首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Catalytic properties of alkaline phosphatase from pig kidney   总被引:6,自引:5,他引:1       下载免费PDF全文
The enzymic properties of alkaline phosphatase (EC 3.1.3.1) from pig kidney brush-border membranes were studied. 1. It hydrolyses ortho- and pyro-phosphate esters, the rate limiting step (V(max.)) being independent of the substrate. It transphosphorylates to Tris at concentrations above 0.1m-Tris. 2. The pH optimum for hydrolysis was between 9.8 and 10. The pK of the enzyme-substrate complex is 8.7 for p-nitrophenyl phosphate and beta-glycerophosphate. Excess of substrate inhibits the enzymic activity with decreasing pH. The pK of the substrate-inhibited enzyme-substrate complex, 8.7, is very similar to that for the enzyme-substrate complex. The pK values of the free enzyme appear to be 8.7 and 7.9. 3. Inactivation studies suggest that there is an essential tyrosine residue at the active centre of the enzyme. 4. The energy of activation (E) and the heat of activation (DeltaH) at pH9.5 showed a transition at 24.8 degrees C that was unaffected by Mg(2+). 5. Kinetic and atomic-absorption analysis indicated the essential role of two Zn(2+) ions/tetrameric enzyme for an ordered association of the monomers. Zn(2+) in excess and other bivalent ions compete for a second site with Mg(2+). Mg(2+) enhances only the rate-limiting step of substrate hydrolysis. 6. Amino acid inhibition studies classified the pig kidney enzyme as an intermediate type of previously described alkaline phosphatases. It has more similarity with the enzyme from liver and bone than with that from placenta.  相似文献   

2.
The structure of crystalline porcine mitochondrial NADP-dependent isocitrate dehydrogenase (IDH) has been determined in complex with Mn2+-isocitrate. Based on structural alignment between this porcine enzyme and seven determined crystal structures of complexes of NADP with bacterial IDHs, Arg83, Thr311, and Asn328 were chosen as targets for site-directed mutagenesis of porcine IDH. The circular dichroism spectra of purified wild-type and mutant enzymes are similar. The mutant enzymes exhibit little change in Km for isocitrate or Mn2+, showing that these residues are not involved in substrate binding. In contrast, the Arg83 mutants, Asn328 mutants, and T311A exhibit 3-20-fold increase in the Km(NADP). We propose that Arg83 enhances NADP affinity by hydrogen bonding with the 3'-OH of the nicotinamide ribose, whereas Asn328 hydrogen bonds with N1 of adenine. The pH dependence of Vmax for Arg83 and Asn328 mutants is similar to that of wild-type enzyme, but for all the Thr311 mutants, pK(es) is increased from 5.2 in the wild type to approximately 6.0. We have previously attributed the pH dependence of Vmax to the deprotonation of the metal-bound hydroxyl of isocitrate in the enzyme-substrate complex, prior to the transfer of a hydride from isocitrate to NADP's nicotinamide moiety. Thr311 interacts with the nicotinamide ribose and is the closest of the target amino acids to the nicotinamide ring. Distortion of the nicotinamide by Thr311 mutation will likely be transmitted to Mn2+-isocitrate resulting in an altered pK(es). Because porcine and human mitochondrial NADP-IDH have 95% sequence identity, these results should be applicable to the human enzyme.  相似文献   

3.
Kinetic studies with myo-inositol monophosphatase from bovine brain   总被引:3,自引:0,他引:3  
A J Ganzhorn  M C Chanal 《Biochemistry》1990,29(25):6065-6071
The kinetic properties of myo-inositol monophosphatase with different substrates were examined with respect to inhibition by fluoride, activation or inhibition by metal ions, pH profiles, and solvent isotope effects. F- is a competitive inhibitor versus 2'-AMP and glycerol 2-phosphate, but noncompetitive (Kis = Kii) versus DL-inositol 1-phosphate, all with Ki values of approximately 45 microM. Activation by Mg2+ follows sigmoid kinetics with Hill constants around 1.9, and random binding of substrate and metal ion. At high concentrations, Mg2+ acts as an uncompetitive inhibitor (Ki = 4.0 mM with DL-inositol 1-phosphate at pH 8.0 and 37 degrees C). Activation and inhibition constants, and consequently the optimal concentration of Mg2+, vary considerably with substrate structure and pH. Uncompetitive inhibition by Li+ and Mg2+ is mutually exclusive, suggesting a common binding site. Lithium binding decreases at low pH with a pK value of 6.4, and at high pH with a pK of 8.9, whereas magnesium inhibition depends on deprotonation with a pK of 8.3. The pH dependence of V suggests that two groups with pK values around 6.5 have to be deprotonated for catalysis. Solvent isotope effects on V and V/Km are greater than 2 and 1, respectively, regardless of the substrate, and proton inventories are linear. These results are consistent with a model where low concentrations of Mg2+ activate the enzyme by stabilizing the pentacoordinate phosphate intermediate. Li+ as well as Mg2+ at inhibiting concentrations bind to an additional site in the enzyme-substrate complex. Hydrolysis of the phosphate ester is rate limiting and facilitated by acid-base catalysis.  相似文献   

4.
M T Mas  R F Colman 《Biochemistry》1984,23(8):1675-1683
The interaction of the 2'-phosphate-containing nucleotides (NADP+, NADPH, 2'-phosphoadenosine 5'-diphosphoribose, and adenosine 2',5'-bisphosphate) with NADP+ -specific isocitrate dehydrogenase was studied by using 31P NMR spectroscopy. The separate resonances corresponding to free and bound nucleotides, characteristic for slow exchange of nuclei on the NMR time scale, were observed in the spectra of the enzyme (obtained in the presence of excess ligand) with NADP+ and NADPH in the absence and presence of Mg2+ and with 2'-phosphoadenosine 5'-diphosphoribose in the absence of metal or in the presence of the substrate magnesium isocitrate. The position of the 31P resonance of the bound 2'-phosphate group in these spectra is invariant (delta = 6) in the pH range 5-8, indicating that the pK of this group is much lower in the complexes with the enzyme than that (pK = 6.13) in the free nucleotides. The additional downfield shift of this resonance by 1.8 ppm beyond that (delta = 4.22) of the dianionic form of the 2'-phosphate in free nucleotides suggests interaction with a positively charged group(s) and/or distortion of P-O-P angles as the result of binding to the enzyme. A single resonance of 2'-phosphate was observed in the spectrum of the enzyme complex with 2'-phosphoadenosine 5'-diphosphoribose in the presence of Mg2+, with the chemical shift dependent on the nucleotide to enzyme ratio, characteristic for the fast exchange situation. Addition of metal does not perturb the environment of the 2'-phosphate in the complexes of NADP+ and NADPH with isocitrate dehydrogenase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
1. An NADP+-dependent isocitrate dehydrogenase was extracted from turbot liver. The enzyme required divalent cations (Mg2+ or Mn2+) for its activity but was inhibited by high salt concentrations. 2. The enzyme had an optimum activity in the pH range between 7.5 and 9.0. The enzymic activity increased with temperature (in the range of 5 to 68 degrees C) with an Ea of 23.5 kJ/mol and a Q10 of 1.34. 3. The apparent Km values for the substrates were 6.5 microM for NADP+, 56 microM for Mg2+, 87 microM for Mn2+ and 4.2 and 73.5 microM for the complexes Mg-isocitrate and Mn-isocitrate, respectively. The physiological significance of these results is discussed. 4. The enzyme was inhibited by citrate and adenine nucleotides. The degree of inhibition depended on the relation between the concentrations and that of magnesium. A possible regulating mechanism is proposed.  相似文献   

6.
Huang YC  Grodsky NB  Kim TK  Colman RF 《Biochemistry》2004,43(10):2821-2828
Pig heart mitochondrial NADP-dependent isocitrate dehydrogenase requires a divalent metal ion for catalysis, and metal-isocitrate is its preferred substrate. On the basis of the crystal structure of the enzyme-Mn(2+)-isocitrate complex, Asp(252), Asp(275), and Asp(279) were selected as targets for site-directed mutagenesis to evaluate the roles of these residues as ligands of the metal ion. The circular dichroism spectra of the purified mutant enzymes are similar to that of wild-type enzyme indicating there are no appreciable conformational changes. The K(m) values for isocitrate and for Mn(2+) are increased in the asparagine and histidine mutants at positions 252 and 275; while for cysteine mutants at the same positions, the K(m)'s are not changed appreciably. Mutants at position 279 exhibit only a small change in K(m) for isocitrate. These results indicate that Asp(252) and Asp(275) are ligands of enzyme-bound Mn(2+)and influence the binding of Mn(2+)-isocitrate. Cysteine is an acceptable substitute for aspartate as a ligand of Mn(2+). The pK(aes)'s of D252C and D275C enzymes are similar to that of the wild-type enzyme (about 5.2), while the pK(aes) of D279C is a little lower (about 4.7). These findings suggest that the V(max)'s of the D252C, D275C, and D279C enzymes depend on the ionizable form of the same group as in wild-type enzyme and neither Asp(252), Asp(275), nor Asp(279) acts as the general base in the enzymatic reaction. For wild-type enzyme, the pK(aes) varies with the metal ion used with Mg(2+) > Cd(2+) > Mn(2+) > Co(2+), similar to the order of the pK's for these four metal-bound waters. We therefore attribute the pH dependence of V(max) to the deprotonation of the metal-coordinated hydroxyl group of isocitrate bound to isocitrate dehydrogenase.  相似文献   

7.
Three pyoverdines, Pf-A, Pf-B, and Pf-C, were purified with copper-chelate Sepharose and Sephadex G-15 columns from Pseudomonas fluorescens 2-79, and the yields (per 100 ml of culture supernatant) were 2.8, 21.6, and 3.2 mg, respectively. The absorption and fluorescence spectra of these pyoverdines were strongly pH dependent. Characteristic changes in the maximal absorbance wavelengths were observed when Fe(sup3+) or Cu(sup2+) was added. The addition of Cu(sup2+) shifted the pyoverdine Pf-B absorbance spectrum so that it exhibited a single peak at 410 nm but did not give rise to a new absorbance maximum at approximately 460 nm, which appeared when Fe(sup3+) was added. Fluorescence quenching experiments revealed that the forward reaction rate constant with pyoverdines was much higher with Cu(sup2+) (10(sup4) to 10(sup5) M(sup-1) s(sup-1)) than with Fe(sup3+) (10(sup2) M(sup-1) s(sup-1)). However, Cu(sup2+)-pyoverdine complexes were completely dissociated by EDTA at a low concentration (0.1 mM), while the level of Fe(sup3+)-pyoverdine complex dissociation at the same EDTA concentration was relatively low. The dissociation of Fe(sup3+)-pyoverdine complexes was EDTA concentration dependent. Formation of free pyoverdine was observed when the three types of Fe(sup3+)-pyoverdine complexes were incubated separately with P. fluorescens 2-79 cells, thus demonstrating that pyoverdines Pf-A, Pf-B, and Pf-C mediate iron transport.  相似文献   

8.
The authors studies pH-dependencies of the kinetic parameters (Vm, KM, Vm/KM) and constants of competitive inhibition by phenylacetic acid of penicillinamidase-catalyzed hydrolysis of benzylpenicillin. The experimental data are in agreement with the assumption according to which there are 3 equilibrium ionogenic forms of the enzyme and enzyme-substrate (or enzyme-inhibitor) complexes, i.e. acidic, neutral and alkaline, the neutral form being the only active form of the Michaelis complex. Values of pK in the ionogenic groups controlling interconversions of both the free enzyme (pK1 6.1 and pK2 7.6) and of the enzyme-substrate complex (pKa 6.1 and pK2 10.2 or the enzyzme-inhibitor complex (pK'1 6.1 and pK'2 9.5) were determined. From this and the previously published results it was concluded that the group with pK 6.1 was involved in the catalysis and the group with pK 10.2 in the maintenance of the active conformation of the active centre of penicillinamidase. The ionogenic group with pK 7.6 was apparently involved in the enzyme-substrate binding.  相似文献   

9.
1. The stoicheiometries and affinities of ligand binding to isocitrate dehydrogenase were studied at pH 7.0, mainly by measuring changes in NADPH and protein fluorescence. 2. The affinity of the enzyme for NADPH is about 100-fold greater than it is for NADP+ in various buffer/salt solutions, and the affinities for both coenzymes are decreased by Mg2+, phosphate and increase in ionic strength. 3. The maximum binding capacity of the dimeric enzyme for NADPH, from coenzyme fluorescence and protein-fluorescence measurements, and also for NADP+, by ultrafiltration, is 2 mol/mol of enzyme. Protein-fluorescence titrations of the enzyme with NADP+ are apparently inconsistent with this conclusion, indicating that the increase in protein fluorescence caused by NADP+ binding is not proportional to fractional saturation of the binding sites. 4. Changes in protein fluorescence caused by changes in ionic strength and by the binding of substrates, Mg2+ or NADP+ (but not NADPH) are relatively slow, suggesting conformation changes. 5. In the presence of Mg2+, the enzyme binds isocitrate very strongly, and 2-oxoglutarate rather weakly. 6. Evidence is presented for the formation of an abortive complex of enzyme-Mg2+-isocitrate-NADPH in which isocitrate and NADPH are bound much more weakly than in their complexes with enzyme and Mg2+ alone. 7. The results are discussed in relation to the interpretation of the kinetic properties of the enzyme and its behaviour in the mitochondrion.  相似文献   

10.
The pH dependence of the maximum velocity of the reaction catalyzed by diphosphopyridine nucleotide (DPN) dependent isocitrate dehydrogenase indicates the requirement for the basic form of an ionizable group in the enzyme-substrate complex with a pK of 6.6. This pK is unaltered from 10 to 33 degrees C, suggesting the ionization of a carboxyl rather than an imidazolium ion. The enzyme is inactivated upon incubation with 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide in the presence of glycinamide or glycine ethyl ester. This inactivation is dependent on pH and the rate constant (k) increases as the pH is decreased in the range 7.3 to 6.25. A plot of 1/(H+) vs. 1/k suggests that the enzyme is inactivated as a result of the modification of a single ionizable group in this pH range. The coenzyme DPN and substrate alpha-ketoglutarate do not affect the rate of inactivation. In contrast, manganous ion (2 mM) and isocitrate (60 mM) produce a sevenfold decrease in the rate constant. The allosteric activator ADP (1 mM) does not itself influence the rate of inactivation; however, it reduces the concentration of Mn2+ (1 mM) and isocitrate (20 mM) required to produce the same decrease in the inactivation constant. These observations imply that the modification occurs at the substrate-binding site. Experiments employing [1-14C]glycine ethyl ester show a net incorporation of 2 mol of glycine ethyl ester per subunit (40 000), concomitant with the complete inactivation of the enzyme. The radioactive modified enzyme, after removal of excess reagent by dialysis, was exhaustively digested with proteolytic enzymes. High voltage electrophoretic analyses of the hydrolysate at pH 6.4 and 3.5 yield two major radioactive spots with approximately equal intensity, which correspond to gamma-glutamylglycine and beta-aspartylglycine, the ultimate products of reaction with glutamic and aspartic acids, respectively. Modification in the presence of manganous ion and isocitrate results in significant reduction in the incorporation of radioactivity into the two dipeptides. These results suggest that carbodiimide attacks one glutamyl and one aspartyl residue per subunit of the enzyme and that the integrity of these residues is crucial for the enzymatic activity.  相似文献   

11.
Grodsky NB  Soundar S  Colman RF 《Biochemistry》2000,39(9):2193-2200
Pig heart NADP-dependent isocitrate dehydrogenase requires a divalent metal cation for catalysis. On the basis of affinity cleavage studies [Soundar and Colman (1993) J. Biol. Chem. 268, 5267] and analysis of the crystal structure of E. coli NADP-isocitrate dehydrogenase [Hurley et al. (1991) Biochemistry 30, 8671], the residues Asp(253), Asp(273), Asp(275), and Asp(279) were selected as potential ligands of the divalent metal cation in the pig heart enzyme. Using a megaprimer PCR method, the Asp at each of these positions was mutated to Asn. The wild-type and mutant enzymes were expressed in Escherichia coli and purified. D253N has a specific activity, K(m) values for Mn(2+), isocitrate, and NADP, and also a pH-V(max) profile similar to those of the wild-type enzyme. Thus, Asp(253) is not involved in enzyme function. D273N has an increased K(m) for Mn(2+) and isocitrate with a specific activity 5% that of wild type. The D273N mutation also prevents the oxidative metal cleavage seen with Fe(2+) alone in the wild-type enzyme. As compared to wild type, D275N has greatly increased K(m) values for Mn(2+) and isocitrate, with a specific activity <0.1% that of wild type, and a large increase in pK(a) for the enzyme-substrate complex. D279N has only small increases in K(m) for Mn(2+) and isocitrate, but a specific activity <0.1% that of wild type and a major change in the shape of its pH-V(max) profile. These results suggest that Asp(273) and Asp(275) contribute to metal binding, whereas Asp(279), as well as Asp(275), is critical for catalysis. Asp(279) may function as the catalytic base. Using the Modeler program of Insight II, a structure for porcine NADP-isocitrate dehydrogenase was built based on the X-ray coordinates of the E. coli enzyme, allowing visualization of the metal-isocitrate site.  相似文献   

12.
Incubation of pig heart NADP-dependent isocitrate dehydrogenase with ethoxyformic anhydride (diethylpyrocarbonate) at pH 6.2 results in a 9-fold greater rate of loss of dehydrogenase than of oxalosuccinate decarboxylase activity. The rate constants for loss of dehydrogenase and decarboxylase activities depend on the basic form of ionizable groups with pK values of 5.67 and 7.05, respectively, suggesting that inactivation of the two catalytic functions results from reaction with different amino acid residues. The rate of loss of dehydrogenase activity is decreased only slightly in the presence of manganous isocitrate, but is reduced up to 10-fold by addition of the coenzymes or coenzyme analogues, such as 2'-phosphoadenosine 5'-diphosphoribose (Rib-P2-Ado-P). Enzyme modified at pH 5.8 fails to bind NADPH, but exhibits manganese-enhanced isocitrate binding typical of native enzyme, indicating that reaction takes place in the region of the nucleotide binding site. Dissociation constants for enzyme . coenzyme-analogue complexes have been calculated from the decrease in the rate of inactivation as a function of analogue concentration. In the presence of isocitrate, activating metals (Mn2+, Mg2+, Zn2+) decrease the Kd value for enzyme . Rib-P2-Ado-P, while the inhibitor Ca2+ increases Kd. The strengthened binding of nucleotide produced by activating metal-isocitrate complexes may be essential for the catalytic reaction, reflecting an optimal orientation of NADP+ to facilitate hydride transfer. Measurements of ethoxyformyl-histidine formation at 240 nm and of incorporation of [14C]ethoxy groups in the presence and absence of Rib-P2-Ado-P indicate that loss of activity may be related to modification of approximately one histidine. The critical histidine appears to be located in the nucleotide binding site in a region distal from the substrate binding site.  相似文献   

13.
Pre-steady-state studies of the isocitrate dehydrogenase reaction show that the rate constant for the hydride-transfer step is above 990s-1, and that both subunits of the enzyme are simulataneously active. After the fast formation of NADPH in amounts equivalent to the enzyme subunit concentration, the rate of NADPH formation is equal to the steady-state rate if the enzyme has been preincubated with isocitrate and Mg2+. If the enzyme has been preincubated with NADP+ and Mg2+, in 0.05 M-triethanolamine chloride buffer, pH 7.0, with the addition of 0.1 M-NaCl, the amount of NADPH formed in the fast phase is only 60% of the enzyme subunit concentration, and the turnover rate is at first lower than the steady-state rate. In 0.05 M-triethanolamine chloride buffer, pH 7.0, if the enzyme is preincubated with NADP+ or NADPH, the turnover rate increases 3-fold to reach the steady-state rate after about 5 s. Preincubation of the enzyme with isocitrate and Mg2+ abolishes this lag phase, the steady-state rate being reached at once. It is suggested that the enzyme exists in at least two conformational forms with different activities, and that the lag phase represents the transition (k = 0.4s-1) from a form with low activity to the fully active enzyme, induced by the binding of isocitrate and Mg2+.  相似文献   

14.
A divalent cation electrode was used to measure the stability constants (association constants) for the magnesium and manganese complexes of the substrates for the NADP+-specific isocitrate dehydrogenase (EC 1.1.1.42) from pea stems. At an ionic strength of 26.5 mM and at pH 7.4 the stability constants for the Mg2+-isocitrate and Mg2+-NADP+ complexes were 0.85 +/- 0.2 and 0.43 +/- 0.04 mM-1 respectively and for the Mn2+-isocitrate and Mn2+-NADP+ complexes they were 1.25 +/- 0.07 and 0.75 +/- 0.09 mM-1 respectively. At the same ionic strength but at pH 6.0 the Mg2+-NADPH and Mn2+-NADPH complexes had stability constants of 0.95 +/- 0.23 and 1.79 +/- 0.34 mM-1 respectively. Oxalosuccinate and alpha-ketoglutarate do not form measureable complexes under these conditions. Saturation kinetics of the enzyme with respect to isocitrate and metal ions are consistent with the metal-isocitrate complex being the substrate for the enzyme. NADP+ binds to the enzyme in the free form. Saturation kinetics of NADPH and Mn2+ indicate that the metal-NADPH complex is the substrate in the reverse reaction. In contrast the pig heart enzyme appears to bind free NADPH and Mn2+. A scheme for the reaction mechanism is presented and the difference between the reversibility of the NAD+ and NADP+ enzyme is discussed in relation to the stability of the NADH and NADPH metal complexes.  相似文献   

15.
Roots of Phaseolus vulgaris L. were incubated with dilute suspensions (1 x 10(sup3) to 3 x 10(sup3) bacteria ml(sup-1)) of an antibiotic-resistant indicator strain of Rhizobium leguminosarum bv. phaseoli in mineral medium and washed four times by a standardized procedure prior to quantitation of adsorption (G. Caetano-Anolles and G. Favelukes, Appl. Environ. Microbiol. 52:371-376, 1986). The population of rhizobia remaining adsorbed on roots after washing was homogeneous, as indicated by the first-order course of its desorption by hydrodynamic shear. Rhizobia were maximally active for adsorption in the early stationary phase of growth. The process leading to adsorption was rapid, without an initial lag, and slowed down after 1 h. Adsorption of the indicator strain at 10(sup3) bacteria ml(sup-1) was inhibited to different extents in the presence of 10(sup3) to 10(sup8) antibiotic-sensitive competitor rhizobia ml(sup-1). After a steep rise above 10(sup4) bacteria ml(sup-1), inhibition by heterologous competitors in the concentration range of 10(sup5) to 10(sup7) bacteria ml(sup-1) was markedly less than by homologous strains, while at 10(sup8) bacteria ml(sup-1) it approached the high level of inhibition by the latter. At 10(sup7) bacteria ml(sup-1), all of the heterologous strains tested were consistently less inhibitory than homologous competitors (P < 0.001). These differences in competitive behavior indicate that in the process of adsorption of R. leguminosarum bv. phaseoli to its host bean roots, different modes of adsorption occur and that some of these modes are specific for the microsymbiont (as previously reported for the alfalfa system [G. Caetano-Anolles and G. Favelukes, Appl. Environ. Microbiol. 52:377-381, 1986]). Moreover, whereas the nonspecific process occurred either in the absence or in the presence of Ca(sup2+) and Mg(sup2+) ions, expression of specificity was totally dependent on the presence of those cations. R. leguminosarum bv. phaseoli bacteria adsorbed in the presence of Ca(sup2+) and Mg(sup2+) were more resistant to desorption by shear forces than were rhizobia adsorbed in their absence. These results indicate that (i) symbiotic specificity in the P. vulgaris-R. leguminosarum bv. phaseoli system is expressed already during the early process of rhizobial adsorption to roots, (ii) Ca(sup2+) and Mg(sup2+) ions are required by R. leguminosarum bv. phaseoli for that specificity, and (iii) those cations cause tighter binding of rhizobia to roots.  相似文献   

16.
C B Grissom  W W Cleland 《Biochemistry》1988,27(8):2934-2943
The catalytic mechanism of porcine heart NADP isocitrate dehydrogenase has been investigated by use of the variation of deuterium and 13C kinetic isotope effects with pH. The observed 13C isotope effect on V/K for isocitrate increases from 1.0028 at neutral pH to a limiting value of 1.040 at low pH. The limiting 13C isotope effect with deuteriated isocitrate at low pH is 1.016. This decrease in 13(V/KIc) upon deuteriation indicates a stepwise mechanism for the oxidation and decarboxylation of isocitrate. This predicts a deuterium isotope effect on V/K of 2.9, but D(V/K) at low pH only increases to a maximum of 1.08. It is not known why 13(V/KIc) with deuteriated isocitrate decreases more than predicted. The pK seen in the 13(V/KIc) pH profile for isocitrate is 4.5. This pK is displaced 1.2 pH units from the true pK of the acid/base functionality of 5.7 seen in the pKi profile for oxalylglycine, a competitive inhibitor for isocitrate. From this displacement, catalysis is estimated to be 16 times faster than substrate dissociation. By use of the pH-dependent partitioning ratio of the reaction intermediate oxalosuccinate between decarboxylation to 2-ketoglutarate and reduction to isocitrate, the forward commitment to catalysis for decarboxylation was determined to be 7.3 at pH 5.4 and 3.2 at pH 5.0. This gives an intrinsic 13C isotope effect for decarboxylation of 1.050. 3-Fluoroisocitrate is a new substrate oxidatively decarboxylated by NADP isocitrate dehydrogenase. At neutral pH, D(V/K3-F-Ic) = 1.45 and 13(V/K3-F-Ic) = 1.0129. At pH 5.2, 13(V/K3-F-Ic) increases to 1.0186, indicating that a finite, but diminished, external commitment remains at neutral pH. The product of oxidative decarboxylation of 3-hydroxyisocitrate by NADP isocitrate dehydrogenase is 2-hydroxy-3-ketoglutarate. This results from enzymatic protonation of the cis-enediol intermediate at C2 rather than C3 (as seen with isocitrate and 3-fluoroisocitrate). 2-Hydroxy-3-ketoglutarate further decarboxylates in solution to 2-hydroxy-3-ketobutyrate, which further decarboxylates to acetol. This makes 3-hydroxyisocitrate unsuitable for 13C isotope effect studies.  相似文献   

17.
An extracellular serine proteinase from Brevibacterium linens ATCC 9174 was purified to homogeneity. pH and temperature optima were 8.5 and 50(deg)C, respectively. The results for the molecular mass of the proteinase were 56 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 126 kDa by gel filtration, indicating that the native enzyme exists as a dimer. Mg(sup2+) and Ca(sup2+) activated the proteinase, as did NaCl; however, Hg(sup2+), Fe(sup2+), and Zn(sup2+) caused strong inhibition. The sequence of the first 20 N-terminal amino acids was NH(inf2)-Ala-Lys-Asn-Asp-Ala-Val-Gly-Gly-Met-Gly-Tyr-Leu-Ser-Met-Ile-Pro-Se r-Gln-Pro-Gly.  相似文献   

18.
The pH dependent activation of calcineurin by exogenous metal ion was studied over the pH range from 6.5 to 9.0 in increments of 0.5 pH units. Calcineurin activated by Co2+, Ni2+, or Mg2+ was characterized and compared to the pH dependency of the Mn(2+)-activated enzyme (Martin, B.L., and Graves, D.J. (1986) J. Biol. Chem. 261, 14545-14550). The pH dependency of the kinetic parameters varied with metal ion and subsequent analysis yielded estimates for the pKa values for the enzyme-metal ion and the enzyme-metal ion-substrate complexes with each of the exogenous metal ions characterized. The evaluated pK(a)s for enzyme-metal ion (EM) complexes showed an inverse relationship with the pK(a)s of the M(2+)-H2O complex. In contrast, variation of the pK(a)s for the enzyme-metal ion-substrate (EMS) complexes showed no trend. These data support the hypothesis that exogenous metal ion functions to facilitate a proton transfer before the turnover of substrate with the acidity of the exogenous metal ion as a primary determinant of its participation.  相似文献   

19.
S H Park  B G Harris  P F Cook 《Biochemistry》1986,25(13):3752-3759
Both chicken liver NADP-malic enzyme and Ascaris suum NAD-malic enzyme catalyze the metal-dependent decarboxylation of oxalacetate. Both enzymes catalyze the reaction either in the presence or in the absence of dinucleotide. The presence of dinucleotide increases the affinity of oxalacetate for the chicken liver NADP-malic enzyme, but this information could not be obtained in the case of A. suum NAD-malic enzyme because of the low affinity of free enzyme for NAD. The kinetic mechanism for oxalacetate decarboxylation by the chicken liver NADP-malic enzyme is equilibrium ordered at pH values below 5.0 with NADP adding to enzyme first. The Ki for NADP increases by a factor of 10 per pH unit below pH 5.0. An enzyme residue is required protonated for oxalacetate decarboxylation (by both enzymes) and pyruvate reduction (by the NAD-malic enzyme), but the beta-carboxyl of oxalacetate must be unprotonated for reaction (by both enzymes). The pK of the enzyme residue of the chicken liver NADP-malic enzyme decreases from a value of 6.4 in the absence of NADP to about 5.5 with Mg2+ and 4.8 with Mn2+ in the presence of NADP. The pK value of the enzyme residue required protonated for either oxalacetate decarboxylation or pyruvate reduction for the A. suum NAD-malic enzyme is about 5.5-6.0. Although oxalacetate binds equally well to protonated and unprotonated forms of the NADP-enzyme, the NAD-enzyme requires that oxalacetate or pyruvate selectively bind to the protonated form of the enzyme. Both enzymes prefer Mn2+ over Mg2+ for oxalacetate decarboxylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The steady-state kinetics of plasmin (EC 3.4.21.7) catalysed reactions with some alpha-N-benzoyl-L-arginine compounds is investigated in the pH range 5.8--9.0. The results are interpreted in terms of a three-step mechanism, which involves enzyme-substrate complex formation, followed by acylation and deacylation of the enzyme. Alpha-N-Benzoyl-L-arginine methyl ester and ethyl ester show the same pH behaviour. The kinetic parameter kc/Km is influenced by two groups with pK values of 6.5 and 8.4, respectively. kc is affected only by the group with pK equal to 6.5 and Km only by the group with pK equal to 8.4. It is suggested that the group with pK equal to 6.5 is the 1-chloro-3-tosyl-amido-7-amino-2-heptanone-sensitive histidine residue in the active site and that the group with pK equal to 8.4 is perhaps the alpha-amino group of the N-terminus in analogy to trypsin and chymotrypsin. alpha-N-Benzoyl-L-arginine amide is not hydrolysed by plasmin, but proves to be a competitive inhibitor, Ki = 12.8 +/- 1.8 mM, pH = 7.8. Also the product alpha-N-benzoyl-L-arginine is a competitive inhibitor, Ki = 26 +/- 3.1 mM, pH = 7.8. Estimates of individual rate constants are compared with similar trypsin data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号