to 22 S dynein was competitive with p29. Phosphorylated p34 was not present in axonemes isolated from a mutant lacking outer arms. Two-dimensional gel electrophoresis followed by phosphorimaging revealed at least five phosphorylated p34-related spots, consistent with multiple phosphorylation sites in p34 or perhaps multiple isoforms of p34. These new features suggest that a class of outer arm dynein light chains including p34 regulates microtubule sliding velocity and consequently ciliary beat frequency through phosphorylation.  相似文献   

4.
Among the major challenges in understanding ciliary and flagellar motility is to determine how the dynein motors are assembled and localized and how dynein-driven outer doublet microtubule sliding is controlled. Diverse studies, particularly in Chlamydomonas, have determined that the inner arm dynein I1 is targeted to a unique structural position and is critical for regulating the microtubule sliding required for normal ciliary/flagellar bending. As described in this review, I1 dynein offers additional opportunities to determine the principles of assembly and targeting of dyneins to cellular locations and for studying the mechanisms that regulate dynein activity and control of motility by phosphorylation.  相似文献   

5.
Two procedures were used for extraction of demembranated sea urchin sperm flagella with increased KCl concentrations, to remove outer dynein arms. Extraction with 0.55 M KCl in the Triton-demembranation solution produced a rapid fall in average sliding velocity to 50% of its unextracted value, with extensive changes in bending behavior of the distal half of the flagellum. Extraction with 0.42 M KCl following demembranation and activation by incubation with cAMP produced a more gradual fall in sliding velocity, reaching 50% of the unextracted value after 180 sec extraction. This procedure produced somewhat more normal bending patterns. In both cases, the bending pattern of the basal region of the flagellum is altered very little by extraction, in agreement with data from Chlamydomonas mutant flagella deficient in outer arm dyneins.  相似文献   

6.
To study dynein arm activity at high temporal resolution, axonemal sliding was measured field by field for wild type and dynein arm mutants of Tetrahymena thermophila. For wt SB255 cells, when the rate of data acquisition was 60 fps, about 5x greater than previously published observations, sliding was observed to be discontinuous with very high velocity sliding (average 196 microm/sec) for a few msec (1 or 2 fields) followed by a pause of several fields. The sliding velocities measured were an order of magnitude greater than rates previously measured by video analysis. However, when the data were analyzed at 12 fps for the same axonemes, consistent with previous observations, sliding was linear as the axonemes extended several times their original length with an average velocity of approximately 10 microm/sec. The pauses or stops occurred at approximately 200 and 300% of the initial length, suggesting that dynein arms on one axonemal doublet were initially active to the limit of extension, and then the arms on the next doublet became activated. In contrast, in a mutant where OADs are missing, sliding observed at 60 fps was continuous and slow (5 microm/sec), as opposed to the discontinuous high-velocity sliding of SB255 and of the mutant at the permissive temperature where OADs are present. High-velocity step-wise sliding was also present in axonemes from an inner arm dynein mutant (KO6). These results indicate that the high-speed discontinuous pattern of sliding is produced by the mechanochemical activity of outer arm dynein. The rate of sliding is consistent with a low duty ratio of the outer arm dynein and with the operation of each arm along a doublet once per beat.  相似文献   

7.
Cilia and flagella are motile organelles that play various roles in eukaryotic cells. Ciliary movement is driven by axonemal dyneins (outer arm and inner arm dyneins) that bind to peripheral microtubule doublets. Elucidating the molecular mechanism of ciliary movement requires the genetic engineering of axonemal dyneins; however, no expression system for axonemal dyneins has been previously established. This study is the first to purify recombinant axonemal dynein with motile activity. In the ciliated protozoan Tetrahymena, recombinant outer arm dynein purified from ciliary extract was able to slide microtubules in a gliding assay. Furthermore, the recombinant dynein moved processively along microtubules in a single-molecule motility assay. This expression system will be useful for investigating the unique properties of diverse axonemal dyneins and will enable future molecular studies on ciliary movement.  相似文献   

8.
Tctex1 and Tctex2 were originally described as potential distorters/sterility factors in the non-Mendelian transmission of t-haplotypes in mice. These proteins have since been identified as subunits of cytoplasmic and/or axonemal dyneins. Within the Chlamydomonas flagellum, Tctex1 is a subunit of inner arm I1. We have now identified a second Tctex1-related protein (here termed LC9) in Chlamydomonas. LC9 copurifies with outer arm dynein in sucrose density gradients and is missing only in those strains completely lacking this motor. Zero-length cross-linking of purified outer arm dynein indicates that LC9 interacts directly with both the IC1 and IC2 intermediate chains. Immunoblot analysis revealed that LC2, LC6, and LC9 are missing in an IC2 mutant strain (oda6-r88) that can assemble outer arms but exhibits significantly reduced flagellar beat frequency. This defect is unlikely to be due to lack of LC6, because an LC6 null mutant (oda13) exhibits only a minor swimming abnormality. Using an LC2 null mutant (oda12-1), we find that although some outer arm dynein components assemble in the absence of LC2, they are nonfunctional. In contrast, dyneins from oda6-r88, which also lack LC2, retain some activity. Furthermore, we observed a synthetic assembly defect in an oda6-r88 oda12-1 double mutant. These data suggest that LC2, LC6, and LC9 have different roles in outer arm assembly and are required for wild-type motor function in the Chlamydomonas flagellum.  相似文献   

9.
《The Journal of cell biology》1987,105(4):1781-1787
Our goal was to determine the direction of force generation of the inner dynein arms in flagellar axonemes. We developed an efficient means of extracting the outer row of dynein arms in demembranated sperm tail axonemes, leaving the inner row of dynein arms structurally and functionally intact. Sperm tail axonemes depleted of outer arms beat at half the beat frequency of sperm tails with intact arms over a wide range of ATP concentrations. The isolated, outer arm-depleted axonemes were induced to undergo microtubule sliding in the presence of ATP and trypsin. Electron microscopic analysis of the relative direction of microtubule sliding (see Sale, W. S. and P. Satir, 1977, Proc. Natl. Acad. Sci. USA, 74:2045-2049) revealed that the doublet microtubule with the row of inner dynein arms, doublet N, always moved by sliding toward the proximal end of the axoneme relative to doublet N + 1. Therefore, the inner arms generate force such that doublet N pushes doublet N + 1 tipward. This is the same direction of microtubule sliding induced by ATP and trypsin in axonemes having both inner and outer dynein arms. The implications of this result for the mechanism of ciliary bending and utility in functional definition of cytoplasmic dyneins are discussed.  相似文献   

10.
Outer arm dynein was purified from sperm flagella of a sea anemone, Anthopleura midori, and its biochemical and biophysical properties were characterized. The dynein, obtained at a 20S ATPase peak by sucrose density gradient centrifugation, consisted of two heavy chains, three intermediate chains, and seven light chains. The specific ATPase activity of dynein was 1.3 micromol Pi/mg/min. Four polypeptides (296, 296, 225, and 206 kDa) were formed by UV cleavage at 365 nm of dynein in the presence of vanadate and ATP. In addition, negatively stained images of dynein molecules and the hook-shaped image of the outer arm of the flagella indicated that sea anemone outer arm dynein is two-headed. In contrast to protist dyneins, which are three-headed, outer arm dyneins of flagella and cilia in multicellular animals are two-headed molecules corresponding to the two heavy chains. Phylogenetic considerations were made concerning the diversity of outer arm dyneins.  相似文献   

11.
The inner row of dynein arms contains three dynein subforms. Each is distinct in composition and location in flagellar axonemes. To begin investigating the specificity of inner dynein arm assembly, we assessed the capability of isolated inner arm dynein subforms to rebind to their appropriate positions on axonemal doublet microtubules by recombining them with either mutant or extracted axonemes missing some or all dyneins. Densitometry of Coomassie blue-stained polyacrylamide gels revealed that for each inner dynein arm subform, binding to axonemes was saturable and stoichiometric. Using structural markers of position and polarity, electron microscopy confirmed that subforms bound to the correct inner arm position. Inner arms did not bind to outer arm or inappropriate inner arm positions despite the availability of sites. These and previous observations implicate specialized tubulin isoforms or nontubulin proteins in designation of specific inner dynein arm binding sites. Further, microtubule sliding velocities were restored to dynein-depleted axonemes upon rebinding of the missing inner arm subtypes as evaluated by an ATP-induced microtubule sliding disintegration assay. Therefore, not only were the inner arm dynein subforms able to identify and bind to the correct location on doublet microtubules but they bound in a functionally active conformation.  相似文献   

12.
Chlamydomonas reinhardtii can use their flagella for two distinct types of movement: swimming through liquid or gliding on a solid substrate. Cells switching from swimming to gliding motility undergo a reversible flagellar quiescence. This phenomenon appears to involve the outer dynein arms, since mutants having altered outer arm beta and gamma dyneins (sup-pf-1 and sup-pf-2) show a diminished ability to quiesce. Sup-pf-1 and sup-pf-2 were originally isolated as gain-of-function mutations that suppress the flagellar paralysis resulting from radial spoke or central pair defects. Defective quiescence is also a gain-of-function phenomenon, as cells completely lacking outer arm heavy chains show a normal quiescence phenotype. These data suggest that regulation of outer arm dynein activity is essential for flagellar quiescence and furthermore that regulation of quiescence involves a signal transduction pathway that shares elements with the radial spoke/central pair system.  相似文献   

13.
The highly conserved LC8/DYNLL family proteins were originally identified in axonemal dyneins and subsequently found to function in multiple enzyme systems. Genomic analysis uncovered a third member (LC10) of this protein class in Chlamydomonas. The LC10 protein is extracted from flagellar axonemes with 0.6 M NaCl and cofractionates with the outer dynein arm in sucrose density gradients. Furthermore, LC10 is specifically missing only from axonemes of those strains that fail to assemble outer dynein arms. Previously, the oda12-1 insertional allele was shown to lack the Tctex2-related dynein light chain LC2. The LC10 gene is located approximately 2 kb from that of LC2 and is also completely missing from this mutant but not from oda12-2, which lacks only the 3' end of the LC2 gene. Although oda12-1 cells assemble outer arms that lack only LC2 and LC10, this strain exhibits a flagellar beat frequency that is consistently less than that observed for strains that fail to assemble the entire outer arm and docking complex (e.g., oda1). These results support a key regulatory role for the intermediate chain/light chain complex that is an integral and highly conserved feature of all oligomeric dynein motors.  相似文献   

14.
In order to clarify the role of the inner arms of the axoneme in sperm flagellar movement, we prepared an ATPase fraction (12S) from the outer arm-depleted axonemes of sea urchin sperm flagella. When both arm-depleted axonemes were incubated with the 12S ATPase, they exhibited the sliding disintegration of outer doublet microtubules. Electron microscopy revealed that the ATPase rebound to the original inner arm sites of the axoneme. Therefore, it is quite likely that the 12S ATPase is one of the components of the inner arms. We referred to it as "inner arm dynein".  相似文献   

15.
A novel Chlamydomonas flagellar mutant (oda-11) missing the alpha heavy chain of outer arm dynein but retaining the beta and gamma heavy chains was isolated. Restriction fragment length polymorphism analysis with an alpha heavy chain locus genomic probe indicated that the oda-11 mutation was genetically linked with the structural gene of the alpha heavy chain. In cross-section electron micrographs, the oda-11 axoneme lacked the outermost appendage of the outer arm, indicating that the alpha heavy chain should be located in this region in the wild-type outer arm. This mutant swam at 119 microns/s at 25 degrees C, i.e., at an intermediate speed between those of wild type (194 microns/s) and of oda-1 (62 microns/s), a mutant missing the entire outer dynein arm. The flagellar beat frequency (approximately 50 Hz) was also between those of wild type (approximately 60 Hz) and oda-1 (approximately 26 Hz). These results indicate that the outer dynein arm of Chlamydomonas can be assembled without the alpha heavy chain, and that the outer arm missing the alpha heavy chain retains partial function.  相似文献   

16.
Computer simulations have been carried out with a model flagellum that can bend in three dimensions. A pattern of dynein activation in which regions of dynein activity propagate along each doublet, with a phase shift of approximately 1/9 wavelength between adjacent doublets, will produce a helical bending wave. This pattern can be termed "doublet metachronism." The simulations show that doublet metachronism can arise spontaneously in a model axoneme in which activation of dyneins is controlled locally by the curvature of each outer doublet microtubule. In this model, dyneins operate both as sensors of curvature and as motors. Doublet metachronism and the chirality of the resulting helical bending pattern are regulated by the angular difference between the direction of the moment and sliding produced by dyneins on a doublet and the direction of the controlling curvature for that doublet. A flagellum that is generating a helical bending wave experiences twisting moments when it moves against external viscous resistance. At high viscosities, helical bending will be significantly modified by twist unless the twist resistance is greater than previously estimated. Spontaneous doublet metachronism must be modified or overridden in order for a flagellum to generate the planar bending waves that are required for efficient propulsion of spermatozoa. Planar bending can be achieved with the three-dimensional flagellar model by appropriate specification of the direction of the controlling curvature for each doublet. However, experimental observations indicate that this "hard-wired" solution is not appropriate for real flagella.  相似文献   

17.
Ciliary and flagellar axonemes contain multiple inner arm dyneins of which the functional difference is largely unknown. In this study, a Chlamydomonas mutant, ida9, lacking inner arm dynein c was isolated and shown to carry a mutation in the DHC9 dynein heavy chain gene. The cDNA sequence of DHC9 was determined, and its information was used to show that >80% of it is lost in the mutant. Electron microscopy and image analysis showed that the ida9 axoneme lacked electron density near the base of the S2 radial spoke, indicating that dynein c localizes to this site. The mutant ida9 swam only slightly slower than the wild type in normal media. However, swimming velocity was greatly reduced when medium viscosity was modestly increased. Thus, dynein c in wild type axonemes must produce a significant force when flagella are beating in viscous media. Because motility analyses in vitro have shown that dynein c is the fastest among all the inner arm dyneins, we can regard this dynein as a fast yet powerful motor.  相似文献   

18.
We have characterized a novel, temperature-sensitive mutation affecting motility in Tetrahymena thermophila. Mutants grew and divided normally at the restrictive temperature (38 degrees C), but became nonmotile. Scanning electron microscopic analysis indicated that nonmotile mutants contained the normal number of cilia and that the cilia were of normal length. Transmission electron microscopic analysis indicated that axonemes isolated from nonmotile mutants lacked outer dynein arms, so the mutation was named oad 1 (outer arm deficient). Motile mutants shifted to 38 degrees C under conditions that prevent cell growth and division (starvation) remained motile suggesting that once assembled into axonemes at the permissive temperature (28 degrees C) the outer arm dyneins remain functional at 38 degrees C. Starved, deciliated mutants regenerated a full complement of functional cilia at 38 degrees C, indicating that the mechanism that incorporates the outer arm dynein into developing axonemes is not affected by the oad 1 mutation. Starved, nonmotile mutants regained motility when shifted back to 28 degrees C, but not when incubated with cycloheximide. We interpret these results to rule out the hypothesis that the oad 1 mutation affects the site on the microtubules to which the outer arm dyneins bind. Axonemes isolated from mutants grown for one generation at 38 degrees C had a mean of 6.0 outer arm dyneins, and axonemes isolated from mutants grown for two generations at 38 degrees C had a mean of 3.2 outer arm dyneins. Taken together, these results indicate that the oad 1 mutation affects the synthesis of outer arm dyneins in Tetrahymena.  相似文献   

19.
To learn more about how dyneins are targeted to specific sites in the flagellum, we have investigated a factor necessary for binding of outer arm dynein to the axonemal microtubules of Chlamydomonas. This factor, termed the outer dynein arm-docking complex (ODA-DC), previously was shown to be missing from axonemes of the outer dynein armless mutants oda1 and oda3. We have now partially purified the ODA-DC, determined that it contains equimolar amounts of M(r) approximately 105,000 and approximately 70,000 proteins plus a third protein of M(r) approximately 25,000, and found that it is associated with the isolated outer arm in a 1:1 molar ratio. We have cloned a full-length cDNA encoding the M(r) approximately 70,000 protein; the sequence predicts a 62.5-kDa protein with potential homologs in higher ciliated organisms, including humans. Sequencing of corresponding cDNA from strain oda1 revealed it has a mutation resulting in a stop codon just downstream of the initiator ATG; thus, it is unable to make the full-length M(r) approximately 70,000 protein. These results demonstrate that the ODA1 gene encodes the M(r) approximately 70,000 protein, and that the protein is essential for assembly of the ODA-DC and the outer dynein arm onto the doublet microtubule.  相似文献   

20.
Tctex1 and Tctex2 were originally described in mice as putative distorters/sterility factors involved in the non-Mendelian transmission of t haplotypes. Subsequently, these proteins were found to be light chains of both cytoplasmic and axonemal dyneins. We have now identified a novel Tctex2-related protein (Tctex2b) within the Chlamydomonas flagellum. Tctex2b copurifies with inner arm I1 after both sucrose gradient centrifugation and anion exchange chromatography. Unlike the Tctex2 homologue within the outer dynein arm, analysis of a Tctex2b-null strain indicates that this protein is not essential for assembly of inner arm I1. However, a lack of Tctex2b results in an unstable dynein particle that disassembles after high salt extraction from the axoneme. Cells lacking Tctex2b swim more slowly than wild type and exhibit a reduced flagellar beat frequency. Furthermore, using a microtubule sliding assay we observed that dynein motor function is reduced in vitro. These data indicate that Tctex2b is required for the stability of inner dynein arm I1 and wild-type axonemal dynein function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号